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By using unbiased continuous-space quantum Monte Carlo simulations, we investigate the ground-state
properties of a one-dimensional repulsive Fermi gas subjected to a commensurate periodic optical lattice (OL)
of arbitrary intensity. The equation of state and the magnetic structure factor are determined as a function
of the interaction strength and of the OL intensity. In the weak OL limit, Yang’s theory for the energy of a
homogeneous Fermi gas [C.-N. Yang, Phys. Rev. Lett. 19, 1312 (1967)] is recovered. In the opposite limit (deep
OL), we analyze the convergence to the Lieb-Wu theory for the Hubbard model [E. H. Lieb and F. Y. Wu,
Phys. Rev. Lett. 20, 1445 (1968)], comparing two approaches to map the continuous space to the discrete-lattice
model: The first is based on (noninteracting) Wannier functions and the second effectively takes into account
strong-interaction effects within a parabolic approximation of the OL wells. We find that strong antiferromagnetic
correlations emerge in deep OLs and also in very shallow OLs if the interaction strength approaches the
Tonks-Girardeau limit. In deep OLs we find quantitative agreement with density-matrix renormalization-group
calculations for the Hubbard model. The spatial decay of the antiferromagnetic correlations is consistent with
quasi-long-range order even in shallow OLs, in agreement with previous theories for the half-filled Hubbard
model.

DOI: 10.1103/PhysRevA.96.021601

Making unbiased predictions for the properties of strongly
correlated Fermi systems is one of the major challenges in
quantum physics research. One-dimensional systems play a
central role in this context since, on the one hand, correlations
effects are more pronounced in low dimensions and, on the
other hand, exact results have been derived in a few relevant
cases [1]. Two such cases are the homogeneous Fermi gas,
whose exact ground-state energy was first determined by
Yang [2] via the Bethe-ansatz technique, and the single-
band Hubbard model, whose solution was provided by Lieb
and Wu [3]. These two paradigmatic models describe two
opposite limits of realistic physical systems, which in general
are neither perfectly homogeneous nor devoid of interband
couplings. In the absence of exact analytical theories for
the more realistic intermediate regime, developing unbiased
computational techniques is of utmost importance.

The experiments performed with ultracold atoms trapped
in optical lattices (OLs) have emerged as the ideal playground
to investigate quantum many-body phenomena in periodic
potentials [4]. The intensity of the external periodic field can be
easily varied by tuning a laser power and also the interaction
strength can by tuned exploiting Feshbach resonances [5].
This has recently allowed the remarkable observation of
antiferromagnetic correlations in a controlled experimental
setup, in both one and two dimensions [6–12].

The bulk of early research activity on OL systems focused
on deep OLs and weak interactions, where single-band tight-
binding models are adequate [13]. Away from this regime
multiband processes come into play and the effect of the
independent tuning of the OL intensity and the interaction
strength can be captured only via multiband or continuous-

space models. Recent theoretical and experimental studies
have addressed the regime of shallow OLs and strong interac-
tions, investigating intriguing phenomena such as Mott and
pinning bosonic localization transitions [14–18], Anderson
localization [19–21], Bose-Glass phases [22], and itinerant
ferromagnetism [23,24].

Previous theoretical studies on extended one-dimensional
Fermi gases considered either homogeneous continuous-space
systems or discrete-lattice models. In this Rapid Communica-
tion we investigate the ground-state properties of a continuous-
space one-dimensional Fermi gas with zero-range repulsive
interactions, subjected to a periodic potential (representing
an OL) of arbitrary intensity. We focus on a balanced (i.e.,
unpolarized) two-component mixture at the density of one
fermion per well (half filling). The energy and the magnetic
structure factor are computed via continuous-space diffusion
Monte Carlo (DMC) simulations, which provide unbiased
predictions for one-dimensional Fermi systems.

We explore the crossover between two opposite limits.
For a vanishing OL, we recover the ground-state energy of a
homogeneous system predicted by Yang; for a deep OL, where
the continuous-space system can be mapped to a discrete-
lattice model, we inspect the convergence to the Lieb-Wu
results for the Hubbard model. Specifically, we consider two
mapping procedures: The first is based on the standard Wannier
functions and the second is designed to effectively take into
account, within a harmonic approximation, the higher-orbital
effects induced by strong interactions. The regimes where
these two mapping procedures become quantitatively accurate
are outlined. Furthermore, the onset of the antiferromagnetic
correlations is explored. We find that strong correlations
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form in deep OLs, where the continuous-space DMC data
agree with Hubbard-model results, which we obtain using
the density-matrix renormalization-group (DMRG) method.
Interestingly, we find that the correlation amplitude can be
large even in very shallow lattices if the interaction strength is
tuned close to the infinite repulsive (Tonks-Girardeau) limit.
Both in deep and in shallow OLs the spatial decay of the
correlations appears to be consistent with the quasi-long-range
order predicted by bosonization theories for the half-filled
Hubbard model and for the one-dimensional Wigner crystal.

