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Abstract: Existing comparative studies between individual-based models of growing cell populations
and their continuum counterparts have mainly been focused on homogeneous populations, in which all
cells have the same phenotypic characteristics. However, significant intercellular phenotypic variability
is commonly observed in cellular systems. In light of these considerations, we develop here an
individual-based model for the growth of phenotypically heterogeneous cell populations. In this
model, the phenotypic state of each cell is described by a structuring variable that captures intercellular
variability in cell proliferation and migration rates. The model tracks the spatial evolutionary dynamics
of single cells, which undergo pressure-dependent proliferation, heritable phenotypic changes and
directional movement in response to pressure differentials. We formally show that the continuum
limit of this model comprises a non-local partial differential equation for the cell population density
function, which generalises earlier models of growing cell populations. We report on the results
of numerical simulations of the individual-based model which illustrate how proliferation-migration
tradeoffs shaping the evolutionary dynamics of single cells can lead to the formation, at the population
level, of travelling waves whereby highly-mobile cells locally dominate at the invasive front, while
more-proliferative cells are found at the rear. Moreover, we demonstrate that there is an excellent
quantitative agreement between these results and the results of numerical simulations and formal
travelling-wave analysis of the continuum model, when sufficiently large cell numbers are considered.
We also provide numerical evidence of scenarios in which the predictions of the two models may differ
due to demographic stochasticity, which cannot be captured by the continuum model. This indicates
the importance of integrating individual-based and continuum approaches when modelling the growth
of phenotypically heterogeneous cell populations.

Keywords: growing cell populations; phenotypic heterogeneity; individual-based models;
continuum models; non-local partial differential equations; travelling waves
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1. Introduction

Deterministic continuum models for the growth of cell populations have been increasingly used
as theoretical tools to support empirical research regarding a broad spectrum of aspects of the
development of solid tumours and living tissues. These models comprise partial differential equations
(PDEs) that describe the evolution of cellular densities (or cell volume fractions) in response to
pressure gradients that are generated by population growth, which can be
mechanically-regulated [1, 2], nutrient-limited [3], pressure-dependent [4–6] or regulated by a
combination of these mechanisms [7–11]. These models are amenable not only to numerical
simulations but also to analytical approaches, which enable a complete exploration of the model
parameter space. This permits a precise identification of the validity domain of the results obtained
and ensures higher robustness and precision of the conclusions drawn therefrom, which ultimately
provides a more in-depth theoretical understanding of the underlying cellular dynamics [12, 13].

Ideally, instead of defining such PDE models on the basis of population-scale phenomenological
assumptions, one wants to derive them from first principles, that is, as the deterministic continuum
limits of stochastic discrete models, i.e. individual-based (IB) models, which track the dynamics of
single cells [14, 15]. This is to ensure that the terms comprised in the model equations provide a
faithful mean-field representation of the underlying cellular dynamics. In fact, although being
computationally intensive to simulate for large cell numbers and, to a wider extent, inaccessible to
analytical techniques, IB models permit the representation of the finer details of cell-scale
mechanisms and capture stochastic intercellular variability in the spatial and evolutionary trajectories
of single cells. These aspects, which cannot be directly incorporated into phenomenological
deterministic continuum models, become especially important in scenarios where cell numbers and
densities are low (e.g. in the early stages of embryonic development and tissue regeneration, during
the formation of distant metastases upon cancer cell extravasation, and when tumour size is severely
reduced after therapy), due to the stronger impact that single-cell processes and demographic
stochasticity are expected to have on the dynamics of cell populations. For this reason, a range of
asymptotic techniques, probabilistic methods and limiting procedures have been developed and used
in previous studies to systematically derive PDE models for the growth of cell populations from their
individual-based counterparts [13]. For example, reaction-diffusion and nonlinear diffusion equations
have been derived from their underlying random walks [16–21], from systems of discrete equations of
motion [22–24], from discrete lattice-based exclusion processes [25–28] and from cellular
automata [29–31]. However, these previous studies have mainly been focused on homogeneous
populations in which all cells have the same phenotypic characteristics. Such homogeneity is rarely
present in cellular systems, where significant intercellular phenotypic variability is commonly
observed. In light of these considerations, we develop here an IB model for the growth of
phenotypically heterogeneous cell populations. In this model, every cell is viewed as an individual
agent whose phenotypic state is described by a structuring variable that captures intercellular
variability in cell proliferation and migration rates. Cells undergo directional movement in response
to pressure differentials [32–35], pressure-dependent proliferation [2, 36–38], and heritable
phenotypic changes [39–41] according to a set of rules that correspond to a discrete-time branching
random walk on the physical space and the space of phenotypic states [19, 42, 43]. We formally show
that the deterministic continuum limit of this model is given by a non-local PDE for the cell
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population density function, which generalises earlier models [34, 38, 44] to the case of
phenotypically heterogeneous cell populations. We then carry out numerical simulations of the IB
model and compare the results obtained with the results of formal travelling-wave analysis and
numerical simulations of the PDE model.

The paper is organised as follows. In Section 2, we introduce the IB model. In Section 3, we
present its PDE counterpart (a formal derivation is provided in Section S1 of the Supplementary
Material). In Section 4, in order to obtain results with broad structural stability under parameter
changes, we first carry out formal travelling-wave analysis of the PDE model and then integrate the
results obtained with numerical simulations of the IB model and numerical solutions of the PDE
model. In Section 5, we summarise the main findings of our study and outline directions for future
research.

