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We study the real-time evolution of the correlation functions in a globally quenched interacting one-dimensional
lattice system by means of time-adaptive density matrix renormalization group. We find a clear light-cone behavior
quenching the repulsive interaction from the gapped density wave regime. The spreading velocity increases with
the final values of the interaction and then saturates at a certain finite value. In the case of a Luttinger liquid
phase as the initial state, for strong repulsive interaction quenches, a more complex dynamics occurs as a result of
bound state formations. From the other side in the attractive regime, depending on where connected correlation
functions are measured, one can observe a delay in the starting time evolution and a coexistence of ballistic and
localized signals.
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I. INTRODUCTION

A clear understanding of out-of-equilibrium isolated
quantum systems is one of the most challenging tasks in
quantum physics [1]. In this context a lot of effort has
been devoted towards the comprehension of thermalization
processes [2,3], the role of conserved quantities [4,5],
entanglement dynamics [6–8], and many-body localization
[9,10]. A further key point is represented by the typical
light-cone shape exhibited by one- and two-point correlation
functions once a sudden quench is applied [11–16]. It has been
shown [17] that in critical theories the maximum velocity of the
spreading of correlations is given by twice the group velocity
defined in the final gapless system. Actually the existence
of a maximal velocity [18–20], known as the Lieb-Robinson
bound, has been shown to exist theoretically in several locally
interacting many-body systems. This is due to the short-range
interactions which may reduce the propagation of information
making its spreading velocity finite. Moreover light-cone
propagation of correlations is expected when starting from a
nondegenerate initial state that shows an exponential cluster
decomposition property [21–23], which is indeed generally
valid for local Hamiltonians. The light-cone propagation can
be absent in the presence of long-range interaction [24–26]
or for some local-spin models [27,28]. Nowadays, thanks to
the impressive achievements in the field of ultracold systems
[29], the aforementioned results have been tested by means of
cold bosons [30,31] and trapped ions [32,33].

Motivated by this intensive work activity in this paper
we provide a time-dependent density matrix renormalization
group (t-DMRG) [34] analysis of the correlation spreading
once a sudden global quench is applied in a system of
interacting hard-core bosons equivalent to the spin-1/2 XXZ
chain. More precisely, in the first section we consider the case
when the interaction is repulsive and we show how much
the Bethe ansatz approach is able to properly capture the
velocity of the excitation propagation. In particular, we will
compare the numerical results with the sound velocity of the
ground state, obtained by the Bethe ansatz approach. A better
comparison should be obtained considering the velocity of
excitations above the stationary state at time t → ∞ [15]. A
further crucial point is given by the initial particle density

distribution. Indeed, when we quench the interaction from
a weak to a strong value, many-body bound states can give
rise to a multisignal propagation. The role of bound states in
quench dynamics has been explored only for certain initial
configurations [35], while here we present results for a highly
entangled initial state, namely a Luttinger liquid regime.
In the attractive-interaction regime, instead, starting from a
phase-separated state, it is possible to get two signals, a
localized and a ballistic one, similarly to what has been recently
found in the Ising spin chain with transverse and longitudinal
magnetic field [28]. A crucial role is played by the position at
which the correlation function is pinned. Indeed if one of the
positions of the two-point correlation functions is taken well
inside the occupied bulk, one has to wait a certain time before
observing the quantum effect of the correlation spreading.