We consider a one-dimensional two-component atomic
Fermi gas described by the following continuous-space Hamil-
tonian:

Ĥ =
N∑

i=1

(
− h̄2

2m

d2

dx2
i

+ v(xi)

)
+

∑
i↑,i↓

gδ(xi↑ − xi↓ ), (1)

where h̄ is the reduced Planck constant, m is the atomic mass,
and the total particle number is N = N↑ + N↓, where N↑
and N↓ are the numbers of particles of the two components
(hereafter referred to as spin-up and spin-down particles). The
index i = 1, . . . ,N labels all particles (irrespectively of their
spin state), while the indices i↑ and i↓ label, respectively, only
spin-up and only spin-down particles. We focus on a balanced
(unpolarized) mixture of the two components N↑ = N↓ =
N/2. The external potential v(x) = V sin2(πx/d) represents
the effect of an optical lattice with period d and intensity V .
The latter will be conveniently expressed in units of the recoil
energy Er = h̄2π2/2md2. We focus on a half-filled lattice,
where the average density is n = N/Ld = 1/d. The linear
system size is Ld, with L the number of wells of the OL. This
is consistent with the use of periodic boundary conditions. The
interaction strength is fixed by the one-dimensional coupling
constant g = −2h̄2/ma1D, where a1D is the one-dimensional
scattering length. We consider the case of repulsive interac-
tions g � 0. In the experiments preformed with atomic clouds
confined in tight cigar-shaped waveguides, the coupling con-
stant g can be related to the relevant experimental parameters
[25], namely, the three-dimensional s-wave scattering length
and the radial harmonic confining frequency (assumed to
be sufficiently strong to freeze the radial modes). Following
the conventional formalism of homogeneous one-dimensional
Fermi gases [26], we cast the interaction parameter in the
adimensional form γ = 2/n|a1D|.

The ground-state properties of the Hamiltonian (1) are de-
termined via quantum Monte Carlo (QMC) simulations based
on the DMC algorithm [27]. While in generic many-fermion
systems the sign problem hinders exact QMC simulations, in
one dimension this pathology can be circumvented without
introducing any systematic approximation since the exact
nodal structure is known [28–31]. In order to reduce the
statistical fluctuations we employ Jastrow-Slater trial wave
functions. The details of our implementation of the DMC
algorithm have been reported in Refs. [21,24]. In order to
compute unbiased expectation values of operators that do
not commute with the Hamiltonian we employ the standard
forward walking technique [32].

In Fig. 1 we report the interaction energy per particle
Eint/N = (E − Eγ=0)/N , where E and Eγ=0 are the total
energies of an interacting and of a noninteracting (γ = 0) gas
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FIG. 1. Ground-state interaction energy per particle Eint/N =
(E − Eγ=0)/N as a function of the interaction parameter γ =
2/n|a1D|. Here E and Eγ=0 are the energies of an interacting and
a noninteracting gas in an OL, respectively. The density is fixed at
half filling n = N/Ld = 1/d . Symbols connected by dashed lines
correspond to QMC results (system size L = 26) for different OL
intensities V , expressed in units of the recoil energy Er . The thick
solid curve is Yang’s Bethe-ansatz result [2] for the homogeneous
Fermi gas (V = 0).

in an OL, respectively. These data correspond to the particle
number N = 26. In fact, by performing a finite-size scaling
analysis using particle numbers in the range 18 � N � 54,
we verified that with N = 26 the relative error due to the finite
system size is below the statistical error bars in the weak-
interaction regime and still below 0.3% in the regime of strong
interactions γ ≈ 3. In the weak OL limit V → 0, the DMC
results converge to the equation of state for a homogeneous
Fermi gas. This was determined in Ref. [26] by numerically
solving the set of integral equations obtained by Yang [2]
via the Bethe-ansatz technique. The interaction energy Eint

increases with the interaction strength γ , but it saturates in the
Tonks-Girardeau limit γ → ∞, where the energy of a fully
polarized gas is reached. While in a shallow OL (V ≈ Er ) this
saturation occurs only for strong interactions γ � 1, in a deep
OL (V � Er ) it occurs already for intermediate interaction
strengths γ ≈ 1, meaning that correlation effects are enhanced
in deep OLs compared to shallow OLs.