2. The individual-based model

We model the dynamics of a phenotypically heterogeneous growing cell population. Cells within
the population have the potential to undergo:

(i) directional movement in response to pressure differentials – i.e. cells move down pressure
gradients towards regions where they feel less compressed [32, 34, 37];

(ii) spontaneous, heritable phenotypic changes, which lead cells to randomly transition from one
phenotypic state into another [39–41];

(iii) pressure-dependent proliferation – i.e. cells stop dividing, and can thus only die or remain
quiescent, when the pressure that they experience overcomes a critical threshold, which is known
as homeostatic pressure [34, 38, 45].

Focusing on a one-dimensional spatial domain scenario, the position of every cell at time t ∈ R+ is
described by the variable x ∈ R. Moreover, the phenotypic state of each cell is characterised by a
structuring variable y ∈ [0,Y] ⊂ R+, with Y > 0, which takes into account intercellular variability in
cell proliferation and migration rates. Here, the variable y could represent the level of expression of
a gene that regulates both cell division and cell migration, such as those involved in the epithelial-to-
mesenchymal transition promoting tumour invasion [46–48]. More specifically, the overexpression of
some cancer-promoting genes has been shown to inhibit cell proliferation and promote cell migration
in cancer cells, for example, FBXL10 expession in ovarian cancer cell lines [49] and EphB2 expression
in glioblastomas [50]. Similarily, the downregulation of miR-451 observed in glioblastomas has been
shown to reduce the proliferation rate and increase the migration potential of the cells [51].

Therefore in the model, without loss of generality, we consider the case where larger values of y
correlate with a higher cell migration rate but a lower proliferation rate due to proliferation-migration
tradeoffs [47, 48, 52–59].

We discretise the time, space and phenotype variables via

tk = kτ ∈ R+, xi = iχ ∈ R and y j = jη ∈ [0,Y] with k, j ∈ N0, i ∈ Z, τ, χ, η ∈ R+
∗ .

Here τ, χ and η are the time-, space- and phenotype-step, respectively. We represent every single cell
as an agent that occupies a position on the lattice {xi}i∈Z × {y j} j∈N0 , and we introduce the dependent
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variable Nk
i, j ∈ N0 to model the number of cells in the phenotypic state y j at position xi at time tk. The

cell population density and the corresponding cell density are defined, respectively, as follows

nk
i, j ≡ n(tk, xi, y j) :=

Nk
i, j

χη
and ρk

i ≡ ρ(tk, xi) := η
∑

j

nk
i, j. (2.1)

We further define the pressure experienced by the cells (i.e. the cell pressure) as a function of the cell
density through the following barotropic relation

pk
i ≡ p(tk, xi) = Π(ρk

i ), (2.2)

where the function Π satisfies the following assumptions [34, 44, 60]

Π(0) = 0,
d

dρ
Π(ρ) ≥ 0 for ρ ∈ R+

∗ . (2.3)

As summarised by the schematics in Figure 1, between time-steps k and k + 1, each cell in
phenotypic state y j ∈ (0,Y) at position xi ∈ R can first move, next undergo phenotypic changes and
then die or divide according to the rules described in the following subsections.
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Figure 1. Schematics summarising the rules that govern the spatial evolutionary dynamics
of single cells in the IB model. Between time-steps k and k + 1, each cell in phenotypic
state y j ∈ (0,Y) at position xi ∈ R may: a. move to either of the positions xi−1 and xi+1 with
probabilities Pk

Li, j
and Pk

Ri, j
defined via (2.12) and (2.13); b. undergo a phenotypic change and

thus enter into either of the phenotypic states y j−1 and y j+1 with probabilities λ/2; c. die or
divide with probabilities Pk

Di, j
and Pk

Bi, j
defined via (2.4) and (2.5).

2.1. Mathematical modelling of cell death and division

To incorporate the effects of cell proliferation, we assume that a dividing cell is instantly replaced
by two identical cells that inherit the phenotypic state of the parent cell (i.e. the progenies are placed
on the same lattice site as their parent), while a dying cell is instantly removed from the population.
We model pressure-dependent proliferation by letting the cells divide, die or remain quiescent with
probabilities that depend on their phenotypic states and the pressure that they experience.
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In particular, to define the probabilities of cell division and death, we introduce the function
R(y j, pk

i ), which describes the net growth rate of the cell population density at position xi at time tk,
and assume that between time-steps k and k + 1 a cell in phenotypic state y j at position xi may die with
probability

Pk
Di, j

:= τR(y j, pk
i )− where R(y j, pk

i )− = −min
(
0,R(y j, pk

i )
)
, (2.4)

divide with probability

Pk
Bi, j

:= τR(y j, pk
i )+ where R(y j, pk

i )+ = max
(
0,R(y j, pk

i )
)

(2.5)

or remain quiescent (i.e. do not divide nor die) with probability

Pk
Qi, j

:= 1 − Pk
Bi, j
− Pk

Di, j
. (2.6)

Note that we are implicitly assuming the time-step τ to be sufficiently small that 0 < Pk
Bi, j

+ Pk
Di, j

< 1
for all values of i, j and k.

