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Automated firewall configuration in virtual networks
Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza, Jalolliddin Yusupov

Abstract—The configuration of security functions in computer
networks is still typically performed manually, which likely
leads to security breaches and long re-configuration times.
This problem is exacerbated for modern networks based on
network virtualization, because their complexity and dynamics
make a correct manual configuration practically unfeasible. This
article focuses on packet filters, i.e., the most common firewall
technology used in computer networks, and it proposes a new
methodology to automatically define the allocation scheme and
configuration of packet filters in the logical topology of a virtual
network. The proposed method is based on solving a carefully
designed partial weighted Maximum Satisfiability Modulo Theo-
ries problem by means of a state of the art solver. This approach
formally guarantees the correctness of the solution, i.e., that
all security requirements are satisfied, and it minimizes the
number of needed firewalls and firewall rules. This methodology
is extensively evaluated using different metrics and tests on both
synthetic and real use cases, and compared to the state-of-the-art
solutions, showing its superiority.

Index Terms—virtual network security, firewall, automatic
security orchestration

I. INTRODUCTION

The Network Functions Virtualization (NFV) and Software-
Defined Networking (SDN) paradigms increased agility in
network configuration, opening the possibility for users to
dynamically request the creation of virtual Service Function
Graphs [1], more commonly known as Service Graph (SG),
generalization of the Service Function Chain (SFC) concept.
The SG is a new level of abstraction that has been enabled
by decoupling computing and physical infrastructures. It is the
logical representation of a virtual network, independent from
the physical infrastructure where it is embedded [2].

A problem which arises in this context is how to enforce
the Network Security Requirements (NSRs) that a SG should
satisfy, like data protection and isolation. Traditionally, this
task is in charge of a security manager, typically different
from the network manager who defines the logical topology
of the service. This separation of roles, if combined with
miscommunication or lack of technical knowledge about the
domain field of the other person, can lead to the enforcement
of incorrect security controls [3]. Furthermore, the configura-
tion of the Network Security Functions (NSFs) is commonly
performed manually. This approach not only entails slower
reaction when attacks on the network are detected, but it is also
prone to human errors, which can lead to the introduction of
vulnerabilities. For example, among the hundreds of rules that
need to be defined in order to enforce a certain isolation policy,
the security manager might miss one, so making isolation not
actually effective.

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov are
with the Politecnico di Torino, Dip. Automatica e Informatica; e-mail:
{first.last}@polito.it.

Focusing attention on the control of traffic forwarding, the
core NSFs used for this purpose are firewalls. If in traditional
scenarios a single point-of-control for packet filtering was
usually placed between the local area to protect and the
external network where attacks could come from, the flexi-
bility provided by NFV and SDN is encouraging distributed
architectures [4], where more instances are allocated between
different service functions, thus being able to address more
complex security requirements and to improve efficiency and
scalability. Designing and managing these complex architec-
tures requires automation, because positioning and configuring
virtual instances manually can likely lead to incorrect or non-
optimal solutions, in addition to taking excessive time. Instead,
automation, paired with formal verification techniques (e.g.,
[5] or [6]), is the key for computing provably correct and
optimized solutions rapidly enough.

Unfortunately, the problem of automating network security
configuration has not been sufficiently addressed in the liter-
ature so far, despite it represents a key aspect in facing the
constantly increasing cybersecurity attacks. Initially, the prob-
lem was less pronounced in traditional networks, even though
already perceived, because of their intrinsic limitations (e.g.,
difficulty in allocating multiple firewalls, or creating complex
topologies) [7][8][9]. Later, the advent of network virtualiza-
tion sharpened the sensibility for this problem [10][11][12],
but its high complexity restrained the evolution of the state-of-
the-art solutions, which are all partial. In particular, no prior
formally-based method exists to automatically find an opti-
mum allocation and configuration of virtual firewalls in a given
SG. Consequently, automated allocation and configuration of
distributed firewalls is still an open research issue.

In this context, this article proposes a new methodology that
addresses the open issues. The goal is to provide an automatic
way to allocate packet filters – the most common and tra-
ditional firewall technology – in a SG defined by the service
designer, and to create firewall rules automatically, so as to sat-
isfy the specified security requirements. The method is based
on a formal model which provides assurance that the final
solution really satisfies the security requirements (correctness-
by-construction). Optimality represents another core aspect
of our approach: minimizing the number of firewalls to be
allocated and the number of rules to be configured in each one
of them increases the performance of the overall architecture,
while reducing its cost in terms of employed resources. All this
is achieved by a careful formulation of the problem as a partial
weighted Maximum Satisfiability Modulo Theories (MaxSMT)
problem, which can be solved automatically, providing a
solution, if one exists, that is formally guaranteed to satisfy all
the hard logical constraints defined in the problem, and that is
an optimum one, according to the optimization criteria defined
in the problem. Our preliminary ideas about the proposed
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approach were presented at the NOMS 2020 conference [13].
However, in that paper, we showed just a naive solution, and
without full details. Instead, this article is a comprehensive
presentation of a deep re-thinking of our preliminary ideas,
providing the following main new contributions:
• The way traffic flows, network functions, and network

security requirements are formalized in the MaxSMT
problem is totally new with respect to the preliminary
ideas. The new models have been redefined in terms of
flows, rather than packets, with the goal of achieving
better performance and scalability. All models and al-
gorithms are described with full technical details.

• The experimental validation has been performed much
more extensively than in [13], by testing the method
not only with synthetic topologies, but also with real
topologies of production networks. Compared to the pre-
liminary idea, the new framework shows greatly increased
performance.

• A more extensive survey of the related literature has been
carried out, and a different, more articulated, clarifying
example is used here to better highlight the advantages
of our proposal with respect to alternative solutions or
manual strategies.

The remainder of this article is structured as follows. Section
II presents related work. Section III describes the proposed
methodology. Section IV gives the details about the formal
models of the network and NSRs. Section V presents an
algorithm for the computation of the traffic flows to consider
for the enforcement of the NSRs, while Section VI presents
the formalization of the firewall allocation and configuration
problem as MaxSMT. Section VII shows the results of our
evaluations. Finally, Section VIII draws conclusions.

II. RELATED WORK

The central novelty of the approach proposed in this article
is that, to the best of our knowledge, it is the first methodology
that performs both allocation and configuration of packet filter
firewalls in a user-provided virtualized SG, achieving all the
three key requirements we identified, i.e. full automation,
optimization, and formal correctness assurance. Previous re-
lated approaches can be categorized into two classes: those
that address automatic computation of firewall configurations
for a user-provided firewall allocation scheme, discussed in
detail in Subsection II-A, and those that perform automatic
synthesis or refinement of a SG, but without synthesizing
an optimized set of firewall configuration rules, discussed in
detail in Subsection II-B. The idea developed in this article,
of solving the firewall allocation and configuration problems
jointly in an optimized and formal way, was presented for
the first time in our preliminary conference article [13]. With
respect to that version, the method presented here has been
enhanced as already discussed in Section I.

A. Automatic firewall configuration

The existing approaches for automatic firewall rule con-
figuration for a given allocation scheme lack either formal
correctness guarantee, or full automation, or optimization.

Moreover, some of them cannot even be applied to virtualized
networks. Articles [7], [8] and [9] represent the milestones
for this research area, because they proposed for the first
time the idea that firewall rule sets can be automatically
computed by refining high-level requirements. However, as
their publication date suggests, they were designed to work
in traditional networks, without support for modern software
networking. Moreover, they lack optimization and formal
correctness assurance (only [7] provides a formally verified
global filtering policy, as long as it is, however, enriched with
an external verification tool [14]).