In the deep OL limit, one expects that higher bands become
irrelevant if the interaction strength is not strong enough to
promote interband transitions. By expanding the field operator
in the basis of (maximally localized) Wannier functions,
removing higher-band contributions, and neglecting also
beyond nearest-neighbor and interaction-induced processes
(e.g., bond-charge interaction), the Hamiltonian (1) can be
mapped to a discrete single-band lattice model, namely, the
(one-dimensional) Hubbard model [33]:

Ĥ = −t
∑
r,σ

(ĉ†r,σ ĉr+1,σ + H.c.) + U
∑

r

n̂r,↑n̂r,↓, (2)

where ĉ
†
r,σ (ĉr,σ ) creates (destroys) a fermion of spin σ ∈

↑ , ↓ at site r (with r = 1, . . . ,L) and n̂r,σ = c
†
r,σ cr,σ is the

corresponding number operator. Consistently with the use of
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FIG. 2. Comparison between the ground-state interaction energy
of the one-dimensional Hubbard model determined via the Bethe-
ansatz theory by Lieb and Wu [3] (thick solid black curve) and
the continuous-space data obtained via DMC simulations. The
parameters of the continuous-space model (1) are mapped to the
Hubbard interaction parameter U/t either using the standard Wannier
expansion [34] (open symbols connected by dashed lines) or via
a parabolic approximation (closed symbols connected by dotted
lines) that effectively accounts for higher-band effects (see the text).
Different data sets correspond to different OL intensities V/Er . Here
Efp is the energy of a fully polarized Fermi gas (N↑ = N and N↓ = 0).

periodic boundary conditions, it is understood that ĉ
†
L+1,σ =

ĉ
†
1,σ (ĉL+1,σ = ĉ1,σ ). The hopping energy t and the on-site

interaction parameter U can be computed from integrals of
Wannier functions wr (x) (r is the corresponding site index)
[17,33] following the standard procedure [34].

The zero-temperature equation of state of the Hubbard
model (2) was first determined by Lieb and Wu [3] using the
Bethe-ansatz technique.1 The comparison displayed in Fig. 2
confirms that the continuous-space data do indeed converge to
the Hubbard-model results if the OL is sufficiently deep. At
the OL intensity V/Er = 10, discrepancies are sizable only
for large values of the Hubbard interaction parameter U/t �
10, which corresponds to the intermediate continuous-space
interaction parameter γ � 0.5.

Inducing strong-correlation effects in shallower lattices
demands larger γ values. In this regime interband transitions
become relevant; therefore, the mapping to a single-band
model based on the standard Wannier function expansion
[34] is invalid. As an attempt to take orbital excitations
into account, we consider a parabolic approximation for the
OL wells. The energy E2 of two interacting opposite-spin
fermions in the harmonic well can be exactly computed
[35].2 In the noninteracting case one has E2 = h̄ω, while
in the Tonks-Girardeau (γ → ∞) limit one has E2 = 2h̄ω,

1At half filling N/L = 1, the Lieb-Wu result reads E/N =
−4t

∫ ∞
0

J0(x)J1(x)
x[1+exp(xU/2t)] dx, where Ji(x) are Bessel functions of first

kind.
2One has E2/2h̄ω = 1/4 + ε/2, where ω = 2

√
ErV /h̄ and ε ∈

[1/2,3/2] is the root of the transcendental equation �(3/4−ε/2)
�(1/4−ε/2) =
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FIG. 3. Static magnetic structure factor Smag(k) of the continuous-
space model (1) as a function of the wave vector k. Here d is the OL
periodicity. The different data sets correspond to different values of
the interaction parameter γ at the same OL depth V (top panel)
and to different OL intensities V at the same interaction strength
γ (bottom panel). The recoil energy is denoted by Er . The particle
number is N = 26. The peak at k = π/d signals (quasi-long-range)
antiferromagnetic correlations.