In order to capture the fact that, as mentioned earlier, larger values of y j correlate with a lower cell
proliferation rate, along with the fact that cells will stop dividing if the pressure at their current position
becomes larger than the homeostatic pressure, which we model by means of the parameter pM > 0, we
make the following assumptions

R(Y, 0) = 0, R(0, pM) = 0, ∂pR(y, p) < 0 and ∂yR(y, p) < 0 for (y, p) ∈ (0,Y) × R+. (2.7)

In particular, we will focus on the case where

R(y, p) := r(y) −
p

pM
with r(Y) = 0, r(0) = 1,

d
dy

r(y) < 0 for y ∈ (0,Y). (2.8)

Remark 1. Under assumptions (2.7), definitions (2.5)-(2.6) ensure that if pk
i ≥ pM then every cell at

position xi can only die or remain quiescent between time-steps k and k + 1. Hence, in the remainder
of the paper we will let the following condition hold

max
i∈Z

p0
i ≤ pM (2.9)

so that
pk

i ≤ pM for all (k, i) ∈ N0 × Z. (2.10)

2.2. Mathematical modelling of phenotypic changes

We take into account heritable phenotypic changes by allowing cells to update their phenotypic
states according to a random walk along the phenotypic dimension. More precisely, between time-
steps k and k + 1, every cell either enters a new phenotypic state, with probability λ ∈ [0, 1], or remains
in its current phenotypic state, with probability 1 − λ. Since, as mentioned earlier, we consider only
spontaneous phenotypic changes that occur randomly due to non-genetic instability, we assume that
a cell in phenotypic state y j that undergoes a phenotypic change enters into either of the phenotypic
states y j±1 = y j ± η with probabilities λ/2. No-flux boundary conditions are implemented by aborting
any attempted phenotypic variation of a cell if it requires moving into a phenotypic state outside the
interval [0,Y].
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2.3. Mathematical modelling of cell movement

We model directional cell movement in response to pressure differentials as a biased random walk
along the spatial dimension, whereby the movement probabilities depend on the difference between
the pressure at the position occupied by a cell and the pressure at the neighbouring positions. As
mentioned earlier, we consider the case where larger values of y j correlate with a higher cell migration
rate. Hence, we modulate the probabilities of cell movement by the function µ(y j), which provides a
measure of the mobility of cells in phenotypic state y j and thus satisfies the following assumptions

µ(0) > 0,
d
dy
µ(y) > 0 for y ∈ (0,Y]. (2.11)

Then we assume that between time-steps k and k + 1 a cell in phenotypic state y j at position xi may
move to the position xi−1 = xi − χ (i.e. move left) with probability

Pk
Li, j

= νµ(y j)

(
pk

i − pk
i−1

)
+

2pM
where

(
pk

i − pk
i−1

)
+

= max
(
0, pk

i − pk
i−1

)
, (2.12)

move to the position xi+1 = xi + χ (i.e. move right) with probability

Pk
Ri, j

= νµ(y j)

(
pk

i − pk
i+1

)
+

2pM
where

(
pk

i − pk
i+1

)
+

= max
(
0, pk

i − pk
i+1

)
(2.13)

or remain stationary (i.e. do not move left nor right) with probability

Pk
S i, j

= 1 − Pk
Li, j
− Pk

Ri, j
. (2.14)

Here, the parameter ν > 0 is a scaling factor, which we implicitly assume to be sufficiently small that
0 < ν µ(y j) < 1 for all y j ∈ [0,Y]. Under condition (2.9), this assumption on ν along with the a priori
estimate (2.10) implies that definitions (2.12) and (2.13) are such that 0 < Pk

Li, j
+Pk

Ri, j
< 1 for all values

of i, j and k.

Remark 2. Definitions (2.12) and (2.13) ensure that cells will move down pressure gradients so as to
reach regions where they feel less compressed.

3. The corresponding continuum model

Through a method analogous to those that we previously employed in [19, 61–64], letting the
time-step τ→ 0, the space-step χ→ 0 and the phenotype-step η→ 0 in such a way that

νχ2

2τ
→ α ∈ R+

∗ and
λη2

2τ
→ β ∈ R+

∗ , (3.1)

one can formally show (see Section S1 of the Supplementary Material) that the deterministic continuum
counterpart of the stochastic discrete model presented in Section 2 is given by the following non-local
PDE for the cell population density function n(t, x, y)

∂tn − α µ̂(y) ∂x (n ∂x p) = R(y, p) n + β ∂2
yyn, (x, y) ∈ R × (0,Y)

p = Π(ρ), ρ :=
∫ Y

0
n(t, x, y) dy,

(3.2)
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where µ̂(y) :=
µ(y)
pM

. The non-local PDE (3.2) is subject to zero Neumann (i.e. no-flux) boundary

conditions at y = 0 and y = Y , as well as to an initial condition such that the continuum analogue of
condition (2.9) holds, that is,

max
x∈R

p(0, x) ≤ pM. (3.3)

The mathematical model defined by complementing (3.2) with assumptions (2.3), (2.7) and (2.11)
generalises earlier models of pressure-dependent cell population growth [34, 38, 44] to the case of
phenotypically heterogeneous cell populations.

4. Main results

In this section, we first present the result of formal travelling-wave analysis of the PDE model
(Subsection 4.1) and then integrate these results with numerical simulations of the IB model and
numerical solutions of the PDE model (Subsection 4.2).

4.1. Formal travelling-wave analysis

We focus on a biological scenario in which cell movement occurs on a slower timescale compared
to cell division and death, while spontaneous, heritable phenotypic changes occur on a slower timescale
compared to cell movement [41, 65]. To this end, we introduce a small parameter ε > 0 and let

α := ε, β := ε2. (4.1)

Moreover, in order to explore the long-time behaviour of the cell population (i.e. the behaviour of the
population over many cell generations), we use the time scaling t → t

ε
in (3.2). Taken together, this

gives the following non-local PDE for the cell population density function nε(t, x, y) = n( t
ε
, x, y)

ε ∂tnε − ε µ̂(y) ∂x (nε ∂x pε) = R(y, pε) nε + ε2 ∂2
yynε, (x, y) ∈ R × (0,Y)

pε = Π(ρε), ρε :=
∫ Y

0
nε(t, x, y) dy.