II. MODEL

The system we consider is composed by N hard-core
bosons loaded in L sites of a one-dimensional lattice at half
filling n̄ = N/L = 1/2,

H = −J
∑

i

(c†i ci+1 + c
†
i+1ci) + V

∑

i

nini+1, (1)

where J is the tunneling amplitude fixing our energy and time
scales (where h̄ = 1), V is the nearest-neighbor (NN) interac-
tion, while c

†
i (ci) is the creation (annihilation) operator of a

particle in the i site of the lattice. Notice that at half filling, i.e.,
n̄ = 1/2, the Hamiltonian (1) turns out to be exactly mapped
to (i) the XXZ spin-1/2 model, by performing the Holstein-
Primakoff transformation, and (ii) the analogous model with
spinless fermions, through a Jordan-Wigner transformation.
Remarkably the physics of the model Eq. (1) can be basically
studied in the experiments by using dipolar fermions/hard-core
bosons [36,37], bosonic mixture [38], and photons [39]. A
further key feature of Eq. (1) is given by its integrability [40]
which allows one to extract many fundamental properties. In
particular it is well known that the phase diagram consists of
three different phases: one of them being a gapless Luttinger
liquid (LL) in the region −2 < V < 2 and two degenerate
gapped regimes. The gap appears both for V < −2, giving
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FIG. 1. DMRG density profiles 〈ni〉 for the three different
regimes for system with N = 15 bosons and L = 30 sites. The
degeneracy of the density wave (DW) is removed by considering
L = 29 sites, while the degeneracy of the phase separation state (PS)
is broken by applying two chemical potentials μ/J = 0.001 with
opposite sign at the lattice edges. The simulations are performed by
keeping up to 512 DMRG states and 5 finite-size sweeps.

rise to a phase-separated (PS) state with empty and occupied
sites totally demixed in two different regions, and for V > 2,
where a density wave (DW) modulation is present. Notice
that the two previous regimes are usually identified in spin
language as ferro- and antiferromagnetic regimes.

The relative density profiles 〈ni〉, obtained via static DMRG
calculations [41] for the three different phases, are shown in
Fig. 1. Here we break the ground state degeneracy of the DW
and PS phases by respectively considering an odd number of
sites and by adding very small antiparallel chemical potentials
at the lattice edges. Indeed in the first scenario the choice N =
(L + 1)/2, with L odd, automatically removes the degeneracy
of the ground state but the phase diagram remains unchanged;
from the other side, adding two small magnetic fields in the
first and last lattice sites favors the clustering of particles in one
edge of the system. As shown in [21–23] degeneracy breaking
is a crucial ingredient for observing conelike propagation.
Indeed for degenerate ground states the cluster decomposi-
tion property cannot be defined and consequently the Lieb-
Robinson bound velocity is not expected. The weak density
modulation appearing in the LL regime is nothing but the
well-known phenomenon of the Friedel oscillations [42]. Here
the crucial feature, as will be clear in the next part, is that the
wave function of any single particle is sufficiently delocalized
to allow to two particles to lie in NN sites. This is an obvious
difference with respect to the DW regime where the strong
repulsive V makes energetically very costly NN occupancies.
From the other side PS allows NN occupations due to obvious
energetic reasons but the single-particle wave function is
localized. For this reason it is important to understand how
a certain initial density distribution affects both the spreading
of the correlation and its velocity once a sudden quench in the
interaction V is applied. In all our simulations we obtain the
ground state (GS) relative to a certain Vi and we let the system
evolve in time t once the interaction is suddenly brought to
a value Vf . We then monitor the relative spreading of the
connected density-density correlation function

Cij (t) = 〈ni(t)nj (t)〉 − 〈ni(t)〉〈nj (t)〉. (2)

FIG. 2. t-DMRG results of �Cij = |Cij (t) − Cij (0)| for Vi = 4
and (a) Vf = 0.5, (b) Vf = 1, (c) Vf = 2, (d) Vf = 3, (e) Vf = 5,
(f) Vf = 6, (g) Vf = 7, (h) Vf = 8. The length of the chain is L = 29
and N = 15. Both t and the V ’s are in units of J . The slopes of the
solid lines are the velocities vBA, given by Eq. (3), while those of the
dashed red lines are the measured velocities reported in Fig. 3, above
which the signals are exponentially small. The static simulations for
the ground state are performed by keeping up to 512 DMRG states
and 5 finite-size sweeps and the dynamics is obtained by using a time
step δ = 0.01 and 250 DMRG states.