Formal verification has been introduced in this field by
some subsequent articles ([15], [16], [17], [18], [11]), which
underlined the importance of formal correctness assurance for
the automatically computed configurations. Formal verification
of firewall configurations has recently become a vital require-
ment for critical environments, as underlined in [6]. All these
approaches miss some of the other features characterizing
our approach. [15] and [16] do not include optimization,
being content with the accomplishment of a formally correct
firewall configuration. Moreover, a further limitation of [15]
is that, differently from our approach, it cannot configure
generic firewall implementations, but only firewalls based on
IPChains and Cisco’s PIX syntax. For what concerns the other
three articles ([17], [18] and [11]), their main limitation is
that they cannot configure firewalls from scratch, since they
are approaches for fixing firewall misconfigurations. For this
reason, they do not achieve full automation, but they require
that someone provides an initial rule set. Moreover, they
achieve less optimization goals than our approach: [17] and
[18] only minimize rule set cardinality, while [11] only min-
imizes the number of functions to be updated. Additionally,
[17] and [18] focus on traditional networks only, while [11]
works at a higher level of abstraction, neglecting full low-level
configuration information.

Other existing approaches solve less general or different
problems, such as firewall rule generation for a specific
architecture of industrial control networks [19], or firewall rule
distribution across firewall VNFs using heuristics [20].

B. Automatic SG or SFC synthesis or refinement

The methodology proposed in this article addresses the
important challenges of NFV-based operational resilience [21],
and intent-based networking [22], by automatically enriching
a user-defined SG with a distributed firewall allocation and
configuration that satisfies the user-defined security policies.
In literature, instead, most of the related work focuses on
designing a full service (SG or SFC), including all network
functions, but leaving the computation of firewall rules out.
Such an approach does not cover typical situations, e.g., a
service designer who wants to define the SG manually and
enrich it automatically with security functions, or the case
of a SG that already exists, for which a new security policy
has to be enforced. Moreover, as it does not compute firewall
rules, this approach only solves half of the problem. The most
prominent articles taking this approach are [23], [24], [25],
[26], and [27]. In other cases, a similar approach is used, but
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using techniques different from firewalls (e.g., SDN [28] or
network slicing [29]). In addition to the just highlighted main
limitations of all these approaches, none of them is founded on
a formal approach, and only some of them target optimization.

The approach proposed in [10] is slightly different, because
it starts from a user-provided SG, which is enriched by allocat-
ing different types of NSFs (firewalls, VPN gateways, IDSs,
NATs), selected and positioned in a formal and optimized
way to satisfy the user NSRs. However, differently from our
approach, the SG is composed of only end points and routers,
without other middleboxes, and a totally different optimiza-
tion problem is solved, considering security requirements as
relaxable, and looking for an optimum trade-off among level
of security achieved, cost of the allocated NSFs, and usability.
Moreover, as in the previous cases, the rules for the allocated
firewalls are not computed.

Among the few approaches that also consider firewall rules,
[30] starts from a set of isolation/reachability NSRs referred
to a set of endpoints, and it synthesises a SG made only of
firewalls interconnecting end points, minimizing the number
of rules in the allocated firewalls, under the assumption that
each NSR is a firewall rule that will be installed on all
the firewalls allocated on the path from the NSR source to
the NSR destination. Instead, [31] and [12] synthesize SFCs
of NSFs, including firewalls, for which they also generate
the filtering rules. However, they cannot allocate firewalls in
a user-provided SG including other middleboxes, and they
cannot minimize the number of rules. Moreover, [12] is not
based on a formal model, while [31] does not consider user-
specified NSRs, but its goal is to filter anomalous traffic that
could correspond to attacks.

This analysis confirms that our approach is the first feature-
complete methodology that automatically refines an existing
SG, composed of multiple function types, possibly including
functions that can modify packets such as NATs and load
balancers, allocating the minimum number of firewalls that
are necessary to enforce the requested NSRs, and computing
the optimal rule set for each allocated firewall in a formal way.

III. APPROACH

The optimal allocation of packet filter virtual instances in a
provided SG and the auto-configuration of their rules, compli-
ant with the provided NSRs, is achieved by solving a partial
weighted MaxSMT problem. This section provides a high-
level overview of the proposed methodology. First, the inputs
and outputs of the method are described: the SG in Subsection
III-A, the NSRs in Subsection III-B, and the expected outcome
in Subsection III-C. Then, a clarifying example is presented in
Subsection III-D. Finally, the problem formalization approach
and the challenges arising in its definition are presented in
Subsection III-E, before providing, in the next sections of the
article, the detailed and formal problem definition.

A. Input: Service Graph and Allocation Graph

A Service Graph (SG) is the logical topology of a vir-
tual network, i.e., an interconnection of service functions

and network nodes providing a complete end-to-end network
service. The functions do not need to be positioned in a linear
combination, as in a SFC, but they can be organized in a
complex architecture with multiple traffic paths from sources
to destinations. A SG is defined by a network service designer,
without involving security considerations. The only purpose
is to provide a networking service to the users, whose points
of access are represented by the end points of the SG (e.g.
clients, servers, subnetworks). The functions that the service
designer can exploit for the creation of a SG are Network
Functions (NFs) implementing various functionalities, such as
web caching and load balancing. Low-level functions such as
switches and routers, which exclusively forward the incoming
packets to the out-ports selected by means of a forwarding
or routing table, are not included explicitly in the SG. This
statement does not imply that these functions are not present
in the real network, but the SG provides a more abstract view
of the possible paths that packets can follow. This abstraction
focuses on the more complex service functions, under the
assumption that the low-level ones correctly implement the
SG connections [2].

In our work, we consider a typical catalog of NFs available
for SG construction, and these NFs are modeled considering
that what matters for firewall configuration is only their
forwarding behavior, rather than their full behavior, i.e., what
is relevant is the possibility that a traffic flow is forwarded by
a NF to its next hops, and how its relevant parts are modified,
rather than exactly each operation done by the function.

The SG provided by the designer is automatically processed
to create an internal representation called Allocation Graph
(AG). Without further specifications from the user, for each
link between any pair of network nodes or functions, a place-
holder element, called Allocation Place (AP), is generated. In
this position, the tool can decide to put a firewall in order to
reach the optimal allocation scheme.

However, a security skilled service designer can either force
the allocation of a firewall in a specific AP without allowing
a further removal by the tool, or prohibit to consider specific
APs as valid firewall positions. This capability enriches the
flexibility of the proposed methodology, and at the same time it
decreases computation time by reducing the solution space the
tool must search to solve the problem. Moreover, it is useful in
mixed scenarios, where firewalls are implemented not only by
VNFs, but also by existing hardware packet filters, which can,
in fact, be modeled as firewalls that cannot be removed by the
tool. Despite these benefits, on the other hand, it is evident how
this manual contribution to the configuration of the AG can
lead to the impossibility to find a solution or to an unoptimized
solution, because some acceptable – and potentially optimal –
solutions can be pruned based on the user input.

B. Input: Network Security Requirements

Among all the network security property types that can
be defined, the focus of our methodology is on connectivity
requirements between pairs of end points. Four different
approaches are provided to the service designer for specifying
the required security constraints; each one is characterized by
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a default behavior, describing how the traffic flows for which
no specific requirements are formulated must be managed, and
a set of specific NSRs, exclusively referred to certain types of
traffic. In the first approach (whitelisting), the default behavior
is set to block traffic flows and the user can only additionally
specify reachability requirements, so that all traffic flows must
be blocked except for those that the user explicitly allows.
In the second approach (blacklisting), vice versa, the default
behavior is set to allow traffic flows and the user can only
additionally specify isolation requirements; in this case, all
traffic flows must be allowed with the exception of those that
the user specifically requests to deny.