(4.2)

Using a method analogous to those that we have previously employed in [66,67], denoting by δ(·)(y) the
Dirac delta centred at y = (·), one can formally show (see Section S2 of the Supplementary Material)
that, under assumptions (2.3), (2.8) and (2.11), as ε → 0, the non-local PDE (4.2) admits travelling-
wave solutions of the form

nε(z, y) ≈ ρ(z) δȳ(z)(y), z = x − c t, c ∈ R+
∗ , (4.3)

where ȳ(z) is the unique maximum point of the solution to the following equation

−
(
c + µ̂(y)p′

)
∂zu =

(
r(y) −

p
pM

)
+ (∂yu)2, u ≡ u(z, y), (z, y) ∈ R × (0,Y)

and the cell density ρ(z) is such that the pressure p(z) = Π(ρ(z)) satisfies the following relation

p(z) = pM r (ȳ(z)) z ∈ Supp(p), (4.4)
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provided that the wave speed c satisfies the following necessary condition

c ≥ sup
z∈Supp(r(ȳ))

2
∣∣∣∣∣ d
dy

r(ȳ(z))
∣∣∣∣∣
√

µ(ȳ(z))∣∣∣∂2
yyu(z, ȳ(z))

∣∣∣ . (4.5)

Moreover,
Supp(p) = (−∞, `) with ` ∈ R such that ȳ(`) = Y (4.6)

and
lim

z→−∞
ȳ(z) = 0, lim

z→−∞
p(z) = pM, ȳ′(z) > 0 and p′(z) < 0 z ∈ (−∞, `). (4.7)

From a biological point of view, ȳ(z) represents the dominant phenotype of cells at a certain
position along the invading wave p(z). Since larger values of y correlate with a lower proliferation rate
and a higher migration rate, the fact that ȳ(z) increases monotonically from 0 to Y while p(z)
decreases monotonically from pM to 0 (cf. the results given by (4.6) and (4.7)) provides a
mathematical formalisation of the idea that spatial sorting causes cells with a more mobile/less
proliferative phenotype to become concentrated towards the front of the invading wave, which is thus
a sparsely populated region, whereas phenotypic selection leads cells with a less mobile/more
proliferative phenotype to dominate at the rear, which is then a densely populated region.

4.2. Numerical simulations

4.2.1. Set-up of numerical simulations

In order to carry out numerical simulations, we consider the time interval [0,T ], with T = 8,
we restrict the physical domain to the closed interval [0, X], with X = 25, and choose Y = 1. In
order to facilitate the integration between numerical simulations and the results of formal travelling-
wave analysis presented in Subsection 4.1, we solve numerically the rescaled PDE model (4.2), with
ε = 0.01, and we carry out numerical simulations of the scaled IB model obtained by introducing the

time scaling tk →
tk

ε
= k

τ

ε
and reformulating the governing rules of cell dynamics that are detailed in

Section 2 in terms of
pk
εi ≡ pε(tk, xi) = p

( tk

ε
, xi

)
= Π(ρk

εi),

with

ρk
εi ≡ ρε(tk, xi) = ρ

( tk

ε
, xi

)
:= η

∑
j

nk
εi, j and nk

εi, j ≡ nε
(
tk, xi, y j

)
= n

( tk

ε
, xi, y j

)
:=

Nk
εi, j

χη
.

Moreover, we choose τ = 5× 10−5, χ = 0.01 and η = 0.02, and then set ν =
2τ
χ2 ε and λ =

2τ
η2 ε

2 in order

to ensure that conditions (3.1) and (4.1) are simultaneously satisfied.
We consider a biological scenario in which, initially, the cell population is localised along the

x = 0 boundary and most of the cells are in the phenotypic state y = ȳ0 at every position. Specifically,
we implement the following initial cell distribution for the IB model

N0
εi, j = int(Fε(xi, y j)) with Fε(x, y) = A0 C e−x2

e−
(y−ȳ0)2

ε , (4.8)
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where int(·) is the integer part of (·) and C is a normalisation constant such that

C
∫ Y

0
e−

(y−ȳ0)2

ε dy = 1.

Unless otherwise specified, we choose A0 = 10 and ȳ0 = 0.2, that is, the initially dominant phenotype
of the cell population is y = 0.2. The initial cell density and pressure are then calculated via (2.1)
and (2.2). The initial cell population density function nε(0, x, y) = n0

ε(x, y), is defined as a suitable

continuum analogue of the cell population density n0
εi, j :=

N0
εi, j

χη
, with N0

εi, j given by (4.8). Specifically,
we set

n0
ε(x, y) :=

(
Fε(x, y)
χη

−
1.5
χη

)
+

,

where Fε(x, y) is defined via (4.8) and (·)+ is the positive part of (·).
We define R(y, pε) via (2.8) and, having chosen Y = 1, we further define

r(y) := 1 − y2 and µ(y) := 0.01 + y2

so as to ensure that assumptions (2.7), (2.8) and (2.11) are satisfied. Moreover, we investigate the
following three definitions of the barotropic relation for the cell pressure, all satisfying
assumptions (2.3):

pε = Π(ρε) :=



ρε (Case 1)

Kγ (ρε)γ with Kγ > 0, γ > 1 (Case 2)

κ (ρε − ρ∗)+ with κ, ρ∗ > 0 (Case 3).