III. REPULSIVE REGIME

As a first step we investigate the case of a Vi supporting
a DW regime. In Fig. 2 we plot �Cij = |Cij (t) − Cij (0)| as
a function of t and j , at fixed i = 0 (first site of the lattice),
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FIG. 3. Spreading velocities for quenches from the initial value
Vi = 4 to different final values of Vf . The dots are the measured
velocities from t-DMRG as in Fig. 2, while the solid red line shows
the velocities vBA from the Bethe ansatz approach, given by Eq. (3).

for Vi = 4 and several values of Vf , both in the LL and DW
phase.

For Vf within the gapless regime, the exact spectrum from
the Bethe ansatz approach is available [43], which allows us
to predict the spreading velocity v in a gapless phase, which
is v � vBA, with

vBA = 2πJ

√
1 − (Vf /2J )2

arccos(Vf /2J )
, (3)

twice the sound velocity.
As clearly visible, our numerical results in Fig. 2 are in

very good agreement with the analytical solution, for Vf in
the LL regime. Furthermore, as already shown in [13], for Vf

not too strong, but already able to capture the DW behavior, the
Bethe ansatz velocity, extended to Vf > 2, is still able to give
a description of the spreading velocities. From the other side
once Vf exceeds a critical value, the velocity v of the fastest
signal seems to saturate to a constant value. In particular, as
visible in Figs. 2 and 3, for Vf � 5 the velocity saturates at
the value v ∼ 8, in agreement with the results reported in [13]
for a different value of Vi . As we checked, the aforementioned
feature remains valid also for different values of Vi , confirming
the belief that the spreading velocity depends mainly on the
final interaction strength governing the dynamics. Of course
extracting the exact velocity v is not possible within our
approach so we can only infer the correctness of the just
mentioned results. However a key point to be noticed here
is that only one clear and strong single signal is present in
the dynamics. The situation becomes rather different once
interaction quenches are performed starting from a LL ground
state. Several results showing quenches within this regions are
present, see [44] and references therein, but the case of strong
Vf has not been investigated. As previously mentioned in the
gapless regime the density distribution is weakly modulated
but the wave functions are rather delocalized thus allowing
NN occupancies. As clearly visible in Fig. 4, this aspect has
huge consequences in excitation propagation. More precisely
in Fig. 4 we start with a LL configuration obtained by
getting the ground state for Vi = 1 and we let the system

FIG. 4. t-DMRG results of �Cij = |Cij (t) − Cij (0)| for Vi = 1
and (a) Vf = 0.5, (b) Vf = 2, (c) Vf = 3, (d) Vf = 4, (e) Vf = 5,
(f) Vf = 6, (g) Vf = 7, (h) Vf = 8. The length of the chain is L = 30
and N = 15. Both t and the V ’s are in units of J . The slopes of
the solid lines are the velocities vBA, given by Eq. (3). The static
simulations for the ground state are performed by keeping up to 512
DMRG states and 5 finite-size sweeps and the dynamics is obtained
by using a time step δ = 0.01 and 250 DMRG states.

evolve with different Vf . Clearly when Vf is weak a clear
single-signal propagation is visible, resembling the Vi = 4
case, but once Vf becomes stronger a multisignal propagation
appears. Moreover it is possible to notice that the bigger is Vf

