
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A New Method to Estimate the Contribution of Geometrical Optics in Arbitrary Linear Stratified Planar Structures /
Daniele, Vito; Lombardi, Guido. - ELETTRONICO. - 3:1(2021), pp. 1-5. [10.46620/21-0017]

Original

A New Method to Estimate the Contribution of Geometrical Optics in Arbitrary Linear Stratified Planar
Structures

Publisher:

Published
DOI:10.46620/21-0017

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2959028 since: 2022-03-21T16:57:17Z

URSI, c/o Ghent University   Technologiepark - Zwijnaarde 126, B-9052 Gent (Belgium)



A New Method to Estimate the Contribution of
Geometrical Optics in Arbitrary Linear Stratified

Planar Structures

Vito Daniele and Guido Lombardi

Abstract – Studying the contribution of geomet-
rical optics in arbitrary linear stratified planar structures
is of great importance in practical problems. In this
article we propose a new procedure based on the
Bresler–Marcuvitz transversalization method and
equivalent network modeling that is useful for comput-
ing source contributions in Wiener–Hopf formulations
of complex scattering problems where angular or
stratified structures are present. The generalized Wie-
ner–Hopf technique has demonstrated the capability to
handle new complex canonical problems through both
exact and semianalytical factorization methods.

1. Introduction

The Wiener–Hopf technique in its generalized
form has been applied effectively in electromagnetic
wave scattering problems for angular regions (wedge
problems); see [1, 2] and references therein. Following
the procedure first proposed in [3], we aim to extend the
Wiener–Hopf technique in angular regions for arbitrary
linear wave scattering problems [3–6]. This technique
can be also extended to geometries containing angular
regions or stratified planar regions; see, for instance, [7].
We start our formulation from electromagnetic appli-
cations [3–5] and extend the procedure to elasticity as
reported in [6]. The method is based on two steps: the
deduction of the generalized Wiener–Hopf equations
for angular-region problems [3–6] and the solution of
the equations using the semianalytical factorization
procedure known as Fredholm factorization; see, for
instance, [8, 9]. A key point in implementing the
solution of generalized Wiener–Hopf equations for
arbitrary linear stratified media via Fredholm factoriza-
tion is the extraction of the source term that is related to
geometrical-optics components. For this reason, this
article is dedicated to estimating the contribution of
geometrical optics in arbitrary linear stratified planar
structures with the help of equivalent network models
and the Bresler–Marcuvitz transversalization method.

2. Transverse Equations in Stratified Media

In this article we use only time harmonic fields
with a time dependence specified by the factor ejxt,

which is omitted. In the absence of finite-located
sources, Maxwell’s equations assume the abstract form
[5, 10] in the Euclidean space of dimension 6:

Cr �Wð Þ~w ¼ 0 ð1Þ
where

~w ¼ ~E; ~H
�� ��t; Cr ¼

0 13 3r
13 3r 0

����
����;

W ¼ jx
e n
�f �l

����
����

ð2Þ

with W containing the dyadic permittivity e, the dyadic
permeability l, and the additional coupling parameters
n; ffor general bianisotropic media.

We introduce Cartesian coordinates (z, x, y) and
consider stratification along the y direction.

The study of the wave motion in stratified media
is significantly simplified if we introduce the transverse
equations of the fields. These equations involve only the
components ~wt of the field ~w that remain continuous
along the stratification according to the boundary
conditions on the interfaces. According to the boundary
conditions, we have

~wt ¼ ~Ez; ~Ex; 0; ~Hz; ~Hx; 0
�� ��t ¼ It � ~w ð3Þ

where It ¼ diag 1; 1; 0; 1; 1; 0½ �. The transverse equations
are obtained using [10] as reported in [5]:

� ]

]y
~wt ¼ ~M

]

]z
;

]

]x

� �
� ~wt ð4Þ

with matrix differential operator

~M
]

]z
;

]

]x

� �

¼ �Cy Wty � It � Crt

� �
� Ŵ y Iy � Crt

�Wyt

� �
þWtt

� �
ð5Þ

whose terms are explicitly defined and reported in [5].
One of the most important relations in the

procedure is

~wy ¼ Ŵy Iy � Crt
�Wyt

� �
� ~wt ð6Þ

with ~wy ¼ 0; 0; ~Ey; 0; 0; ~Hy

�� ��t that relates the discontin-
uous longitudinal component to transverse components
without a partial derivative along y (only the third and
the sixth rows are not null).
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Note that the transverse equations (4) are defined in
the Euclidean space of dimension 4 instead of 6, since the
third and sixth rows are null for the definition (3).