The other two approaches, called rule-oriented specific and
security-oriented specific, let the user explicitly formulate
both isolation and reachability specific properties, but without
manually setting a default behavior. The way the system
manages all the other cases, which the user is not interested
in, is automatically decided, in order to achieve some other
goals. In the rule-oriented specific approach, the goal is only to
minimize the number of rules. In the security-oriented specific
approach, the system allows only the communications that are
strictly necessary in order to satisfy all user requirements. In
these last two approaches, the set of the user-provided NSRs
is assumed to be anomaly-free (i.e., with no conflicts and no
suboptimizations). This is not a restriction because anomalies
can be eliminated by means of well-known anomaly analysis
techniques ([32], [33]).

In all the four approaches, the specific NSRs are expressed
with a medium-level language [12], i.e. by specifying the IP
5-tuple of the flows that are allowed or prohibited. However,
it is possible for an administrator to specify the NSRs in
an easier and more flexible high-level language, since from
that definition the corresponding medium-level NSRs can be
derived with a mere translation [12].

C. Expected outcome
After receiving the pre-processed SG and the NSRs, the

automatic security enforcement problem is solved.
In case of positive outcome, the provided result is composed

of (i) the allocation scheme of the distributed firewall instances
in the SG; (ii) the Filtering Policy (FP) for each allocated
firewall. The firewall allocation scheme specifies the APs
where a firewall instance has to be allocated. The FP for each
allocated firewall is a set of filtering rules that make up its
configuration, expressed in a user-friendly abstract language,
which is independent of specific firewall configuration lan-
guages, but fairly general. A firewall FP is composed of a
default action – whitelisting if the firewall drops any packet
unless differently specified, blacklisting if the firewall lets the
packets pass through unless differently specified – and an
anomaly-free set of auto-generated rules specifying how to
manage specific kinds of traffic flows.

The allocation scheme contains the minimum number of
firewall instances necessary to enforce all NSRs, so minimiz-
ing resource consumption, while the FP for each allocated
firewall contains the minimum number of configured rules,
thus minimizing the amount of memory needed to store them
and maximizing the firewall performance.

𝑠9
𝑒1

𝑒2

𝑒3

𝑠10

𝑒4 𝑒5

𝑠11

𝑒6

𝑠12
𝑒8

𝑒7

Fig. 1: Original Service Graph without firewalls

TABLE I: IP addresses and function types

Identifier IP address Function type / role

𝑒1 130.10.0.1 HTTP web server
𝑒2 130.10.0.2 HTTP web server
𝑒3 130.10.0.3 HTTP web server
𝑒4 40.40.41.∗ IT office of Company A
𝑒5 40.40.42.∗ Business office of Company A
𝑒6 88.80.84.∗ Company B
𝑒7 192.168.1.∗ IT office of Company C
𝑒8 192.168.2.∗ Business office of Company C
𝑠9 130.10.0.4 Load balancer
𝑠10 33.33.33.2 Web cache
𝑠11 33.33.33.3 Traffic monitor
𝑠12 220.124.30.1 NAT

It is important to note that the allocation scheme is only
generated at the logical abstraction level represented by the
SG. It must not be confused with the embedding scheme in the
physical network, which is defined at a later stage by solving
a classical Virtual Network Embedding (VNE) problem [34]
(i.e., understanding how the virtual functions are placed in
the physical hosts)1. The VNE problem for virtual firewalls
has been already addressed in studies such as [35], where
optimized strategies for embedding functions in the hardware
have been deeply investigated. Similarly, the translation of
the abstract FPs into concrete configuration rules for specific
packet filter functions is another necessary step that can be
executed by well-known methodologies [7].

Hence, the output solution can be deployed automatically
into the virtual network by means of existing technologies.
After the deployment, in case a new security configuration
becomes necessary, e.g., to react to an attack that has just
been detected, new NSRs have to be defined by the adminis-
trator and provided to the tool, which can then automatically
determine the new configuration to be deployed.

Instead, if no solution to the problem can be found, a non-
enforceability report is generated to the user, who can try to
guess why it has not been possible to enforce the NSRs. A
possible reason for a negative outcome can be that the SG
defined by the service designer does not provide adequate APs
for the firewalls because of some user-defined constraints set
about their generation. Hence, one possible strategy to get a
working solution is to run the procedure again, releasing some
of the user-defined constraints.

D. Clarifying example

The most relevant features of our approach can be clarified
by means of a sample scenario. This case study is also useful

1Even though the VNE problem is not faced in the proposed approach,
solving the FW allocation problem in the SG is itself complex and challenging.
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Fig. 2: Allocation Graph with Allocation Places

TABLE II: Network Security Requirements

Action IPSrc IPDst pSrc pDst tProto

Allow 192.168.1.∗ 192.168.2.∗ ∗ ∗ ∗
Allow 192.168.2.∗ 192.168.1.∗ ∗ ∗ ∗
Allow 192.168.1.∗ 130.10.0.∗ ∗ 80 TCP
Deny 192.168.1.∗ 130.10.0.∗ ∗ ≠80 TCP
Deny 192.168.1.∗ 130.10.0.∗ ∗ ∗ UDP
Deny 192.168.2.∗ 130.10.0.∗ ∗ ∗ ∗
Allow 130.10.0.∗ 192.168.1.∗ ∗ ∗ ∗
Allow 40.40.41.∗ 130.10.0.∗ ∗ 80 TCP
Deny 40.40.41.∗ 130.10.0.∗ ∗ ≠80 TCP
Deny 40.40.41.∗ 130.10.0.∗ ∗ ∗ UDP
Deny 40.40.42.∗ 130.10.0.∗ ∗ ∗ ∗
Allow 130.10.0.∗ 40.40.41.∗ ∗ ∗ ∗
Allow 40.40.42.∗ 40.40.41.∗ ∗ ∗ ∗
Deny 40.40.41.∗ 40.40.42.∗ ∗ ∗ ∗
Allow 88.80.84.∗ 40.40.∗.∗ ∗ ∗ ∗
Deny 88.80.84.∗ 130.10.0.∗ ∗ ∗ ∗

to explain the advantages of our methodology with respect to
manual configuration or state-of-the-art automated approaches.

Let us consider Fig. 2, which is the AG generated from the
input SG shown in Fig. 1, supposing that the service designer
did not set any allocation constraint. In these figures – and
in all the next ones –, symbol a is used to denote the APs
automatically generated in the AG, while each undirected link
represents two adjacent directed links. Table I shows the IP
addresses and the function type of each SG node, where a
node can also be a subnetwork. Table II lists the NSRs to
satisfy, defined through a security-oriented specific approach,
where the symbol ∗ has the usual meaning of wildcard.

Our approach takes all the decisions to enforce the requested
NSRs automatically, correctly, and optimally, producing the
solution shown in Fig. 3 (allocation) and in Table III (config-
uration). Instead, a manual approach is prone to both human
errors and sub-optimizations. For example, human beings may
fail to understand that placing a firewall in 𝑎16 would avoid the
need of having firewalls in several other APs (e.g., 𝑎13, 𝑎14,
𝑎15, and 𝑎21). They may also fail in setting up correct rules
that take into account all the possible changes the NAT 𝑠12 or
the load balancer 𝑠9 may apply to the traffic. For example, let
us assume the administrator has decided to allocate a firewall
in AP 𝑎16 with default action deny. In order to satisfy the NSR
that allows all TCP traffic from 192.168.1.∗ to 130.10.0.∗ port
80, it would be wrong to install the rule (Allow, 192.168.1.∗,
130.10.0.∗, ∗ , 80, TCP) in this firewall, because the NAT
𝑠12 changes the source address. The right solution, instead, is
rule # 1 for 𝑓 𝑤1, as shown in Table III. These issues increase
dramatically when the network topology size and the number
of NSRs increase.

