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Abstract
Memristive and resistive switching devices are considered promising building blocks for the
realization of artificial neural networks and neuromorphic systems. Besides conventional
top-down memristive devices based on thin films, resistive switching devices based on
nanowires (NWs) have attracted great attention, not only for the possibility of going beyond
current scaling limitations of the top-down approach, but also as model systems for the
localization and investigation of the physical mechanism of switching. This work reports on the
fabrication of memristive devices based on ZnO NWs, from NW synthesis to single NW-based
memristive cell fabrication and characterization. The bottom-up synthesis of ZnO NWs was
performed by low-pressure chemical vapor deposition according to a self-seeding vapor-solid
(VS) mechanism on a Pt substrate over large scale (∼cm2), without the requirement of previous
seed deposition. The grown ZnO NWs are single crystalline with wurtzite crystal structure and
are vertically aligned respect to the growth substrate. Single NWs were then contacted by means
of asymmetric contacts, with an electrochemically active and an electrochemically inert
electrode, to form NW-based electrochemical metallization memory cells that show
reproducible resistive switching behaviour and neuromorphic functionalities including
short-term synaptic plasticity and paired pulse facilitation. Besides representing building blocks
for NW-based memristive and neuromorphic systems, these single crystalline devices can be
exploited as model systems to study physicochemical processing underlaying memristive
functionalities thanks to the high localization of switching events on the ZnO crystalline surface.

Keywords: nanowires, ZnO, chemical vapor deposition (CVD), resistive switching,
memristive devices, neuromorphic devices
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1. Introduction

The ever growing advances of information processing has
pushed the development of metal-oxide-semiconductor field-
effect transistors driven by Moore’s law [1] and Dennard scal-
ing [2]. However, cost-effective scaling of this technology
is nowadays hampered by physical limitations encountered
by further shrinking technology nodes. Also, the traditional
von Neumann computing architecture is challenged by the
development of an ever growing interest in data-centric com-
puting and machine learning in the era of Big Data and
internet of things. Indeed, performances of this architecture
are limited by the so-called von Neumann bottleneck related
to the continuous data transfer in between the central pro-
cessing unit and the memory. In this framework, memristive
devices are considered as promising building blocks in the
semiconductor industry for the development of new comput-
ing approaches and architectures [3]. In these two-terminal
devices, where ionics is coupled with electronics, function-
alities rely on the so-called resistive switching mechanism
responsible for the dependence of the internal state of res-
istance on the history of applied voltage and current [4]. For
this reason, memristive devices have been proposed for a wide
range of applications including next generation memories,
in-memory computing, brain-inspired computing and neur-
omorphic systems for the emulation of biological synapses and
neurons [5–7].

Conventional memristive devices are realized through a
top-down approach where an active material (typically a metal
oxide thin film) is sandwiched in between two metal elec-
trodes in ametal–insulator–metal (MIM) structure [8]. Repres-
enting an ideal approach for reducing the device size beyond
the limits of top-down lithography, memristive devices based
on nanostructures realized with a bottom-up approach have
been investigated [9]. In this framework, resistive switching
planar devices based on nanowires (NWs) have been reported
as good platforms and model systems for studying and ana-
lysing the intrinsic switching mechanism. Indeed, differently
from conventional memristive cells based on thin films where
switching phenomena are buried in the MIM sandwich struc-
ture, the switching mechanism in NWs can be highly local-
ized allowing direct investigation of electrochemical reactions
and ionic transport phenomena underlaying memristive beha-
viour [10–13]. In addition, thanks to the possibility of tuning
the electrical transport at the nanoscale and by exploiting sur-
face states, new resistive switching features can be achieved
in NW-based memristive devices by light stimulation [14, 15]
or by properly engineering surface electronic properties
[16, 17].

Among nanostructures, ZnO NWs and nanorods have
attracted great interest during last years because of their
remarkable physical properties and potential applications in
optoelectronics, biomedical sciences, bio and gas sensing,
nanogenerators and photocatalysis, where isolated NWs or
group of NWs are exploited as active elements [18–20]. In
particular, ZnO NWs have been also widely exploited for
the realization of NW-based resistive switching devices [9].