(4.9)

The definition given by Case 1 corresponds to the simplified scenario in which the cell pressure is
a linear function of the cell density. In the definition given by Case 2, which was proposed in [44],
the parameter Kγ is a scaling factor and the parameter γ provides a measure of the stiffness of the
barotropic relation (i.e. the limit γ → ∞ corresponds to the scenario in which cells behave like an
incompressible fluid). In the definition given by Case 3, which is such that the cell pressure is zero
for ρ ≤ ρ∗ and is a monotonically increasing function of the cell density for ρ > ρ∗, the parameter κ
is a scaling factor and ρ∗ is the density below which the force that the cells exert upon one another is
negligible [38,60]. Unless otherwise specified: when the cell pressure is defined via Case 1 we choose
pM = 4.95 × 104; when the cell pressure is defined via Case 2 we choose pM = 3.675 × 109, γ = 2 and
Kγ = 3

2 ; when the cell pressure is defined via Case 3 we choose pM = 4.94 × 105, κ = 10 and ρ∗ = 102.

Remark 3. The initial conditions and the values of pM that are considered here are such that
conditions (2.9) and (3.3) are satisfied.

4.2.2. Computational implementation of the IB model

All simulations are performed in Matlab. At each time-step, each cell undergoes a three-phase
process: (i) cell movement, according to the probabilities defined via (2.12)–(2.14); (ii) phenotypic
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changes, with probabilities λ/2; (iii) division and death, according to the probabilities defined via (2.5)
and (2.6). For each cell, during each phase, a random number is drawn from the standard uniform
distribution on the interval (0, 1) using the built-in Matlab function rand. It is then evaluated whether
this number is lower than the probability of the event occurring and if so the event occurs. Since
xi ∈ [0, X], the attempted movement of a cell is aborted if it requires moving out of the spatial domain.

4.2.3. Methods used to solve numerically the non-local PDE (4.2)

Full details of the methods used to solve numerically the non-local PDE (4.2) posed on (0,T ] ×
(0, X) × (0,Y) and subject to suitable initial and boundary conditions are given in Section S3 of the
Supplementary Material.

4.2.4. Results of numerical simulations

Formation of complex spatial patterns of population growth. The plots in the top lines of
Figures 2–4 summarise the results of numerical simulations of the IB model for the barotropic
relations given by Cases 1–3 in (4.9). We plot in the left panels the scaled cell population density,
nε/ρε, and in the right panels (solid blue lines) the scaled cell pressure, pε/pM, at progressive times.

The results of numerical simulations under all three cases display very similar dynamics, both
with respect to the cell population density and the cell pressure, where we observe evolution to
travelling-wave profiles of almost identical shapes and speeds (see also Remark 4). The incorporation
of proliferation-migration tradeoffs lead cells to be non-uniformly distributed across both physical and
phenotype space. More precisely, we observe a relatively small subpopulation of highly-mobile but
minimally-proliferative cells (i.e. cells in phenotypic states y ≈ Y) that becomes concentrated towards
the front of the invading wave, while rapidly-proliferating but minimally-mobile cells (i.e. cells in
phenotypic states y ≈ 0) make up the bulk of the population in the rear. This is due to a dynamic
interplay between spatial sorting and phenotypic selection. In fact, a more efficient response to
pressure differentials by more-mobile cells leads to their positioning at the front of the wave, where
the pressure is lower, before being overcome by the more-proliferative cells encroaching from the rear
of the wave, which are ultimately selected due to their higher proliferative potential.

Quantitative agreement between the IB model and its PDE counterpart. The plots in the bottom
lines of Figures 2–4 summarise the corresponding numerical solutions of the PDE model (4.2).
Comparing these plots with those in the top lines, we can see that there is an excellent quantitative
agreement between the results of numerical simulations of the IB model and the numerical solutions
of its PDE counterpart, both with respect to the cell population density and the cell pressure, for each
of the barotropic relations given by Cases 1–3 in (4.9).

All these plots indicate that, in agreement with the results presented in Subsection 4.1 (cf. the
results given by (4.3)), when ε is sufficiently small, the scaled cell population density nε/ρε is
concentrated as a sharp Gaussian with maximum at a single point ȳε(t, x) for all x ∈ Supp(pε). The
maximum point ȳε(t, x) corresponds to the dominant phenotype within the cell population at position
x and time t. Again in agreement with the results presented in Subsection 4.1 (cf. the results given
by (4.6) and (4.7)), the cell pressure pε behaves like a one-sided compactly supported and
monotonically decreasing travelling front that connects pM to 0, while the dominant phenotype ȳε
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increases monotonically from y = 0 to y = Y across the support of the invading wave. Moreover, we
find an excellent quantitative agreement between pε(t, x)/pM and r(ȳε(t, x)) (cf. the solid blue and
dashed cyan lines in the right panels of Figures 2–4). This indicates that, when ε is sufficiently small,
relation (4.4) is satisfied as well.