as for two spin-aligned fermions. We henceforth define the
one-site interaction parameter as the interaction energy U =
E2 − h̄ω. In correspondence with the parabolic approximation
for the interaction energy, we compute the hopping energy
t using the well-known approximation, valid in the deep
OL limit V/Er � 1, for (one-fourth of) the bandwidth of
the lowest band in the one-dimensional Mathieu equation,
namely, t = 4π−1/2Er (V/Er )3/4 exp(−2

√
V/Er ) [4]. This

formula accounts, to leading order, for the splitting of the
harmonic-oscillator energy levels due to tunneling [36,37].
The comparison of Fig. 2 shows that with this effective
mapping procedure agreement between continuous-space and
Hubbard-model data is obtained already at the moderate lattice
depth V/Er = 4, even when the continuous-space interaction
parameter is as large as γ = 5 (where U/t 
 11.45, according
to this second mapping criterion).

Beyond the equation of state, we investigate how the
antiferromagnetic correlations depend of the OL intensity
and on the interactions strength. To quantify these correla-
tions, we compute via DMC simulations the static magnetic
structure factor of the continuous-space model: Smag(k) =
〈ρmag(k)ρmag(−k)〉, where ρmag(k) is the Fourier transform of
the spin density operator. The results for Smag(k) are shown
in Fig. 3. In the top panel, the different data sets correspond

− λ

2
√

2
, where �(x) is the Euler Gamma function and λ =

−2
√

h̄/mω/a1D.
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FIG. 4. Comparison between the static magnetic structure factors
Smag(k) of the Hubbard model (HM), computed via the DMRG
method (solid and dashed curves), and of the continuous-space
(CS) model, computed via QMC simulations (open symbols). The
red squares and the dashed curve correspond to the OL intensity
V/Er = 4.5 and the continuous-space interaction parameter γ = 1,
while the green circles and the solid curve correspond to V/Er = 10
and γ = 0.196. These two pairs of continuous-space parameters
correspond to the same Hubbard interaction parameter U/t ∼= 4.2,
according to the standard Wannier expansion [34]. The Hubbard
model results have been converted via Eq. (3), using the Wannier
functions at the corresponding OL intensity. The particle number is
N = 18.

to different values of the interaction strength at the same OL
intensity; in the bottom panel, the OL intensity varies while the
interaction strength is fixed. The peak of Smag(k) at k = π/d

signals antiferromagnetic correlations commensurate with the
OL. One notices that such correlations can be amplified both
by making the OL deeper and by increasing the interaction
strength. In a deep OL of intensity V/Er = 10, where
the single-band description is applicable, strong correlations
emerge already at the moderate interaction strength γ 
 0.2
(see Fig. 4). However, even in OLs as shallow as V/Er = 1,
strong correlations form if the interaction parameter is close
to the Tonks-Girardeau regime γ � 1 (this limit without the
OL was studied in Ref. [38]). This scenario can be understood
by considering that in the single-band regime the role played
by the OL intensity and by the interaction strength can be
described by the single adimensional parameter U/t , which in
turn can be increased by making V or γ larger; our analysis
allows us to disentangle the effects of these two parameters
and shows that antiferromagnetism in OL systems occurs also
well beyond the single-band regime.

In order to analyze the convergence to the single-band limit,
we make a comparison with DMRG [39] results for the Hub-
bard model. Specifically, we compute via the DMRG method
the spin-spin correlation function g(r1,r2) = 〈Ŝz

r1
Ŝz

r2
〉, where

the spin density operator is Ŝz
r = n̂r,↑ − n̂r,↓.3 The Hubbard

3The DMRG simulations are performed by using up to 1024 DMRG
states and five finite-size sweeps.

model results can be compared with the continuous-space
magnetic structure factor using the following transformation
(valid in the tight-binding limit) [36]:

Smag(k) = 1 + G2(k)[S̃mag(k) − 1], (3)

where S̃mag(k) = 1/N
∑

r1,r2
g(r1,r2) exp[ik(r1 − r2)] and

G(k) = ∫ |wr (x)|2 exp(−ikx)dx. It is worth stressing that in
one dimension the spin density 〈Ŝz

r 〉 is strictly zero as a
consequence of the Mermin-Wagner theorem. The compar-
ison between continuous-space and Hubbard-model data is
displayed in Fig. 4. We find that at the moderate OL depth
V/Er = 4.5 sizable discrepancies still persist, but in a deeper
OL of intensity V/Er = 10 precise matching is achieved.