A wide range of resistive switching devices based on single
ZnO NWs [10, 21–29] and NW arrays [30–33] have been
reported, where NWs were synthetized by different growth
techniques. Among growth techniques, ZnO nanostructures
have been reported to be synthetized by chemical vapor depos-
ition (CVD)with a wide range of setup configurations and pro-
cess parameters, as well as different growth mechanism such
as vapor-liquid-solid (VLS) and vapor-solid (VS) [34–44]. In
case of VLS mechanism, small liquid metal clusters have to
be formed on the growing substrate to act as catalysts for the
incorporation of precursor atoms with consequent growth of
nanostructures by precipitation. Instead, no catalyst is required
in case of VS growth since in this case nanostructures are crys-
tallized directly on the growing substrate. In this framework,
the synthesis mechanism and process parameters have to be
optimized depending on the desired material quality and final
application.

In this work, the fabrication of memristive devices based on
ZnONWs is reported, from NW synthesis to single NW-based
memristive cell fabrication and characterization. In particu-
lar, the bottom-up synthesis of ZnO NWs by self-seeding VS
mechanism on a Pt substrate was reported, showing that this
growth mechanism allows to grow vertically aligned, single
crystalline and hexagonal-shaped ZnO NWs with wurtzite
crystal structure over large scale (∼cm2), without requiring
pre-deposition of a seeding layer. The growth mechanism is
discussed by investigating the role of the growth substrate
and by analysing the effect of growth parameters on result-
ing NW dimensions and density. Then, the fabrication pro-
cess of memristive cells based on single crystalline ZnO NWs
asymmetrically contacted by means of an electrochemically
active and an electrochemically inert electrode is reported. The
single NW-based device, acting as an electrochemical metal-
lization memory (ECM) cell, exhibits reproducible resistive
switching behaviour with a relatively high ON/OFF resistance
ratio. Furthermore, it is able to emulate features of biological
synapses such as paired pulse facilitation (PPF), with gradual
increase of device conductance upon stimulation with tem-
porally correlated voltage pulses. These NW-based memrist-
ive devices represent versatile building blocks for nanoelec-
tronics towards the realization of NW-based neuromorphic
systems.

2. Synthesis of ZnO NWs by CVD

2.1. Experimental CVD setup

The synthesis of ZnO NWs was performed by means of a
low-pressure chemical vapor deposition (LPCVD) process in
a horizontal tubular furnace, as schematized in figure 1(a).
The LPCVD furnace is composed of a flanged quartz tube
connected with two gas lines that allow the insertion of pre-
cursor and carrier gases. The total gas flux flowing into the
process chamber and the ratio in between different gas spe-
cies is regulated by means of flowmeters. Heating components
surrounding the quartz tube allow to heat up the sample dur-
ing the deposition process. The growth process was performed
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Figure 1. Synthesis of ZnO NWs by low pressure chemical vapor deposition (LPCVD). (a) Schematization of the experimental apparatus
for the synthesis of ZnO nanostructures by LPCVD. (b) Low-pressure chemical vapor deposition process for the synthesis of ZnO NWs
consisting in a heating step, a CVD step of NW growth and a cooling step. (c) Schematization of the ZnO NWs growth process by CVD,
consisting in an initial nucleation of ZnO islands to form a ZnO base and consequent growth of NWs along the preferential c-axis direction.
Each growth stage refers to a different step of the growth process of panel (b).

on a Pt target substrate that was realized by sputtering on a
SiO2 commercial wafer substrate. An adhesion layer of Ta
was inserted by sputtering prior to Pt deposition to increase
the adhesion of the Pt film on the underlying substrate. The
Pt growth substrate was placed in the process chamber on an
alumina boat, surrounded by a Zn foil (99.99% of purity) that
acts as the Zn source during the CVD. In order to obtain repro-
ducible growth conditions, the quartz tube was cleaned from
Zn and ZnO residues after each growth process with an HCl
solution.