Even the adoption of simple heuristic strategies that try to

𝑠9
𝑒1

𝑒2

𝑒3

𝑓 𝑤1

𝑠10

𝑓 𝑤2

𝑒5𝑒4

𝑠11

𝑒6

𝑠12

𝑒7

𝑓 𝑤3
𝑒8

Fig. 3: Final Service Graph with allocated firewalls

TABLE III: Filtering Policy rules for allocated firewalls

Firewall fw1
# Action IPSrc IPDst pSrc pDst tProto

1 Allow 220.124.30.1 130.10.0.4 ∗ 80 TCP
2 Allow 40.40.41.∗ 130.10.0.4 ∗ 80 TCP
3 Allow 130.10.0.4 ∗.∗.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall fw2
# Action IPSrc IPDst pSrc pDst tProto

1 Allow 40.40.42.∗ 40.40.41.∗ ∗ ∗ ∗
2 Allow 88.80.84.∗ 40.40.42.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

Firewall fw3
# Action IPSrc IPDst pSrc pDst tProto

1 Allow ∗.∗.∗.∗ 192.168.∗.∗ ∗ ∗ ∗
D Deny ∗.∗.∗.∗ ∗.∗.∗.∗ ∗ ∗ ∗

trade optimization for correctness is not immune from these
problems. For example, a possible simple unoptimized strategy
that could be adopted is to allocate a firewall in each AP, with
deny default action, and one allow rule for each reachability
NSR. However, because of the presence of the NAT and of the
load balancer, these rules cannot be just the original NSRs,
but the addresses need to be modified in the correct way.
This solution is also the worst one from the optimization
point of view, because it allocates the maximum number of
firewalls and installs the maximum number of rules. Another
possible strategy, which yields a more optimized result, is to
use firewalls with allow default actions, and, for each isolation
NSR, allocate a firewall in each AP that is closest to the source
specified by the NSR, with a rule that enforces the NSR. In
our example, this strategy would lead to allocate firewalls in
APs 𝑎17, 𝑎18, 𝑎20, 𝑎22, and 𝑎23, with a total of 8 specific
rules installed, which is a solution more optimized than the
previous one, but still less than the optimum solution found
by our approach, which just allocates 3 firewalls including
a total of 6 specific rules. Moreover, even in this case, the
rules have to be synthesized taking into account the presence
of NAT and load balancer, which can lead to human errors.
Finally, this solution does not minimize permissions, as our
solution does, because it is based on a blacklisting approach.

Another possible way that could be tried to solve the
problem is to use a combination of the automated state-
of-the-art methods that are available to solve the allocation
or configuration problem. However, even a combination of
existing methods could not solve the problem for this use case
automatically, because they work under assumptions that are
either more restrictive than or totally different from the ones



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2022.3160293, IEEE
Transactions on Dependable and Secure Computing

6

we are making in this use case. As discussed in Section II,
there is no refinement approach that can refine user-provided
SGs including functions that can modify packets (e.g., NATs
modifying the IP addresses), while in the topology used for
the case study, 𝑠9 and 𝑠12 are functions of this type.

Let us analyze now what happens when the NSRs cannot be
enforced. Let us suppose, for example, that the user imposes an
allocation constraint, specifying that APs 𝑎17 and 𝑎18 cannot
host any firewall. In this case, the solver fails to solve the
MaxSMT problem, and a non-enforceability report is returned.
At this point, the user may try to change the allocation
constraints on the SG, or the definition of the NSRs, so that
a next run of the automated procedure can be successful.

In conclusion, the approach proposed in this article can
reach the optimal solution automatically, with a complete
overview on both the SG and the NSRs, saving time and re-
sources, and avoiding the errors that could be made manually.

E. Problem formulation and modeling
The formally correct and optimal solution for the firewall

allocation and auto-configuration problem is obtained by for-
mulating and solving a partial weighted MaxSMT problem.
As a generalization of the traditional SMT problem (which
consists of determining if it is possible to satisfy at the same
time all the first-order logic constraints in a given set), this
problem introduces optimization by distinguishing between
two different sets of input constraints: hard clauses and soft
clauses. Hard clauses are not relaxable, i.e., they have to
be satisfied in order to get a solution of the problem; their
presence also determines the partiality of the optimization
problem, since they are not subject to optimization. On the
other hand, soft clauses are assigned a weight – whence the
adjective weighted derives – and their satisfaction is not strictly
required, but it is subject to the optimization objective of
maximizing the sum of the weights assigned to the satisfied
relaxable clauses. From now on, for simplicity, the term
MaxSMT will be used to refer to partial weighted MaxSMT.

In terms of computational complexity, MaxSMT is NP-
complete[36]. Nevertheless, despite this discouraging worst-
case complexity, the state-of-the-art solvers can solve many
instances of this problem in polynomial time with respect
to the problem dimension [37]. Consequently, a convenient
formulation of the problem is crucial to achieve scalability.

The MaxSMT formulation is key to achieve all the three
main objectives of the proposed approach: full automation, op-
timization, and formal correctness. Full automation is achieved
because a MaxSMT problem can be solved without human
intervention, except for the input specification. Optimization
can be achieved by expressing the optimization objectives
by means of soft constraints, and formal correctness can
be achieved by expressing the formal correctness require-
ments as hard constraints. Adopting this formal correctness-
by-construction approach is beneficial not only because it
improves the assurance and confidence that the computed
solution is correct, but also because it avoids to perform a-
posteriori formal verification. Indeed, the solution can already
be considered formally correct as far as all problem com-
ponents are correctly modeled, being fundamental that such

models capture all the information that may influence the
correctness of the solution. Specifically, such models must
capture both the security requirements and the forwarding
behavior of the network where they must be enforced. At the
same time, the number and complexity of constraints in the
MaxSMT problem must be kept limited, in order to make the
approach scalable. For all the above reasons, the modeling
of the problem components, when formulating the MaxSMT
problem, represents a big challenge.

In light of these considerations, it is clear that the MaxSMT
problem formulation is intrinsically tied to the modeling of
network components and security requirements. For this rea-
son, the next sections of the article provide the full definition
of the MaxSMT problem starting from the definition of the
models of network components and security requirements
(Section IV). Our modeling approach is based on the concept
of maximal traffic flows. The way these flows can be computed
is illustrated in Section V. Finally, the additional soft and
hard constraints required for computing the optimum firewall
allocation scheme and configuration, and for modeling the
filtering behavior of automatically configured firewalls, are
presented in Section VI.

IV. NETWORK AND REQUIREMENTS MODEL

This section defines the formal modeling of the following
components: the SG and AG in Subsection IV-A, the traffic
and network functions in Subsection IV-B, the traffic flows in
Subsection IV-C, and the NSRs in Subsection IV-D. These
models differ substantially from the one adopted in [13],
where individual packets were modeled instead of traffic flows.
TABLE IV includes the main formal notations (symbols,
functions, predicates, operators) used in the next sections.

A. Service and Allocation Graph models

An SG is modeled as a directed graph 𝐺𝑆 = (𝑁𝑆 , 𝐿𝑆) where
𝑁𝑆 is the set of vertices, representing the network nodes of
the SG, while 𝐿𝑆 is the set of edges, representing directed
connections between nodes. 𝑁𝑆 is the union of two disjoint
sets, i.e., 𝑁𝑆 = 𝐸𝑆 ∪ 𝑆𝑆 , where 𝐸𝑆 is the set of the end points
(i.e., single hosts or edge subnetworks), while 𝑆𝑆 is the set of
middleboxes (i.e., service functions).