In order to measure the speed of these travelling waves, we track the dynamics of the points xε1(t),
xε2(t) and xε3(t) such that

pε(t, xε1(t)) = 0.2pM, pε(t, xε2(t)) = 0.5pM, pε(t, xε3(t)) = 0.8pM. (4.10)

Notably, we observe the evolution of xε1(t), xε2(t) and xε3(t) towards straight lines of approximatively
the same slope ≈ 2.5 (see the insets of the right panels in Figures 2–4). Moreover, an equivalent
tracking of x̃ε1(t), x̃ε2(t) and x̃ε3(t) such that ȳε(t, x̃ε1(t)) = 0.2, ȳε(t, x̃ε2(t)) = 0.5 and ȳε(t, x̃ε3(t)) = 0.8,
with

ȳε(t, x) := arg max
y∈[0,Y]

nε(t, x, y), (4.11)

yields quasi-identical results (results not shown). This supports the idea that pε behaves like a travelling
front of speed c ≈ 2.5. Such a value of the speed is coherent with the condition on the minimal wave
speed given by (4.5). In fact, inserting into (4.5) the numerical values of ȳε(8, x) in place of ȳ(z) and
the numerical values of ∂2

yyuε(8, x, ȳε(8, x)) with uε = ε log(nε) in place of ∂2
yyu(z, ȳ(z)) gives c ' 2.5.

Possible discrepancies between the IB model and its PDE counterpart. In the cases discussed so
far, we have observed excellent quantitative agreement between averaged results of numerical
simulations of the IB model and numerical solutions of the corresponding PDE model. However, we
hypothesise that possible differences between the two models can emerge when cell dynamics are
strongly impacted by demographic stochasticity, which cannot be captured by the PDE model.

In general, we expect demographic stochasticity to have a stronger impact on cell dynamics in the
presence of smaller values of the homeostatic pressure pM, since smaller values of pM correlate with
smaller cell numbers. Moreover, in the case where cells are initially distributed across both physical
and phenotype space according to (4.8), we expect demographic stochasticity to escalate during the
early stages of cell dynamics if sufficiently small values of the parameter A0 and sufficiently large
values of the parameter ȳ0 (i.e. values of ȳ0 sufficiently far from 0 and sufficiently close to Y) are
considered. In fact, smaller values of A0 correlate with lower initial cell numbers. Moreover, since
cells in phenotypic states y ≈ 0 will ultimately be selected in the rear of the invading wave (cf. the
plots in the left panels of Figures 2–4), bottleneck effects leading to a temporary drastic reduction in
the size of the cell population may occur if ȳ0 is sufficiently far from 0.

Remark 4. The robustness of the results of numerical simulations of the IB model presented so far is
supported by the fact that there is an excellent quantitative agreement between them and the results
of numerical simulations and formal travelling-wave analysis of the corresponding PDE model. In
fact, in the light of this agreement, independently of the specific definitions of the model functions
Π, R and µ, provided that assumptions (2.3), (2.7) and (2.11) are satisfied, and sufficiently large cell
numbers are considered, in the asymptotic regime ε → 0, one can expect the rules governing the
spatial evolutionary dynamics of single cells considered here to bring about patterns of population
growth that will ultimately be qualitatively similar to those of Figures 2–4.
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Hence, to test the aforementioned hypothesis, we carry out numerical simulations of the two
models for decreasing values of A0 and increasing values of ȳ0 in the initial cell distribution (4.8).
Furthermore, we define the cell pressure through the barotropic relation given by Case 1 in (4.9) and
set pM := max

x∈[0,X]
Π (ρε(0, x)), so that smaller values of A0 correspond to smaller value of pM as well.

Case 1

Figure 2. Numerical simulation results of the IB model (top row) and the PDE model (4.2)
(bottom row) in the case where the cell pressure is defined through the barotropic relation
given by Case 1 in (4.9). Plots display the scaled cell population density nε/ρε (left panels)
and the scaled cell pressure pε/pM (right panels, solid blue lines) at three successive time
instants (i.e. t = 4, t = 6 and t = 8) for both modelling approaches. The dashed cyan lines
in the right panels highlight the corresponding values of r(ȳε), with ȳε defined via (4.11).
The insets of the right panels display the plots of xε1(t) (blue squares), xε2(t) (red diamonds)
and xε3(t) (black stars) defined via (4.10). The results from the IB model were obtained by
averaging over 10 simulations.
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Case 2

Figure 3. Numerical simulation results of the IB model (top row) and the PDE model (4.2)
(bottom row) in the case where the cell pressure is defined through the barotropic relation
given by Case 2 in (4.9). Plots display the scaled cell population density nε/ρε (left panels)
and the scaled cell pressure pε/pM (right panels, solid blue lines) at three successive time
instants (i.e. t = 4, t = 6 and t = 8) for both modelling approaches. The dashed cyan lines in
the right panels highlight the corresponding values of r(ȳε), with ȳε defined via (4.11). The
insets of the right-hand panels display the plots of xε1(t) (blue squares), xε2(t) (red diamonds)
and xε3(t) (black stars) defined via (4.10). The results from the IB model were obtained by
averaging over 10 simulations.
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Case 3