2.2. ZnO NWs synthesis process and mechanism

Before the LPCVD process, the process chamber was evacu-
ated down to the∼10−2 Torr to remove contaminations. Then,
during the heating step, the Zn source and Pt substrate were
heated up with a ramp rate of 8.6 ◦C min−1 while fluxing
60 sccm of Ar. The flux of Ar, exploited as carrier gas during
the synthesis, was increased to the target value desired for the
growth process (in the range of 250–400 sccm) when temper-
ature reached 300 ◦C. When the target temperature of 650 ◦C
was reached, the CVD step started and a flux of O2 exploited
as gas precursor was inserted into the chamber in addition to
the Ar flux. During this growth stage, the temperature was

maintained fixed at 650 ◦C for 20 min. The growth pressure,
that depends on the amount of gases fluxed into the chamber,
was measured to be in the range of 1–1.6 Torr. At the end
of the CVD step, the O2 flux was interrupted, and the cham-
ber was cooled down to room temperature in a Ar environ-
ment. The whole procedure with different phases is reported
in figure 1(b).

2.3. Growth mechanism and NW morphology

The ZnO NW growth process during the CVD step can
be explained by means of a self-seeding vapor-solid (VS)
mechanism, as schematized in figure 1(c). During the heat-
ing step, the Zn source melts (the melting point of Zn is about
420 ◦C in ambient conditions) and, when the vapor tensions
of the liquid Zn is high enough, starts to evaporate. Helped by
the carrier gas, the Zn is transported on the target Pt substrate.
After diffusion of reactant species and absorption on the Pt
surface, during the early stage of growth when O2 is inserted
into the chamber, ZnO starts to nucleate on the Pt substrate
with consequent growth of ZnO islands. Then, while growth
of additional islands occurs near the existing ones coales-
cing into a polycrystalline continuous ZnO base layer, ZnO
islands act as seeds for the synthesis of ZnO NWs that grow
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Figure 2. Morphology of ZnO NWs synthetized by LPCVD. (a) Tilted SEM image showing vertically aligned NWs (scale bar, 1 µm). (b)
Cross-sectional SEM image of ZnO NWs showing the presence of a ZnO base layer in between vertically aligned NWs and the Pt growth
substrate (scale bar, 500 nm). (c) Detail of a NW tip showing the hexagonal shape and the absence of metal clusters on the NW top (scale
bar, 30 nm).

fed by the evaporated zinc sources and oxygen elements, as
similarly reported by Jeong and Lee [45]. The nucleation of
seeds is likely to be facilitated in correspondence of Pt grain
boundaries and substrate defects [46]. Since the growth of
ZnO NWs occurs epitaxially along the c-axis crystallographic
direction of the seed, the NW alignment is determined by
the crystallographic orientation of islands formed during first
stages of the CVD step. An investigation of the NW mor-
phology by SEM imaging after the growth process revealed
that the LPCVD process resulted in vertically aligned NWs
(figure 2(a)). The NW growth was observed to be uniform
over relatively large area (∼2 × 2 cm). Cross-section images
reported in figure 2(b) allows direct observation of the ZnO
base layer, sandwiched in between NWs and the Pt substrate,
formed during initial stages of the growth process. In addi-
tion, a high-resolution image (figure 2(c)) revealed the typ-
ical hexagonal shape of NWs related to the wurtzite crystal
structure with P63mc symmetry resulting from the growth pro-
cess that proceeds along the [0001] polar direction (c-axis).
Detailed structural and chemical characterization of as grown
ZnO NWs reported in our previous works [30, 47] revealed
that each NW is a single crystal with high chemical purity
and a clean surface without the presence of any amorphous
layers.