Each element of 𝑁𝑆 is uniquely identified by a non-negative
integer index 𝑘 , and 𝑛𝑘 denotes the element of 𝑁𝑆 identified
by 𝑘 , so that each element of 𝐿𝑆 is uniquely identified by a
pair of non-negative integers, i.e., 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 , with 𝑖 ≠ 𝑗 , is the
edge from 𝑛𝑖 to 𝑛 𝑗 . We define index(𝑛𝑘 ) = 𝑘 . Moreover, each
𝑛𝑘 ∈ 𝑁𝑆 is characterized by a single IP address, an IP address
range or, more generically, a set of IP addresses. Let us denote
I the set of all IP addresses and 𝛼: 𝑁𝑆 → 2𝐼 the function that
maps each element 𝑛 ∈ 𝑁𝑆 to its set of IP addresses.

An AG is modeled similarly to an SG, as a directed graph
𝐺𝐴 = (𝑁𝐴, 𝐿𝐴), with the same indexing scheme for vertices
and edges already used for the SG. In this case, however,
𝑁𝐴 is the union of 3 disjoint subsets: 𝑁𝐴 = 𝐸𝐴 ∪ 𝑆𝐴 ∪ 𝐴𝐴,
where 𝐸𝐴 and 𝑆𝐴 represent, respectively, the end points and
the middleboxes, while 𝐴𝐴 is the set of the APs where the
firewalls can be potentially placed.
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TABLE IV: Notation

Symbol/Function/Predicate/Operator Definition
B = {true, false} boolean set
𝐺𝑆 = (𝑁𝑆 , 𝐿𝑆), 𝐺𝐴 = (𝑁𝐴, 𝐿𝐴) directed Service Graph (SG) and Allocation Graph (AG)
𝐸𝑆 , 𝐸𝐴, 𝑆𝑆 , 𝑆𝐴 end points, middleboxes
𝑛𝑘 ∈ 𝑁𝑆 the element of 𝑁𝑆 identified by 𝑘

𝑛𝑠 , 𝑛𝑑 ∈ 𝑁𝐴 source/destination endpoint
𝑙𝑖, 𝑗 ∈ 𝐿𝑆 the edge from 𝑛𝑖 to 𝑛 𝑗

𝐴𝐴 the set of the APs where FWs can be potentially placed
𝑡, 𝑡0 a class of packets and empty set of packets
𝑡𝑖, 𝑗 the traffic transmitted from 𝑛𝑖 to 𝑛 𝑗

I𝑑
𝑖

, I𝑎
𝑖

packets that are dropped/allowed in 𝑛𝑖
D𝑖, 𝑗 traffic that is transformed by T𝑖, 𝑗
𝑓 ∈ 𝐹 a flow, i.e., class of packets generated by 𝑛𝑠
𝑟 ∈ 𝑅𝑠 Network Security Requirement element
𝑟 = (𝐶, 𝑎) C is a condition set , 𝑎 is the action (i.e, Allow/Deny)
𝐴𝑇 = {DENY,ALLOW} set indicating isolation/reachability requirements
𝑃ℎ set of all the placeholder rules
𝑈ℎ set of effectively configured rules
𝐹𝑀
𝑟 flows that are not subflows of any other flow in 𝐹𝑟

𝛼: 𝑁𝑆 → 2𝐼 maps 𝑛 ∈ 𝑁𝑆 to its set of IP addresses
T𝑖: 𝑇 → 𝑇 maps an input traffic to the corresponding output traffic
T𝑖, 𝑗: 𝑇 → 𝑇 maps part of D𝑖, 𝑗 to the corresponding output traffic
𝜋: 𝐹 → (𝑁𝐴)∗ maps a flow to the ordered list of

nodes that are crossed by that flow
𝜏: 𝐹 × 𝑁𝐴→ 𝑇 maps a flow and a node to the ingress traffic
𝜈: 𝑁𝐴 × 𝐹 → 𝑁𝐴 + {𝑛0} maps a network node 𝑛 and a traffic

flow 𝑓 to the next node crossed by 𝑓 after 𝑛

𝜎 : 𝐴𝐴→ Z model the sign of the weights
allocated: 𝑁𝐴→ B true ⇔ a FW is allocated in 𝑎ℎ
forbidden: 𝐿𝑆 → B true ⇔ the creation of an AP on 𝑙𝑖, 𝑗 prohibited
forced: 𝐿𝑆 → B true ⇔ allocation of a firewall on 𝑙𝑖, 𝑗 is required
deny𝑖: 𝑇→B true ⇔ 𝑛𝑖 drops all the packets
wlst: 𝐴𝐴→ B true ⇔ the def. act. of FW allocated in the AP is DENY
enforces: 𝐴𝑇 × 𝑅 → B true ⇔ the FW def. act. enforces requirement 𝑟
configured: 𝑃ℎ → B true ⇔ the placeholder rules included in 𝑈ℎ

matchAll: 𝑃ℎ ×𝑄 → B true ⇔ the rule conditions completely match the 5-tuple
matchNone: 𝑃ℎ ×𝑄 → B true ⇔ the rule conditions do not match any 5-tuple fields
𝑡1 ⊆ 𝑡2 ∈ 𝑇 𝑡1 is a sub-traffic of 𝑡2
∧, ∨, ¬ used for conjunction, disjunction, negation
. used to denote a specific tuple element (e.g., given a tuple

𝑡 = (𝑎, 𝑏, 𝑐), 𝑡.𝑎 identifies element 𝑎 of tuple 𝑡)

When the AG is automatically generated from the SG,
taking into account the set of additional requirements about
the allocation of firewall instances provided by the service
designer, end points and service functions are not modified,
i.e., 𝐸𝐴 = 𝐸𝑆 and 𝑆𝐴 = 𝑆𝑆 . Similarly, as the assignment of IP
addresses does not change from SG to AG, 𝛼 is simply lifted
to be a partial function on the 𝑁𝐴 domain.

Let B = {true, false} denote the Boolean set, and allocated:
𝑁𝐴 → B be a predicate that formalizes allocation decisions,
by specifying if each network node is actually allocated in the
AG. For each 𝑛𝑘 ∈ 𝐸𝐴∪𝑆𝐴, allocated(𝑛𝑘 ) is true by definition,
whereas for each 𝑎ℎ ∈ 𝐴𝐴, the automatic procedure decides
whether allocated(𝑎ℎ) has to be true or not (i.e., whether a
firewall has to be allocated in 𝑎ℎ or not).

For each 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 , 𝑖 ≠ 𝑗 , the requirements about the possi-
ble allocation of firewalls coming from the service designer are
formally represented by two predicates: forbidden: 𝐿𝑆 → B
and forced: 𝐿𝑆 → B. For each 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 , forbidden(𝑙𝑖, 𝑗 ) is true
if and only if the creation of an AP on 𝑙𝑖, 𝑗 has been prohibited,
while forced(𝑙𝑖, 𝑗 ) is true if and only if the allocation of a
firewall on 𝑙𝑖, 𝑗 has been required. The constraint (1) expresses
that the two requirements cannot coexist for the same 𝑙𝑖, 𝑗 .

∀ 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 . ¬(forbidden(𝑙𝑖, 𝑗 ) ∧ forced(𝑙𝑖, 𝑗 )) (1)

According to the requirements expressed by the forbidden
predicate, 𝐴𝐴 and 𝐿𝐴 are computed as the smallest sets that
satisfy the conditions (2) and (3).