In the following we consider invariance of the
geometry along z as for stratified media. With this
limitation, if the sources depend on an e�jao z factor, the
total field also depends on the same factor—that is,
~wc y; qð Þ ¼ ~f y; xð Þe�jao z. Furthermore, to study the
variation of the fields in x, we introduce the Fourier
transform

f y; gð Þ ¼
Z‘

�‘

~f y; xð Þejg xdx ð7Þ

That yields from (4) the ordinary differential equations

� d

dy
wt g; yð Þ ¼ M gð Þwt g; yð Þ ð8Þ

with M gð Þ ¼ ~M �jao;�jgð Þ; see (5).
The definition of the explicit form of M gð Þ and

related properties need symbolic elaboration that can be
performed with the help of software like Wolfram
Mathematica [11]. In [5], M gð Þ is reported for isotropic
and anisotropic cases.

3. Circuit Model of an Arbitrary Semi-Infinite
Layer

To introduce circuit modeling, we define as
voltage and current the components in the Euclidean
space of dimension 2 related to the Fourier transforms
of ~wt. More precisely, we define

wt g; yð Þ ¼ V g; yð Þ; I g; yð Þj jt ð9Þ
with

V g; yð Þ ¼
Z‘

�‘

~Ez x; yð Þ
~Ex x; yð Þ

����
����ejgxdx;

I g; yð Þ ¼
Z‘

�‘

~Hz x; yð Þ
~Hx x; yð Þ

����
����ejgxdx

ð10Þ

We consider the plane y¼ yo and an arbitrary stratified
medium located at y . yo in the presence of arbitrary
sources. The linearity of the problem imposes that V
g; yoð Þ and I g; yoð Þ satisfy the equation

V ¼ Vs þ ZeI ð11Þ
where V ¼ V g; yoð Þ, I ¼ I g; yoð Þ, and Vs ¼ Vs gð Þ and
Ze ¼ Ze gð Þ are called the Thevenin voltage and the
Thevenin impedance, respectively. We estimate the
Thevenin voltage Vs at y ¼ yo by imposing a perfect
magnetically conducting boundary condition at y¼ yo—
that is, I ¼ 0. The impedance Ze is the 2 3 2 matrix that
relates V and I when the sources are vanishing in the
region y . yo. The circuit model of the region y . yo is
illustrated in Figure 1. The Norton representation is the

dual circuit of the Thevenin one. Similar consideration
apply in the stratified region located at y , yo.

In the Thevenin model of a half-infinite layer, Ze

¼ Ze gð Þ represents the characteristic impedance of the
medium. In particular, the matrix ~Zc ¼ ~Zc gð Þ is the
characteristic impedance that relates V and I in the
direction y . yo in the absence of sources, and the
matrix Z

 

c ¼ Z
 

c gð Þ relates V and �I in the direction y ,
yo.

4. Circuit Model of an Arbitrary Multilayer
Slab

Let us consider a homogeneous slab defined
between y ¼ 0 and y ¼ d. The solution of (8) yields

V0

I0

����
���� ¼ T Vd

Id

����
����; V0 ¼ Vjy¼0; I0¼Ijy¼0;

Vd ¼ Vjy¼d ; Id¼Ijy¼d

ð12Þ

with the transmission matrix of the slab 0 , y , d
defined by

T ¼ T gð Þ ¼ eM gð Þd ¼ A gð Þ B gð Þ
C gð Þ D gð Þ

����
���� ð13Þ

This 4 3 4 matrix has as elements the 2 3 2 matrices A,
B, C, D defined in terms of the M matrix of dimension 4
(see section 2). Figure 2 shows a convenient represen-
tation of (12) in terms of a two-port network model.
This representation is also valid for a slab constituted by
a cascade of s homogeneous consecutive slabs 1, 2, 3,
. . .. In this case the transmission matrix of the
multilayer slab is the product of the transmission
matrices relevant to each slab:

T ¼ A B

C D

����
���� ¼ T 1T 2T 3 � � � ¼ eM1d1 eM2d2 eM3d3 � � �

ð14Þ

5. The Eigenvalues and the Eigenvectors

The eigenvalues and eigenvectors of the matrix M
reported in (8) are very important in studying the
solution of the equation. For example, they allow the
evaluation functions of M such as the exponentials that
appear in (13) and (14). We study the eigenvalues and
eigenvectors of M defined in the Euclidean space of
dimension 4 (see section 2):

Figure 1. Thevenin representation of the half-space y . yo.
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M gð Þw ið Þ gð Þ ¼ ci gð Þw ið Þ gð Þ ð15Þ
where ci gð Þ and w ið Þ gð Þ are, respectively, the eigenval-
ues and the eigenvectors. Since M is a semisimple
matrix, we have

M ¼ UJU�1 ð16Þ
where J ¼ diag c1 gð Þ; . . . ; c4 gð Þ½ �, U ¼ w 1ð Þ gð Þ; . . .

h
,

w 4ð Þ gð Þ�,and w ið Þ gð Þ ¼ w ið Þ
1 gð Þ;w ið Þ

2 gð Þ;w ið Þ
3 gð Þ;w ið Þ

4 gð Þ
��� ���t.

In the presence of a passive medium, we observe
that two eigenvalues (say, c1; c2) present a nonnegative
real part and the other two, c3; c4, present a nonpositive
real part, whence w ið Þ gð Þ (i¼ 1,2) are called progressive
eigenvectors and w ið Þ gð Þ (i ¼ 3,4) are called regressive
eigenvectors. The eigenvectors of M provide the
characteristic impedance of a medium. In fact [9], we
have

~Zc ¼
w 1ð Þ

1 w 2ð Þ
1

w 1ð Þ
2 w 2ð Þ

2

�����
����� �

w 1ð Þ
3 w 2ð Þ

3

w 1ð Þ
4 w 2ð Þ

4

�����
�����
�1

;

~Zc ¼
w 3ð Þ

1 w 4ð Þ
1

w 3ð Þ
2 w 4ð Þ

2

�����
����� �

w 3ð Þ
3 w 4ð Þ

3

w 3ð Þ
4 w 4ð Þ

4

�����
�����
�1 ð17Þ

Furthermore, the transmission matrix eM gð Þd (13) is
o b t a i n e d b y eM gð Þd ¼ UeJdU�1, w h e r e eJd ¼
diag ec1 gð Þd ; . . . ; ec4 gð Þd� �

.

6. Plane Waves in an Arbitrary Medium

Plane waves in an arbitrary medium are solutions
of the transverse equations (4) with (5) of the form

wt ¼ woe�jk�r ð18Þ
where r ¼ z; x; yj jt is the observation point, k ¼
ky; ao; go

�� ��t is the propagation vector, and wo is a

constant vector of dimension 4. Taking into account that
]
]y
¼ �jky, (4) becomes

jkywo ¼ M goð Þwo ð19Þ
where ky are related to the eigenvalues of matrix M as
defined in section 5. For a given set of ao; go, we have
four possible propagation constants ky and four
polarizations wo:

jkyi ¼ ci gð Þ; woi ¼ w ið Þ gð Þ; i ¼ 1; 2; 3; 4 ð20Þ
We call the plane waves where i¼ 1, 2 progressive and
the plane waves where i¼ 3, 4 regressive. Examples of
values are given in [12]. For each value of ky (we omit
the subscript i) we define a propagation vector and a
propagation constant,

k ¼ kj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

o þ g2
o þ k2

y

q
; so ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

o

q
ð21Þ

that identify the direction of the wave in terms of
zenithal angle b and azimuthal angle uo:
go ¼ �so sin uo, ao ¼ k cos b. We recall that the field
wt contains only the transverse components of the
electromagnetic field. The discontinuous components Ey

and Hy are related to the transverse ones through (6).

6. The Reflection Problem

Considering the network modeling of a semi-
infinite medium, we build the network representation of
the reflection problem as shown in Figure 3.