2.4. The role of the substrate

The VS growth mechanism based on self-seeding overcomes
issues related to the pre-deposition of a seed layer. In this
context, nucleation is strongly related to the properties of
the growth substrate and Pt was observed to be an optimal
substrate for self-seeding and nucleation of ZnO nanostruc-
tures. In order to clarify this aspect, NWs grown on a bare
Pt substrate were compared to NWs grown on a pre-seeded
substrate. The seed layer was realized by preparing a solu-
tion of zinc acetate dihydrate (22 mg) and ethanol (10 ml)
on a Pt substrate. This solution was then deposited on a Pt
clean substrate by spin coating and subsequent dipping in
ethanol. By following this procedure, five seed layers were

Figure 3. The role of the growth substrate. Comparison of ZnO
NWs grown on a (a) pre-seeded and (b) bare Pt substrate (scale bars,
500 nm).

realized and then baked at 350 ◦C for 20 min. This proced-
ure was performed 2 times, for a total of ten seed layers. A
pre-seeded and bare Pt substrate was then inserted together
in the growth chamber and a CVD process was performed
by flushing 150 sccm of O2 and 300 sccm of Ar. Results
evidenced that NWs with similar morphologies were synthet-
ized in case of pre-seeded and bare Pt substrates, as repor-
ted in figures 3(a) and (b), respectively, clearly showing that
the seeding procedure can be safely avoided without influen-
cing the resulting NW morphology. Similarly, other metals
including Ti, Mo and W were reported as substrates for ini-
tiating the growth of ZnO NWs [36]. Interestingly, the here
reported growth mechanism allows selective growth of ZnO
NWs by pre-patterning the Pt substrate since nucleation is sup-
pressed elsewhere. This can be clearly observed in figure 4
where it can be observed that NWs grows only where Pt
was present, while other ZnO nanostructures, such as nano-
belts and sponge-like structures, were observed on the bare Si
substrate.

2.5. NW dimensions and density

Controlling the dimensions during the synthesis represents a
crucial aspect for the growth of NWs by means of bottom-up
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Figure 4. Selectivity of the growth process. (a) ZnO NWs grows
only on the Pt substrate (right side) while on the bare Si substrate
other ZnO nanostructures can be identified (scale bar, 2 µm).
Cross-sectional images of (b) nanostructures grown on the Si
substrate (scale bar, 10 µm) and (c) vertically aligned NWs grown
on the Pt substrate (scale bar, 500 nm).

techniques. In order to investigate the effect of growth para-
meters on NW dimensions, we have evaluated changes in the
NW dimensions by varying the precursor gas flux during the
process. For this purpose, different LPCVD processes were
performed by changing the O2 flux in the range 50–200 sccm
by keeping all the other parameters fixed (T = 650 ◦C,
t = 20 min, Ar flux of 300 sccm). The resulting distribu-
tions of NW lengths and diameters are reported in figures 5(a)
and (b), respectively. Measurements were performed by eval-
uating SEM cross-sectional images in different areas of the
sample, while sample-to-sample and process-to-process vari-
ability was taken into account by considering two samples for
each set of parameters in two distinct LPCVD growth process.
Note that in all cases the hexagonal shape of NWs was pre-
served. Results show that the NW morphology can be tuned
by varying the O2 flux during the synthesis process. In par-
ticular, the NW length can be tuned from ∼980 nm in case
of 150 sccm of O2 up to ∼1.7 µm in case of 200 sccm of
O2. Interestingly, it can be observed that an increase of the
precursor gas from 50 to 150 sccm resulted in shortening of
NWs. Even if a detailed understanding of this trend still needs
further investigation, it can be to strongly different thermo-
dynamic conditions obtained by increasing the O2 flux while
maintaining constant the Ar flux, resulting in an increase of
the total gas flux. The NW diameter, instead, was observed
to be nearly constant at about 80 nm independently from the
O2 flux. As a consequence, the aspect ratio exhibited a sim-
ilar trend respect to the NW length, as reported in figure 5(c),
where it can be observed that NWs with aspect ratio from∼12
up to ∼22 can be obtained. Importantly, it was observed that
the ZnO base layer thickness follow the same trend of the NW
length as reported in figure 5(d), suggesting that the base layer
thickness increases in parallel with the growth of NWs.