∀ 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 . (¬forbidden(𝑙𝑖, 𝑗 ) =⇒ 𝑎ℎ ∈ 𝐴𝐴 ∧ 𝑙𝑖,ℎ ∈ 𝐿𝐴 ∧ 𝑙ℎ, 𝑗 ∈ 𝐿𝐴)
(2)

∀ 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 . (forbidden(𝑙𝑖, 𝑗 ) =⇒ 𝑙𝑖, 𝑗 ∈ 𝐿𝐴) (3)

According to (2), for each SG edge 𝑙𝑖, 𝑗 , if the creation of
an AP on it is not prohibited, i.e., if forbidden(𝑙𝑖, 𝑗 ) = false,
an AP 𝑎ℎ is added to the AG between nodes 𝑛𝑖 and 𝑛 𝑗 ,
i.e., it is included in 𝐴𝐴, and it is connected by the edges
𝑙𝑖,ℎ ∈ 𝐿𝐴 and 𝑙ℎ, 𝑗 ∈ 𝐿𝐴, replacing edge 𝑙𝑖, 𝑗 ∈ 𝐿𝑆 . Instead,
according to (3), no AP is created on 𝑙𝑖, 𝑗 if it is prohibited,
i.e., if forbidden(𝑙𝑖, 𝑗 ) = true. In this case, 𝑙𝑖, 𝑗 is simply
included in 𝐿𝐴. Note that, if both forbidden(𝑙𝑖, 𝑗 ) = true and
forbidden(𝑙 𝑗 ,𝑖) = true, a single AP 𝑎ℎ is created for them .

Finally, (4) is used to force the allocation of a firewall in
the AP 𝑎ℎ created on link 𝑙𝑖, 𝑗 when the user requests it.

∀𝑙𝑖, 𝑗 ∈ 𝐿𝑆 . (forced(𝑙𝑖, 𝑗 ) =⇒ allocated(𝑎ℎ)) (4)

B. Traffic and Network Functions model

A class of packets, also called traffic, 𝑡, is modeled as
a predicate defined over the values of the TCP/IP 5-tuple
packet fields. More precisely, 𝑡 is modeled as a disjunction of
predicates 𝑞𝑡 ,1∨𝑞𝑡 ,2∨ ...∨𝑞𝑡 ,𝑛, where each 𝑞𝑡 ,𝑖 is defined over
the 5-tuple fields. A packet belongs to class 𝑡 if and only if its
5-tuple satisfies at least one 𝑞𝑡 ,𝑖 . In order to keep the model
simple but at the same time fairly general, it is assumed that
each 𝑞𝑡 ,𝑖 is the conjunction of five predicates, one for each
field of the 5-tuple. For simplicity, each 𝑞𝑡 ,𝑖 is written as

𝑞𝑡,𝑖 = (IPSrc, IPDst, pSrc, pDst, tPrt) (5)

where IPSrc, IPDst, pSrc, pDst and tPrt are the 5 predicates.
Considering IPv4 addresses, it is assumed that IPSrc and

IPDst are conjunctions of four predicates, one for each byte of
the IP address. Each one of these four predicates can identify
either a single integer value or a range of values, not exceeding
the range 0 to 255. The predicates that make up IPSrc or IPDst
are concisely written by means of the dotted-decimal notation
𝑖𝑝1.𝑖𝑝2.𝑖𝑝3.𝑖𝑝4, where 𝑖𝑝𝑖 is a single decimal number or a
range of values, written [𝑖𝑝𝑖,𝑙 , 𝑖𝑝𝑖,ℎ]. The range [0, 255] is
concisely represented by the wildcard ∗. If 𝑖𝑝𝑖 is a range,
the predicates on its right must be ∗. For example, IPSrc =

130.192.5.∗ stands for the predicate 𝑥1 = 130∧𝑥2 = 192∧𝑥3 =

5, where 𝑥𝑖 is the variable representing the i-th byte of the
source IP address packet field, and this predicate identifies all
the IP addresses matching 130.192.5.0/24.

The predicates about source and destination ports sPort and
dPort can identify either a single integer number or a range
of values, not exceeding the range 0 to 65535, and the same
notation used for each byte of an IP address is also used for
the port number, with the range [0, 65535] symbolized by the
wildcard ∗. For example, 80 stands for the predicate 𝑥 = 80
and [80, 100] stands for the predicate 𝑥 <= 100 ∧ 𝑥 >= 80
where 𝑥 is the variable that represents the port field.

The predicate about the transport-level protocol tPrt can
identify a single value or a subset of values among a finite
set of possible values (e.g., a set including the “TCP” and
“UDP” values). The set of all the possible values in this set
is concisely symbolized by the wildcard ∗.

Finally, the special symbol 𝑡0 identifies the empty set of
packets, i.e., 𝑡0 = false, which means absence of traffic.

Let us denote 𝑄 the set of all the predicates 𝑞𝑡 ,𝑖 that can
be specified with the above notation, and T the set of all the
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disjunctions of such predicates, i.e., the set of all packet classes
𝑡 that can be represented by this model. It can be proved that
𝑇 is closed under conjunction, disjunction and negation. Given
two traffic predicates 𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 is said to be a sub-traffic
of 𝑡2, written 𝑡1 ⊆ 𝑡2, if 𝑡1 represents a subset of the packets
represented by 𝑡2, i.e., if 𝑡1 ⇒ 𝑡2.

Each VNF in the SG acts on its input traffic and generates
a corresponding output traffic. Its behavior, which depends on
its code and configuration, is modeled abstractly by means of
two functions, capturing respectively the forwarding behavior
(i.e., which input packets are dropped by the VNF) and the
transformation behavior (i.e., which packets may be output by
the VNF for each class of input packets).

The function that models the forwarding behavior of the
VNF in node 𝑛𝑖 ∈ 𝑁𝐴 is the predicate deny𝑖 : 𝑇 → B which
is true for ingress traffic 𝑡 ∈ 𝑇 , if and only if 𝑛𝑖 drops all
the packets represented by 𝑡. Moreover, for node 𝑛𝑖 , the traffic
I𝑑
𝑖

specifies the packets that are dropped by the function, i.e.,
deny𝑖 (𝑡) is true if and only if 𝑡 ⊆ I𝑑

𝑖
. Instead, the traffic

I𝑎
𝑖

is the complement of I𝑑
𝑖

, since it specifies the packets
that are allowed (i.e., not dropped) by the function. Clearly,
I𝑑
𝑖
∨ I𝑎

𝑖
= true and I𝑑

𝑖
∧ I𝑎

𝑖
= false.

The transformation behavior of the VNF in node 𝑛𝑖 ∈ 𝑁𝐴 is
instead modeled by the function T𝑖: 𝑇 → 𝑇 , called transformer,
which maps an input traffic to the corresponding output traffic.

One may argue that function T𝑖 alone would be enough,
e.g., by setting T𝑖 (𝑡) = 𝑡0 for all 𝑡 such that deny𝑖 (𝑡) is true.
However, keeping these two functions distinct and indepen-
dent brings some advantages to our framework. Note that a
transformer describes traffic transformations independently of
whether packets are dropped or not. For example, a firewall
can be characterized simply as a VNF having T𝑖 (𝑡) = 𝑡 (i.e., T𝑖
is the identity function, because the firewall does not modify
the forwarded traffic), and a deny𝑖 (𝑡) predicate that is true
if each packet represented by 𝑡 is dropped according to the
firewall rules. With this separation of duties, we can first
compute how traffic is transformed when crossing the network,
and then reason about firewall configurations by using the
deny𝑖 predicates only.