the bigger the number of signals contributing to the dynamics
is. This effect can be basically explained by starting with
a two-particle description, looking at the two-body energy
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spectrum [45,46]. Indeed, in 1D the energy spectrum of two
interacting particles has a continuous set of scattering states
and, for NN or on-site interaction, one bound state outside this
region. If the interaction strength is strong enough the bound
state is able to support the presence of localized solutions, like
one-site bound pairs for on-site interaction [47] or intersite
bound pairs for long-range interaction [48]. To be more specific
about our model Eq. (2), for Vi = 1 two particles can lie in NN
sites and once the interaction is suddenly brought to strong
values, the systems is projected in a state with high energy.
If such an energy corresponds to the one of a bound state,
the system is not able to decay in the scattering region and
remains trapped in an excited level. This is due to the fact that
the system is isolated, i.e., the energy is conserved, and to the
kinetic energy limitation induced by the lattice structure. As a
consequence the two particles form a NN intersite bound pair
which can tunnel with Jeff ∼ J 2/V , namely much slower than
the single-particle tunneling processes. In Fig. 4 two signals
are visible meaning that the energy we are providing to the
system is not sufficient to form all the possible bound pairs but
only a fraction of particles are bounded while the rest behave
as single ones, with a tunneling amplitude J . The fact that
for strong enough Vf more than two signals contribute to the
dynamics is because also three- and in general many-body
bound states can be formed; see, for instance, Ref. [49] for the
case with on-site interaction and [46] for NN interactions. Of
course, the bigger the number of bounded particles, the slower
the velocity associated with its expansion will be.

IV. ATTRACTIVE REGIME

For −2 < Vi < 0 the density distribution is still almost
constant. This feature combined with the fact that the two-body
energy spectrum for NN interacting particles is symmetric
under the transformation V ↔ −V makes it intuitive to
understand that, in analogy with the LL-DW quench, the same
multisignal propagation is observed for Vi in a LL regime
and Vf in the deep PS one. On the contrary, the dynamics
driven by quenching from a PS to a LL regime is completely
unexplored and, as we will see, gives rise to a very different
scenario with respect to the repulsive case. Due to strongly
attractive NN interaction, all the N particles are compressed
in L/2 lattice sites while the others are empty (see the first
panel of Fig. 1). Due to the on-site infinite repulsion, the
physical properties inside the occupied region are basically
the same as of a classical system. Indeed, if we perform a
global interaction quench fixing the position i of the connected
density-density correlation function, Eq. (2), well inside this
region we do not observe any signal propagation for a long
time; namely the correlation function is fully classical until
a characteristic time is passed. Actually, for V < −2 the
GS is highly degenerate, meaning that the real GS density
distribution of a PS state is uniform [50]. Consequently, if
at t = 0 we break the degeneracy by applying small local
chemical potentials and we let the system evolve without them
the system will try to restore the GS degeneracy by letting the
high-density region expand even if no interaction quenches are
performed. Of course this case is different from the repulsive
DW regime where the twofold GS degeneracy is broken by
using an odd number of sites L. The crucial point is that the

FIG. 5. t-DMRG results of �Cij = |Cij (t) − Cij (0)| for Vi = −4
and Vf = −1 with (a) i = 2, (b) i = 6, (c) i = 10, (d) i = 14. The
dashed line is given by Eq. (4). The chain length is L = 30 and
N = 15. Both t and the V ’s are in units of J . The static simulations
for the ground state are performed by keeping up to 512 DMRG
states and 5 finite-size sweeps and using two antiparallel chemical
potentials μ/J = 0.001 in the lattice edges. In the dynamics the
chemical potentials are removed and we use a time step δ = 0.01 and
250 DMRG states.

particles occupying the populated region need a certain time,
which depends on the single-particle position, to expand. More
precisely, once the evolution begins, the particle located at the
border between the occupied and empty regions can tunnel in
one empty site thus letting another NN particle tunnel, and
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FIG. 6. t-DMRG results of �Cij = |Cij (t) − Cij (0)| for Vi = −4
and (a) Vf = −1, (b) Vf = −2, (c) Vf = −3, (d) Vf = −5, (e) Vf =
−6, (f) Vf = −7, (g) Vf = −8, (h) Vf = −9. The length of the
chain is L = 30 and N = 15. Both t and the V ’s are in units of J .
The slope of the solid lines in the first panel is the velocity vBA, given
by Eq. (3). The static simulations for the ground state are performed
by keeping up to 512 DMRG states and 5 finite-size sweeps and using
two antiparallel chemical potentials μ/J = 0.001 in the lattice edges.
In the dynamics the chemical potentials are removed and we use a
time step δ = 0.01 and 250 DMRG states.

so on. This kind of tunneling has a strong influence on the
correlation spreading after an interaction quench. As a result
what is very important for the dynamics is the position i in the
connected density-density correlation function Eq. (2). Indeed,

if one pins i = 0 one has to wait a long time before seeing any
propagation signal due to the fact that all the other particles
have to move first.