Figure 5. ZnO NW dimensions as a function of the O2 flux during
the growth process. All processes were performed by keeping
constant all the other growth parameters (T = 650 ◦C, t = 20 min,
Ar flux of 300 sccm). Box plots of (a) length, (b) diameter, (c)
aspect ratio and (d) base layer thickness. Midlines are median
values, squares the mean values, boxes the 25th and 75th percentiles
and whiskers the 10th and 90th percentiles. Each distribution was
obtained by evaluating two different samples for each growth
condition, by evaluating the dimension of at least 200 NWs in
different areas of the sample.

3. Single NW memristive cell fabrication
and characterization

3.1. Single NW memristive cell fabrication

Single NW devices with asymmetric electrodes can be real-
ized by means of combined photolithography and electron
beam lithography (EBL). In the first step, a commercial insu-
lating substrate of SiO2/Si was patterned by means of pho-
tolithography to realize a customized millimetric Au probe
circuit. Then, a mounted hair was used to mechanically trans-
fer NWs from the growth substrate to a selected area of the
probe circuit (∼120 × 120 µm), helped by an optical micro-
scope. Subsequently, by exploitingmarkers as references, isol-
ated NWs were selected and then one side was contacted to
the probe circuit through EBL patterning with following metal
deposition and lift-off technique. Before metal deposition, a
plasma treatment (40 W, 30 s) was exploited to enhance con-
tact quality and reliability. Then, a second EBL process was
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Figure 6. Fabrication of single NW devices. NWs are initially dispersed on a selected region of a pre-patterned probe circuit with
millimetric pads realized with photolithography. Then, electron beam lithography (EBL) and subsequent metal deposition were exploited to
pattern an electrode contacting one side of the NW with the pre-patterned probe circuit. Similarly, a second electrode with a different metal
was realized with a second lithographic step. For each step of fabrication, a SEM image is reported (scale bar, 10 µm). The inset in the left
SEM image reports the pre-patterned probe circuit, where pad lines allow to connect the central region (where NWs are dispersed) with
millimetric pads for electrical connection of external probes. In all SEM images, markers were used for the alignment of electron beam
lithography with isolated NWs.

performed to realize the contact electrode on the opposite side.
The schematic process flow for the realization of single NW
devices with associated SEM images for each step is reported
in figure 6. During the whole fabrication process, the expos-
ure of NWs to aqueous solutions was strictly avoided in order
to preserve the ZnO NW surface from degradation, as invest-
igated in our previous work [47]. For the realization of a
single NW memristive cells, ZnO NWs have been asymmet-
rically contacted by means of an electrochemically inert and
an electrochemically active electrode, as discussed in the fol-
lowing. Note that the channel length of the device (i.e. the dis-
tance in between electrodes) is determined during the litho-
graphic processes, while the NW diameter is defined by the
growth process. In this framework, it is worth noticing that a
possible downscaling of the NW diameter below 10 nm can
be achieved by exploiting catalyst-assisted growth techniques
with nanoparticles catalyst templates, as for example reported
by Yin et al [48]. In addition, note also that this fabrication
process flow can be exploited for the realization of memrist-
ive devices based on a wide range of metal-oxide NWs and
nanostructures.

3.2. Memristive and neuromorphic functionalities

By asymmetrically contacting single ZnO NWs, it is pos-
sible to realize an ECM cell, where, depending on the
involved electrode materials, functionalities are determined
by electrode reactions and ionic transport kinetics. ECM
cells were realized by contacting single NWs with a Pt elec-
trochemically inert electrode and an Ag electrochemically
active electrode (figure 7(a)) [10], following the procedure
previously described in section 3.1. Similarly, single NW-
based ECM cells can be fabricated also by exploiting Cu as