Figure 4. Numerical simulation results of the IB model (top row) and the PDE model (4.2)
(bottom row) in the case where the cell pressure is defined through the barotropic relation
given by Case 3 in (4.9). Plots display the scaled cell population density nε/ρε (left panels)
and the scaled cell pressure pε/pM (right panels, solid blue lines) at three successive time
instants (i.e. t = 4, t = 6 and t = 8) for both modelling approaches. The dashed cyan lines in
the right panels highlight the corresponding values of r(ȳε), with ȳε defined via (4.11). The
insets of the right-hand panels display the plots of xε1(t) (blue squares), xε2(t) (red diamonds)
and xε3(t) (black stars) defined via (4.10). The results from the IB model were obtained by
averaging over 10 simulations.
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The results obtained for the IB model are summarised by the plots in Figure 5, which display
typical dynamics of the scaled cell pressure pε/pM, while the corresponding results for the PDE
model (4.2) are summarised by the plots in Figure 6. These results corroborate our hypothesis by
demonstrating that the quantitative agreement between the IB model and its PDE counterpart
deteriorates when smaller values of A0 and larger values of ȳ0 are considered (cf. the plots in the
bottom-line panels of Figures 5 and 6).
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Figure 5. Numerical simulation results of the IB model for different values of the parameters
A0 and ȳ0 in the initial cell distribution (4.8) – i.e. ȳ0 = 0.2 (left column) or ȳ0 = 0.8 (right
column) and A0 = 10 (top row) or A0 = 1 (central row) or A0 = 0.27 (bottom row). The
solid blue lines highlight the values of the scaled cell pressure pε/pM at three successive time
instants (i.e. t = 3, t = 5 and t = 7). The dashed cyan lines highlight the corresponding
values of r(ȳε), with ȳε defined via (4.11). These results were obtained by averaging over 10
simulations.
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Figure 6. Numerical simulation results of the PDE model (4.2) for different values of the
parameters A0 and ȳ0 in the initial cell distribution (4.8) – i.e. ȳ0 = 0.2 (left column) or
ȳ0 = 0.8 (right column) and A0 = 10 (top row) or A0 = 1 (central row) or A0 = 0.27 (bottom
row). The solid blue lines highlight the values of the scaled cell pressure pε/pM at three
successive time instants (i.e. t = 3, t = 5 and t = 7). The dashed cyan lines highlight the
corresponding values of r(ȳε), with ȳε defined via (4.11).
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In line with our expectations, this is due to the fact that stronger stochastic effects associated with
small population levels in the initial phase of cell dynamics create the potential for population
extinction to occur in some simulations of the IB model – i.e. under the exact same parameter setting,
we can observe extinction or survival of the population in the IB model due to demographic
stochasticity (cf. the single simulation results displayed in Figures 7 and 8). On the other hand, the
cell population will always persist according to the PDE model. This ultimately results in
discrepancies between the average behaviour of the IB model and the behaviour of the PDE model
(cf. the plots in the bottom-line panels of Figures 5 and 6).
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Figure 7. Numerical results of a single simulation of the IB model with A0 = 0.27 and
ȳ0 = 0.8 in the initial cell distribution (4.8) – i.e. 1 out of the 10 simulations that are used
to produce the average results displayed in the right-column, bottom-line panel of Figure 5.
Plots display the scaled cell population density nε/ρε (top panels) and the scaled cell pressure
pε/pM (bottom panels, solid blue lines) at five successive time instants (i.e. t = 0, t = 1, t = 2,
t = 3 and t = 4). The dashed cyan lines in the bottom panels highlight the corresponding
values of r(ȳε), with ȳε defined via (4.11). In this simulation, the cell population does not go
extinct.
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Figure 8. Numerical results of a single simulation of the IB model with A0 = 0.27 and
ȳ0 = 0.8 in the initial cell distribution (4.8) – i.e. 1 out of the 10 simulations that are used
to produce the average results displayed in the right-column, bottom-line panel of Figure 5.
Plots display the scaled cell population density nε/ρε (top panels) and the scaled cell pressure
pε/pM (bottom panels, solid blue lines) at five successive time instants (i.e. t = 0, t =

0.1, t = 0.2, t = 0.3 and t = 0.4). The dashed cyan lines in the bottom panels highlight
the corresponding values of r(ȳε), with ȳε defined via (4.11). In this simulation, the cell
population goes extinct rapidly.
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5. Conclusions and research perspectives

We developed an IB model for the dynamics of phenotypically heterogeneous growing cell
populations, which captures intercellular variability in cell proliferation and migration rates. We
concentrated on a proliferation-migration tradeoff scenario, where the cell phenotypes span a
spectrum of states from minimally-mobile but highly-proliferative to highly-mobile but
minimally-proliferative. In the context of cancer invasion, such a tradeoff is the tenet of the
“go-or-grow” hypothesis, which was conceived following observations of glioma cell behaviour [56]
and has stimulated much empirical and theoretical research – see, for instance, [53, 56, 57, 59, 68–72]
and references therein.

We reported on the results of numerical simulations of the IB model which illustrate how
proliferation-migration tradeoffs shaping the evolutionary dynamics of single cells can lead, at the
population level, to the generation of travelling waves whereby phenotypes are structured across the
support of the wave, with highly-mobile cells being found at the invasive front and more-proliferative
cells dominating at the rear. Similar patterns of cell population growth have been observed in gliomas,
where cells within the interior of the tumour exhibit higher proliferation and lower migration rates,
while cells on the tumour border are instead characterised by lower proliferation and higher migration
rates [48, 50, 56, 73, 74].

We formally derived the deterministic continuum counterpart of the IB model, which comprises
a non-local PDE for the cell population density function, and carried out a comparative study between
numerical simulations of the IB model and both numerical solutions and formal travelling-wave
analysis of the PDE model. We demonstrated that there is an excellent quantitative agreement
between the results of numerical simulations of the IB model and the results of numerical simulations
and travelling-wave analysis of the corresponding PDE model, when sufficiently large cell numbers
are considered. This testifies to the robustness of the results of numerical simulations of the IB model
presented here (see Remark 4).