While the antiferromagnetic correlations are pronounced
at large V/Er and/or strong γ , the Mermin-Wagner theorem
implies the absence of proper antiferromagnetic long-range
order. It is therefore interesting to inspect how the spin-
spin correlations decay at long distance. This problem has
been the subject of thorough theoretical investigations in
the context of the Hubbard model [40–46] and also in
the context of continuous-space systems with (long-range)
Coulomb repulsion (and no external potentials), which at
low density form a Wigner crystal characterized by quasi-
long-range density-density correlations [47]. While at short
distance the spin-spin correlation functions of the two systems
are not identical, their long-distance behavior is fixed to
leading order by the same power law g(r1,r2) ∼ |r1 − r2|−(1+α)

[g(x1,x2) ∼ |x1 − x2|−(1+α) in the continuous-space notation],
with logarithmic corrections.4 The value of the exponent α = 0
(at finite U ), which was determined via the bosonization tech-
nique [40,41,47], indicates quasi-long-range spin order. This
behavior implies, to leading order, a logarithmic divergence
of the peak value Smag(k = π/d) with the particle number
N . It is worth mentioning that away from half filling the
spin-spin correlations of the Hubbard model have a short-range
character fixed by the exponent α = 1/2, implying that the
peak value Smag(k = π/d) is finite in the thermodynamic limit.
The system-size dependence of both the DMC continuous-
space and the DMRG Hubbard-model data Smag(k = π/d) is
displayed in Fig. 5. The Hubbard-model data (which agree
with continuous-space DMC data at V/Er = 10) are well
reproduced by a logarithmic fitting function of the type
f (N ) = a + b ln(N ) (a and b are the fitting parameters), in
agreement with the bosonization theory. Also in the shallow
lattice V/Er = 1 we observe a slow increase of Smag(k = π/d)
with system size, again well described by the logarithmic fit
f (N ). While smaller statistical error bars and larger system
sizes would be needed to rule out different functional forms,
the available data suggest that even in a very shallow OL, where
single-band models are inadequate, the asymptotic decay of the
spin-spin correlation function displays quasi-long-range order.

In conclusion, we determined, via unbiased continuous-
space DMC simulations, the zero-temperature equation of state
and the static magnetic structure factor of a one-dimensional

4In the Hubbard model, one has g(l ≡ |r1 − r2|) = − 1
(πl)2 +

B cos (2kF l) ln1/2 (l)
l1+α + . . . , where kF = πN/2L and B is a model-

dependent coefficient.
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FIG. 5. Value of the magnetic structure factor Smag(k) at the
peak wave vector k = π/d as a function of the particle number N .
The upper (brown) data sets correspond to a deep OL of intensity
V/Er = 10 (referring to the left vertical axis) and the lower (blue)
data set corresponds to a shallow lattice V/Er = 1 (referring to
the right vertical axis). Closed symbols represent QMC data for
the continuous-space (CS) model, while open squares represent the
DMRG data for the Hubbard model (HM), converted via Eq. (3).

Fermi gas in a half-filled OL of arbitrary intensity. We analyzed
the accuracy of two procedures to map the continuous-space
Hamiltonian to the Hubbard model. The first, which turns out
to be very accurate if V/Er � 10 and γ � 0.5, is based on
the standard Wannier function expansion. The second, which
is accurate even in the presence of interactions as strong as
γ ≈ 5, is based on a parabolic approximation of the OL wells.

This analysis quantifies to what extent OL experiments can be
described via single-band lattice models.

We shed light on how antiferromagnetic correlations
emerge both in deep and in shallow OLs. In the former
case, the correlations have a quasi-long-range character, in
agreement with Hubbard-model predictions (bosonization and
DMRG calculations), and they are pronounced already in the
moderate interaction regime γ ≈ 0.2. Remarkably, also in the
latter case strong correlations occur (again, consistent with
quasi-long-range order) for interaction strengths γ � 1, where
multiband effects are important.

While previous theoretical studies on confined one-
dimensional fermions addressed the case of (typically small)
harmonic traps [31,48–61], in this Rapid Communication we
considered a commensurate periodic potential, using suffi-
ciently large system sizes to inspect the thermodynamic limit.
On the one hand, this study provides unbiased predictions for
a paradigmatic model of strongly correlated Fermi systems,
which interpolates between Yang’s theory of the homogeneous
Fermi gas and the Lieb-Wu theory of the Hubbard model; on
the other hand, it serves as a guide for possible cold-atom
experiments aiming at observing antiferromagnetism beyond
the tight-binding regime [29,62–64].
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