electrochemically active electrode instead of Ag [26]. A typ-
ical resistive switching characteristics of a single Ag/ZnO
NW/Pt cell after electroforming is reported in figure 7(b). As
can be observed, by applying a positive voltage sweep to the
Ag electrode of the device, a sudden increase of current can
be observed in correspondence of the SET voltage (<2 V). In
this framework, a current compliance of 25 µA was externally
applied to the device in order to avoid Joule overheating with
consequent NW hard breakdown related to NWmelting. After
the SET event, the device switches from a high resistance state
(HRS) to a low resistance state (LRS). This process is revers-
ible. Indeed, by applying an opposite polarity to the device, a
RESET process turns the device again to the initial HRS. The
physical mechanism responsible for this resistive switching is
related to the formation/rupture of an Ag conductive filament
along the ZnO NW surface, as analysed in our previous works
[10, 26]. Indeed, when a positive polarity is applied to the
Ag electrode, dissolution of Ag atoms occurs according to the
reaction:

Ag → Ag+ + e− and the formed Ag+ cations start to
migrate towards the Pt counter electrode under the action
of the applied electric field, along the crystalline ZnO NW
surface. This results, after recrystallization, in the formation
of an Ag conductive filament bridging the two metal elec-
trodes, turning the device from an initial HRS to a LRS. Then,
the device can be switched again to the HRS by applying
an opposite voltage polarity that results in an electrochem-
ical dissolution of the metallic filament. Thus, the resulting
bipolar non-volatile resistive switching mechanism is related
to the electrically driven formation/rupture of an Ag conduct-
ive pathway along the ZnO NW crystalline surface. For the
sake of completeness, it is important to clarify that the electro-
chemistry of thememristive cell is influenced also by adsorbed
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Figure 7. Single ZnO NWmemristive cell. (a) SEM image of a single ZnO NW asymmetrically contacted by means of an electrochemically
inert electrode (Pt) and an electrochemically active electrode (Ag) (scale bar, 250 nm). (b) Resistive switching characteristics of a single
ZnO NW under voltage sweep stimulation. A schematization of the device with electrical connections, where a positive voltage is applied to
the Ag electrode, is reported as inset. (c) Endurance characteristic of the ZnO NW memristive cell, where the resistance state was read at
0.4 V. (d) SEM image of a single NW-based device morphology after resistive switching, showing the presence of a multitude of Ag
nanoclusters on the ZnO crystalline surface (scale bar, 250 nm). (e) Short-term synaptic plasticity in a single NW device, where the output
current increases during stimulation with a voltage pulse (2.25 V, 20 ms pulse) followed by spontaneous relaxation to the ground state after
stimulation. During spontaneous relaxation, the internal state of conductance was probed by means of a low-voltage pulse train composed
by a series of low-voltage read pulses (0.4 V, 1 ms pulses, waiting time in between pulses of 1 ms). (f) Emulation of PPF in a single
NW-based device, where it is possible to observe an increase of the output current upon stimulation of the device with multiple input voltage
pulses applied to the Ag electrode (2.5 V, width of 2 ms, waiting time in between pulses of 1 ms). Resistances of 330 kΩ and 1 MΩ were
connected in series to the device during pulse measurements reported in panels (e) and (f), respectively, in order to limit the maximum
current flowing in the device thus preventing the memristive cell breakdown.

moisture that can influence both electronic and ionic trans-
port mechanisms as well as participate in the counter electrode
reaction [27, 49, 50]. Figure 7(c) reports the endurance char-
acteristics of the ZnO NW-based devices. As can be observed,
after few cycles of stabilization, the device exhibited relatively
high stability of both LRS and HRS for >50 full-sweep cycles
with an HRS/LRS ratio >100.

A direct evidence of the Ag phase after resistive switch-
ing can be obtained by SEM imaging. Indeed, an analysis of
the NW morphology after switching revealed the presence of
a multitude of Ag nanoclusters along the NW as reported in
figure 7(d). These evidences, together with no evidences of
the presence of the Ag phase in the ZnO bulk as investigated in
our previous work by transmission electron microscopy [10],
revealed that the switching events are localized on the NW sur-
face, where higher mobility of Ag ions is expected. Similarly,
Cu nanoclusters were observed after switching events in single
ZnO NWs contacted by a Cu electrochemically active elec-
trode instead of Ag [26].