For many VNFs, T𝑖 is the identity function, and the follow-
ing constraint is applied to the deny predicate:

deny𝑖 (𝑡) = false (6)

This simple model applies, for example, to all traffic monitor-
ing functions, because they just inspect packets and forward
them without modification. However, the same model also
applies to load balancers, because they forward each packet
without modification to a destination decided each time based
on some internal logic. As it is impossible to know the
outcome of this decision beforehand, and all decisions are
possible, a load balancer can be modeled as a function that
can forward each packet to each destination.

An example of a VNF with a non-identity transformer
is a Network Address Translator (NAT)2. A NAT performs
one of two different transformations selected according to the

2In this example, a NAT which can perform only a simple address
translation is considered, without the feature of port translation.

features of the input packet: if the source address belongs to
the set of shadowed addresses, while the destination address
does not, the source address is translated into one of the
public addresses of the NAT (shadowing). If instead the source
address does not belong to the set of shadowed addresses
and the destination address is one of the public addresses
of the NAT, the destination address is translated into one of
the shadowed addresses (reconversion). In all other cases, the
packet is not modified. When, as in this case, the function
operates different transformations for different packet classes,
the transformer can be expressed as T𝑖 (𝑡) = ∨ 𝑗 (T𝑖, 𝑗 (D𝑖, 𝑗 ∧ 𝑡)),
where T𝑖, 𝑗 : 𝑇 → 𝑇 is the transformer applied for the packet
class defined by predicate D𝑖, 𝑗 . In the case of NAT, we have
T𝑖 (𝑡) = T𝑖,1 (D𝑖,1∧𝑡)∨T𝑖,2 (D𝑖,2∧𝑡)∨T𝑖,3 (D𝑖,3∧𝑡), where T𝑖,1 is
the shadowing transformer, T𝑖,2 is the reconverting transformer
and T𝑖,3 is the identity transformer that is applied in all other
cases. Let us denote 𝑝1, ..., 𝑝𝑚 the predicates representing the
shadowed IP addresses and 𝑎1, ..., 𝑎𝑙 the predicates represent-
ing the public IP addresses of the NAT. Then, considering
a generic traffic 𝑡 = ∨ℎ

𝑘=1 (𝑞𝑡 ,𝑘 ), the predicates D𝑖, 𝑗 and the
transformers T𝑖, 𝑗 can be defined as follows.

D𝑖,1 = ∨𝑚
𝑥=1 (𝑝𝑥 , ¬(∨𝑚𝑧=1 (𝑝𝑧 )) , ∗, ∗, ∗) (7)

T𝑖,1 (𝑡) = ∨𝑙𝑦=1 ∨
ℎ
𝑘=1 (𝑎𝑦 , 𝑞𝑡,𝑘 .IPDst, 𝑞𝑡,𝑘 .pSrc, 𝑞𝑡,𝑘 .pDst, 𝑞𝑡,𝑘 .tPrt) (8)

D𝑖,2 = ∨𝑙
𝑦=1 (¬(∨

𝑚
𝑥=1 (𝑝𝑥 )) , 𝑎𝑦 , ∗, ∗, ∗) (9)

T𝑖,2 (𝑡) = ∨𝑚𝑥=1 ∨
ℎ
𝑘=1 (𝑞𝑡,𝑘 .IPSrc, 𝑝𝑥 , 𝑞𝑡,𝑘 .pSrc, 𝑞𝑡,𝑘 .pDst, 𝑞𝑡,𝑘 .tPrt) (10)

D𝑖,3 = ¬(D𝑖,1) ∧ ¬(D𝑖,2) (11)

T𝑖,3 (𝑡) = 𝑡 (12)

C. Traffic flows model

The transformation behavior of an entire AG is described
by means of its set of traffic flows 𝐹. Specifically, each
flow 𝑓 ∈ 𝐹 represents a class of packets that are generated
by a source endpoint 𝑛𝑠 ∈ 𝑁𝐴, directed to a destination
endpoint 𝑛𝑑 ∈ 𝑁𝐴, and steered to pass through an or-
dered list of intermediate nodes 𝑛𝑎, 𝑛𝑏 , ... ∈ 𝑁𝐴 that may
forward them at each hop, possibly changing them (e.g.,
an intermediate NAT can change packet addresses), or drop
them. Accordingly, a flow is formally modeled as a list
[𝑛𝑠 , 𝑡𝑠,𝑎, 𝑛𝑎, 𝑡𝑎,𝑏 , 𝑛𝑏 , ..., 𝑛𝑘 , 𝑡𝑘,𝑑 , 𝑛𝑑], where 𝑡𝑖, 𝑗 represents the
traffic (i.e., class of packets) transmitted from 𝑛𝑖 to 𝑛 𝑗 , and
each 𝑡𝑖, 𝑗 is the result of the transformation of the previous
traffic in the flow by node 𝑛𝑖 , i.e., ∀𝑡𝑖, 𝑗 ≠ 𝑡𝑠,𝑎 . 𝑡𝑖, 𝑗 = T𝑖 (𝑡𝑘,𝑖),
where 𝑛𝑘 is the node that precedes 𝑛𝑖 in the flow. Moreover,
each 𝑡𝑖, 𝑗 is homogeneous for node 𝑛 𝑗 . This means that all
the packets it represents are handled in the same way by 𝑛 𝑗 ,
i.e., either all of them or none of them are dropped and, if 𝑛 𝑗

applies different transformations to different classes of packets
(e.g., 𝑛 𝑗 is a NAT), they belong all to the same class.

Alongside with this definition, three auxiliary functions are
introduced to characterize the flows of an AG: 𝜋: 𝐹 → (𝑁𝐴)∗,
which maps a flow to the ordered list of network nodes that
are crossed by that flow, including the destination, but not
the source; 𝜏: 𝐹 × 𝑁𝐴 → 𝑇 , which maps a flow and a node
to the ingress traffic of that node belonging to that flow. In
case flow 𝑓 does not cross node 𝑛, we have 𝜏( 𝑓 , 𝑛) = 𝑡0;
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𝜈: 𝑁𝐴 × 𝐹 → 𝑁𝐴 + {𝑛0}, which maps a network node 𝑛 and a
traffic flow 𝑓 to the next node crossed by 𝑓 after 𝑛. In case
𝑛 is not in 𝑓 or is the last node, this function returns 𝑛0, a
symbol representing no node (𝑛0 ∉ 𝑁𝐴).

In order to better clarify the traffic flow concept, let us use
the example of Fig. 2. A flow from network 𝑒7, shadowed by
NAT 𝑠12, to TCP port 80 of web server 𝑒1, located behind load
balancer 𝑠9, can be represented as 𝑓1 = [𝑒7, 𝑡7,22, 𝑎22, 𝑡22,12,
𝑠12, 𝑡12,21, 𝑎21, 𝑡21,11, 𝑠11, 𝑡11,19, 𝑎19, 𝑡19,10, 𝑠10, 𝑡10,16, 𝑎16,
𝑡16,9, 𝑠9, 𝑡9,13, 𝑎13, 𝑡13,1, 𝑒1], and each traffic is characterized
by a single 5-tuple:

𝑡7,22 = 𝑡22,12 = (192.168.1.∗, 130.10.0.4, ∗, 80, TCP)

𝑡12,21 = 𝑡21,11 = 𝑡11,19 = 𝑡19,10 = 𝑡10,16 = 𝑡16,9 =

(220.124.30.1, 130.10.0.4, ∗, 80, TCP)

𝑡9,13 = 𝑡13,1 = (220.124.30.1, 130.10.0.1, ∗, 80, TCP)