In general, agreement between IB models and their continuum counterparts arises in regions of
the model parameter space that correspond to sufficiently large cell numbers [75–77], while
discrepancies may arise when the number of cells becomes low – e.g. if the rate of cell death is
sufficiently large [78] – leading to possible extinction of the population in the IB model. We have
provided numerical evidence of situations such as these in which the predictions of the two models
can differ due to demographic stochasticity, which cannot be captured by the PDE model. This
indicates the importance of integrating individual-based and continuum approaches when modelling
the growth of phenotypically heterogeneous cell populations.

Although in this work we focused on a one-dimensional spatial domain scenario, the IB model
presented here, and the formal limiting procedure to derive the corresponding continuum model, could
easily be adapted to higher spatial dimensions. Furthermore, while we represented the spatial domain
of the IB model as a regular lattice, it would certainly be interesting to generalise the underlying
modelling approach, as well as the formal method to derive the continuum counterpart of the model, to
cases where cells are distributed over irregular lattices and also to cases where off-latice representations
of the spatial domain are adopted. The present IB model could also be extended further to include the
effects of chemical species (e.g. nutrients, growth factors, chemoattractants, chemorepulsants) and how
the cells interact with and respond to these chemicals. To include and implement chemical species in
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the current model, we could use a hybrid modelling approach whereby the probabilistic rules governing
the dynamics of single cells would be coupled with balance equations for the chemical concentrations.
Hybrid modelling approaches of this type have been utilised in the context of modelling various aspects
of cancer growth and development – see, for instance, [11, 62, 79–82].

The generality of our assumptions makes the IB modelling framework presented here applicable to
a broad range of biological processes that are driven by the growth of phenotypically heterogeneous cell
populations, including tumour invasion and tissue remodelling and repair. It would thus be interesting
to focus on particular cellular systems, and consequently define specific models, which could then
be more accurately parameterised using precise biological data. This would offer the opportunity to
dissect out the role played by different spatiotemporal evolutionary processes at the single-cell level in
the formation of complex spatial patterns of population growth.

Acknowledgments

T.L. gratefully acknowledges support from the MIUR grant “Dipartimenti di Eccellenza
2018-2022” (Project no. E11G18000350001). F.R.M. gratefully acknowledges support from the RSE
Saltire Early Career Fellowship ‘Multiscale mathematical modelling of spatial eco-evolutionary
cancer dynamics’ (Fellowship No. 1879).

Conflict of interest

The authors declare no competing interests.

References

1. Chaplain MAJ, Giverso C, Lorenzi T, et al. (2019) Derivation and application of effective interface
conditions for continuum mechanical models of cell invasion through thin membranes. SIAM J
Appl Math 79: 2011–2031. https://doi.org/10.1137/19M124263X

2. Ranft J, Basan M, Elgeti J, et al. (2010) Fluidization of tissues by cell division and apoptosis. Proc
Nat Acad Sci USA 107: 20863–20868. https://doi.org/10.1073/pnas.1011086107

3. Giverso C and Ciarletta P (2016) On the morphological stability of multicellular tumour spheroids
growing in porous media. Eur Phys J E 39: 92. https://doi.org/10.1140/epje/i2016-16092-7

4. Bubba F, Perthame B, Pouchol C (2020) Hele–shaw limit for a system of two reaction-(cross-)
diffusion equations for living tissues equations for living tissues. Arch Ration Mech Anal 236:
735–766. https://doi.org/10.1007/s00205-019-01479-1

5. David N and Ruan X (2022) An asymptotic preserving scheme for a tumor growth
model of porous medium type. ESAIM Math Model Numer Anal 56: 121–150.
https://doi.org/10.1051/m2an/2021080

6. Lorenzi T, Lorz A, Perthame B (2017) On interfaces between cell populations with different
mobilities. Kinet Relat Mod 10: 299–311. https://doi.org/10.3934/krm.2017012

7. Bresch D, Colin T, Grenier E, et al. (2010) Computational modeling of solid tumor growth: the
avascular stage. SIAM J Sci Comput 32: 2321–2344. https://doi.org/10.1137/070708895

AIMS Bioengineering Volume 9, Issue 1, 68–92.



88

8. Ciarletta P, Foret L, Ben Amar M (2011) The radial growth phase of malignant melanoma: multi-
phase modelling, numerical simulations and linear stability analysis. J R Soc Interface 8: 345–368.
https://doi.org/10.1098/rsif.2010.0285

9. Gallinato O, Colin T, Saut O, et al. (2017) Tumor growth model of ductal carcinoma: from in situ
phase to stroma invasion. J Theor Biol 429: 253–266. https://doi.org/10.1016/j.jtbi.2017.06.022

10. Perthame B (2014) Some mathematical aspects of tumor growth and therapy, In: ICM 2014-
International Congress of Mathematicians.

11. Lowengrub JS, Frieboes HB, Jin F, et al. (2009) Nonlinear modelling of cancer: bridging the gap
between cells and tumours. Nonlinearity 23: R1. https://doi.org/10.1088/0951-7715/23/1/R01

12. Kuznetsov M, Clairambault J, Volpert V. (2021) Improving cancer treatments via dynamical
biophysical models. Phys Life Rev 39: 1–48. https://doi.org/10.1016/j.plrev.2021.10.001

13. Lorenzi T (2022) Cancer modelling as fertile ground for new mathematical challenges. Phys Life
Rev 40: 3–5. https://doi.org/10.1016/j.plrev.2022.01.003

14. Anderson ARA (2007) A hybrid multiscale model of solid tumour growth and invasion: evolution
and the microenvironment, In: Anderson ARA, Chaplain MAJ, Rejniak MA, Single-cell-based
models in biology and medicine, Switzerland: Birkhäuser Basel, 3–28.
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