For the same reason, if i is pinned in a more central site
the correlation propagation will appear sooner and clearly if
i is located exactly at the border between the two regions
with different densities the propagation will start immediately.
These features are visible in Fig. 5 where we fixed i in different
positions and the propagation starts at different times. As
clearly shown in Fig. 5, for i pinned at different sites the
propagation begins at different times. This behavior proves that
once a sort of classic nature is imposed on an initial state, one
has to wait a characteristic time before pure quantum effects,
i.e., connected correlation spreading, take place. Calling i0

the position of the border of the separated regions, from our
numerical results we can estimate this waiting time

t ∼ (i0 − i)/3 . (4)

In the examples shown in Fig. 5, i0 = 15 and i = 2,6,10,14,
and the waiting times are given by Eq. (4). Finally in Fig. 6
we plot the propagation for i = i0, namely at the border
of the occupied and empty lattice regions for the GS. In
this case, as discussed before, the time evolution of the
quantum signals starts immediately. As shown in Fig. 6,
starting from the PS phase, Vi = −4, and quenching in the
LL we observe a quantum propagation spreading inwards and
outwards in the region which was previously highly occupied
at t = 0. The inner signal becomes weaker for Vf < −2 and
almost disappears for Vf < Vi , namely quenching deep in
the PS phase. In this regime, instead, there is still the outer
propagation with a light-cone shape associated with ballistic
transport and another even stronger signal localized at the
center of the system. This latter effect is probably due to the
formation of a many-body bound state which corresponds to
a cluster of ∼N particles. Clearly due to the large number
of particles this cluster has an expansion velocity which is
very small and it explains why for our time scale the signal
remains mainly localized at the center of the lattice. From
the other side, in analogy with the repulsive regime, the
Bethe ansatz prediction, Eq. (3), is able to roughly capture
the light-cone-like velocity propagation when the value of Vf

is deep in the LL phase, while it fails approaching the phase
transition. The Bethe ansatz velocity vBA, indeed, goes to zero
for Vf → −2, while this is not the case for the velocity v of
the correlation spreading, which is finite as shown in Fig. 6(b).
Interestingly we get almost the same spreading velocity for any
Vf in the gapped phase and its value v ∼ 2 is much smaller
than that observed for the repulsive case.

V. CONCLUSIONS

We studied the correlation spreading in an interacting
integrable system after a sudden quench. We showed that
depending on the initial condition, different excitation prop-
agations can be observed. In particular, a quench from an
initial density wave phase supports the presence of one clear
light-cone signal. In this regime we found that the propagation
velocity is, for a relatively large range of final interaction
values, in good agreement with the Bethe ansatz predictions
and then saturates to v ∼ 8, for Vf � 5. The situation is rather
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different if the initial state is prepared in the Luttinger liquid
phase. In this regime delocalized wave functions can give rise
to a multisignal propagation for strongly interacting quenches.
These different velocities are associated with the formation of
bound states. Finally we studied the case when we start from a
phase-separated state. Here, depending on the points where the
connected correlation functions are measured, the propagation
signals can be delayed. Moreover, for strong quenches, to-
gether with a weak signal of a ballistic evolution, with a spread-
ing velocity v ∼ 2 independent of Vf , also a very slow and

strong signal associated with many-body bound states can be
observed. As a last remark we stress that all our results can be
proved in experiments involving either cold atoms or photons.
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