In the network representation, the impedances Zc1

and Zc2 are the characteristic ones obtained in (17). We
observe that the model is complete, considering sources
in region 1 (y . 0) that yield (through imposing perfect
magnetically conducting termination at y ¼ 0) the
Thevenin voltage 2Vinc ao; goð Þ, where Vinc ao; goð Þ is the
incident voltage at y ¼ 0. The incident voltage Vinc

ao; goð Þ is related to the regressive incident plane wave
that constitutes the source in region 1. Without loss of
generality, we suppose the presence of only one kind of
incident plane: Vinc ao; goð Þ ¼ Vinc ¼ VoV ið Þ, where Vo

is the intensity of the plane wave and V ið Þ is the voltage
part (that is, the first two components) of one of the
regressive eigenvectors w ið Þ

c (i ¼ 3,4) of the matrix M
relevant to medium 1—that is, V ið Þ ¼ w ið Þ

1 w ið Þ
2

��� ���0 .
Analyzing the circuit model of Figure 3, we have

I ¼ � Zc1 þ Zc2ð Þ�1
2Vinc

V ¼ �Zc2I ¼ TVinc ¼ Vinc þ CVinc ¼ Vinc þ Vref

ð23Þ
where Vref 0ð Þ ¼ Vref ¼ CVinc ¼ CVinc 0ð Þ defines the
reflected voltage at y¼ 0 and the 2 3 2 reflection matrix
Cis given by

C ¼ T � 13 ¼ 2Zc2 Zc1 þ Zc2ð Þ�1

¼ Zc2 þ Zc1ð Þ Zc1 þ Zc2ð Þ�1 ð24Þ

When the structure is excited or illuminated with one

Figure 2. Top: Slab filled by an arbitrary linear medium. Bottom:
Network equivalent model.
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regressive wave (either i ¼ 3 or i ¼ 4), in general we
get as reflected waves all the progressive reflected
waves (i ¼ 1, 2) of medium 1 and all the regressive
transmitted waves (i ¼ 3, 4) of medium 2. We can
evaluate the coupling coefficient in terms of the
reflection matrix C. Taking into account that the
reflected wave

Vref yð Þ ¼ Co1e�c1yV 1ð Þ þ Co2e�c2yV 2ð Þ ð25Þ
contains all the progressive plane waves present at y .
0, we obtain the excitation coefficients Co1;Co2 by
considering that at y ¼ 0 we get

Vref 0ð Þ ¼ CVinc 0ð Þ ¼ Co1V 1ð Þ þ Co2V 2ð Þ

¼ w 1ð Þ
1 w 2ð Þ

1

w 1ð Þ
2 w 2ð Þ

2

�����
�����

Co1

Co2

����
���� ð25Þ

which yields

Co1

Co2

����
���� ¼ w 1ð Þ

1 w 2ð Þ
1

w 1ð Þ
2 w 2ð Þ

2

�����
�����
�1

Vref 0ð Þ

¼ w 1ð Þ
1 w 2ð Þ

1

w 1ð Þ
2 w 2ð Þ

2

�����
�����
�1

CVinc 0ð Þ ð26Þ

Similar considerations apply for the evaluation of
plane waves transmitted in medium 2 (y , 0). By

indicating with cti and Vt
ið Þ (i ¼ 3, 4) the regressive

eigenvalues and eigenvectors of the matrix Mt goð Þ
defined in medium 2, for y , 0 we have

V yð Þ ¼ Cto3e�ct3yVt
3ð Þ þ Cto4e�ct4yVt

4ð Þ ð27Þ

Cto3

Cto4

����
���� ¼ w 3ð Þ

t1 w 4ð Þ
t1

w 3ð Þ
t2 w 4ð Þ

t2

�����
�����
�1

TVinc 0ð Þ ð28Þ

7. Conclusions

This work proposes a new effective method to
estimate the contributions of geometrical optics in
arbitrary linear stratified planar structures, based on
equivalent network models and Bresler–Marcuvitz
transversalization theory. The method is particularly
useful for starting the analysis of novel complex
canonical problems constituted of angular or stratified
structures with the generalized Wiener–Hopf technique,
as in [13].
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