By exploiting the Ag+ ionic dynamics on the NW crys-
talline surface upon proper stimulation, these devices can be
also exploited for the emulation of Ca2+ dynamics of biolo-
gical synapses underlying short-term synaptic plasticity [10].
This allows the NW-based device to imitate short-term plas-
ticity effects such as PPF, a form of short-term synaptic plas-
ticity where an enhancement of the synaptic transmission is
related to rapidly evoked excitations [51]. An example of
short-term synaptic plasticity in single ZnO NW operating in
voltage pulse mode is reported in figure 7(e). Here, the stim-
ulated device shows an increase of the output current dur-
ing voltage pulse stimulation (potentiation) related to the pro-
gressive formation of a conductive pathway bridging the two
electrodes. After the end of stimulation, the internal device
conductivity progressively spontaneously relaxes back to the
ground state, resulting in a gradual decrease of the output
current. A low-voltage pulse train composed by a series of
low-voltage read pulses was exploited to probe the relaxation
of the device after the end of stimulation.
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By exploiting the competing mechanism of conductive
pathway formation during stimulation and subsequent spon-
taneous dissolution, PPF can be emulated by exciting the
single NW-based device with paired pulses applied within a
short time interval (temporally correlated pulses). As reported
in figure 7(f), where a NW-based device was stimulated with
a train of 2.5 V pulses with width of 2 ms and waiting time in
between pulses of 1 ms, a gradual increase of the output cur-
rent can be observed due to the progressive increase of device
conductance over pulses. This gradual increase of conductance
was observed to be related to the interplay between the pro-
gressive electric field-driven reinforcement of the Ag conduct-
ive filament along the NW and its spontaneous physicochem-
ical dissolution in the waiting time in between pulses [10].
In this framework, it is worth noticing that short-term plasti-
city represents a fundamental aspect for exploiting memristive
devices for hardware implementation of brain-inspired uncon-
ventional computing paradigms such as reservoir computing,
where nonlinear dynamics provided by resistive switching
behaviour and fading memory capability related to short-term
memory effects can be exploited for temporal processing of
the input signal [52–55].

4. Conclusions

To summarize, we reported the bottom-up synthesis of ZnO
NWs by means of CVD for the realization of NW-based neur-
omorphic devices. The LPCVDprocess resulted in single crys-
talline, hexagonal shaped and vertically aligned ZnO NWs
with wurtzite crystal structure. The NW growth occurred dir-
ectly on a Pt substrate, without the need of the pre-deposition
of a seeding layer, according to the self-seeding VS mechan-
ism. The influence of the substrate as well as of growth para-
meters on NW dimensions and density was analysed. Also,
the fabrication process of a single ZnO NW-based resistive
switching cell was reported, showing that a single ZnO NW
asymmetrically contacted with an electrochemically active
electrode and an electrochemically inert electrode acts as an
ECM cell. Note that this fabrication process can be exploited
for the realization of memristive cell based on other metal-
oxide NWs. Single ZnO NWmemristive devices, where func-
tionalities are related to the formation/rupture of a metallic
filament on the ZnO NW crystalline surface, exhibit repro-
ducible resistive switching behaviour, characterized by relat-
ively low switching voltages (<2 V) and high ON/OFF ratio
(>100). Finally, it is shown that these devices can emulate
features of biological synapses such as PPF with gradual
increase of the device conductance by stimulation with paired
voltage pulses applied within a short time interval. These
neuromorphic devices based on single crystalline ZnO NWs,
besides representing building blocks for NW-based nano-
electronics and neuromorphic computing, can be considered
suitable platforms and model systems to investigate physi-
cochemical effects underlaying resistive switching mechan-
ism and neuromorphic functionalities, thanks to the high
localization of the switching events on the crystalline ZnO
surface.
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