Note that the source IP address is modified after 𝑓1 crosses
the NAT 𝑠12, while the destination IP address is changed by
the load balancer 𝑠9. For flow 𝑓1 we have 𝜋( 𝑓1)=[𝑎22, 𝑠12,
𝑎21, 𝑠11, 𝑎19, 𝑠10, 𝑎16, 𝑠9, 𝑎13, 𝑒1]. Moreover, we have, for
example, 𝜏( 𝑓1, 𝑎19) = 𝜏( 𝑓1, 𝑠9), 𝜏( 𝑓1, 𝑎18) = 𝑡0, 𝜈(𝑎22, 𝑓1) =
𝑠12, 𝜈(𝑠11, 𝑓1) = 𝑎19, and 𝜈(𝑎13, 𝑓1) = 𝑒1. Given two flows
𝑓1, 𝑓2, 𝑓1 is said a subflow of 𝑓2, written 𝑓1 ⊆ 𝑓2, if 𝑓1 and 𝑓2
pass through the same list of nodes and for each one of such
nodes the ingress traffic of 𝑓1 is a subset of the ingress traffic
of 𝑓2, i.e., 𝜋( 𝑓1) = 𝜋( 𝑓2) and ∀𝑛 ∈ 𝜋( 𝑓1).𝜏( 𝑓1, 𝑛) ⊆ 𝜏( 𝑓2, 𝑛).

D. Network Security Requirements model

The NSRs for a SG include a default behavior D, which
is an element of the set {blacklisting, whitelisting, rule-
oriented-specific, security-oriented-specific}, and a set of spe-
cific NSRs, 𝑅𝑠 . Each 𝑟 ∈ 𝑅𝑠 is expressed in medium-level
language as a pair 𝑟 = (𝐶, 𝑎). C is a condition and 𝑎 is the
action that must be performed on the flows that satisfy 𝐶.

Each condition C is a predicate similar to the
ones defined for modeling packet classes, i.e.,
(C=IPSrc, IPDst, pSrc, pDst, tPrt). The predicates IPSrc
and pSrc specify the traffic sources the requirement refers
to. Instead, the predicates IPDst, pDst, and tPrt specify
the traffic destinations and the protocol the requirement
refers to. A flow 𝑓 = [𝑒𝑠 , 𝑡𝑠,𝑎, ..., 𝑡𝑘,𝑑 , 𝑒𝑑] satisfies 𝐶 if the
following three conditions are satisfied: 1) its source and
destination endpoints 𝑒𝑠 , 𝑒𝑑 have IP addresses matching
IPSrc and IPDst respectively, i.e., 𝛼(𝑒𝑠) ⊆ 𝐶.IPSrc and
𝛼(𝑒𝑑) ⊆ 𝐶.IPDst; 2) its source traffic satisfies IPSrc
and pSrc, i.e., 𝑡𝑠𝑎 ⊆ (𝐶.IPSrc, ∗, 𝐶.pSrc, ∗, ∗); 3) its
destination traffic satisfies IPDst, pDst, and tPrt, i.e.,
𝑡𝑘𝑑 ⊆ (∗, 𝐶.IPDst, ∗, 𝐶.pDst, 𝐶.tPrt). Let then 𝐹𝑟 ⊆ 𝐹 denote
the set of flows that satisfy 𝑟.𝐶.Therefore, it follows that all
the subflows of a flow that is in 𝐹𝑟 are in 𝐹𝑟 too.

Each action 𝑎 is one of the two elements of the set
𝐴𝑇 = {DENY,ALLOW}. If 𝑟.𝑎 = DENY, we say 𝑟 is an
isolation requirement, meaning that all flows that satisfy 𝑟.𝐶

are blocked, i.e., their destination is reached by no packet of
the flow, otherwise we say it is a reachability requirement,
meaning that at least one flow that satisfies 𝑟.𝐶 is allowed to
reach its destination. 𝑅𝑠 is assumed to be conflict-free.

Formally, an isolation requirement 𝑟 can be expressed as

∀ 𝑓 ∈ 𝐹𝑟 . ∃𝑖. (𝑛𝑖 ∈ 𝜋 ( 𝑓 ) ∧ allocated(𝑛𝑖) ∧ deny𝑖 (𝜏 ( 𝑓 , 𝑛𝑖))) (13)

while a reachability requirement 𝑟 can be expressed as

∃ 𝑓 ∈ 𝐹𝑟 . ∀𝑖. (𝑛𝑖 ∈ 𝜋 ( 𝑓 ) ∧ allocated(𝑛𝑖) =⇒ ¬deny𝑖 (𝜏 ( 𝑓 , 𝑛𝑖))) (14)

Let us define 𝑅𝐷 as a set of requirements that represent, in
an explicit way, the default behavior when 𝐷 is blacklisting or
whitelisting. For each valid combination of 5-tuple elements
for which there is no requirement in 𝑅𝑠 whose condition
matches it, there is an element of 𝑅𝐷 , 𝑟 , such that 𝑟.𝐶 matches
it, and 𝑟.𝑎 = ALLOW if 𝐷 = blacklisting and 𝑟.𝑎 = DENY if
𝐷 = whitelisting. By construction, each element of 𝑅𝐷 does
not conflict with any NSR in 𝑅𝑠 . If 𝐷 is rule-oriented-specific
or security-oriented-specific, instead, we define 𝑅𝐷 = ∅.

Finally, we also define 𝑅 = 𝑅𝑠 ∪ 𝑅𝐷 .

V. MAXIMAL FLOWS COMPUTATION

The conditions expressed by (13) and (14), associated with
a NSR 𝑟 , depend on the set of flows 𝐹𝑟 . However, in order
to improve the efficiency of our methodology, it is possible
to consider only a subset of 𝐹𝑟 , which is smaller than 𝐹𝑟 but
equally representative: the set of maximal flows that satisfy
𝑟.𝐶. This set, denoted 𝐹𝑀

𝑟 , is defined as the subset of 𝐹𝑟 that
contains only the flows that are not subflows of any other flow
in 𝐹𝑟 , i.e. 𝐹𝑀

𝑟 = { 𝑓 𝑀𝑟 ∈ 𝐹𝑟 |� 𝑓 ∈ 𝐹𝑟 .( 𝑓 ≠ 𝑓 𝑀𝑟 ∧ 𝑓 𝑀𝑟 ⊆ 𝑓 )}.
From the definition of flow, it descends that the predicates 𝑛𝑖 ∈
𝜋( 𝑓 ) and deny𝑖 (𝜏( 𝑓 , 𝑛𝑖)) are true for a flow 𝑓 if and only if
they are true for all the subflows of 𝑓 . Therefore, the following
formulas are equivalent to (13) and (14) respectively:

∀ 𝑓 ∈ 𝐹𝑀
𝑟 . ∃𝑖. (𝑛𝑖 ∈ 𝜋 ( 𝑓 ) ∧ allocated(𝑛𝑖) ∧ deny𝑖 (𝜏 ( 𝑓 , 𝑛𝑖))) (15)

∃ 𝑓 ∈ 𝐹𝑀
𝑟 . ∀𝑖. (𝑛𝑖 ∈ 𝜋 ( 𝑓 ) ∧ allocated(𝑛𝑖) =⇒ ¬deny𝑖 (𝜏 ( 𝑓 , 𝑛𝑖)))

(16)
In fact, all the flows of 𝐹𝑟 that are not in 𝐹𝑀

𝑟 are subflows of
flows that are in 𝐹𝑀

𝑟 .
Through this definition, multiple flows that behave in the

same way (i.e., that cross the same node sequence and are
subject to the same changes) are grouped into a single maximal
flow, becoming their subflows. This concept represents an
important novelty with respect to our preliminary attempt [13],
where all models, including network functions and NSRs,
were defined considering packets rather than maximal flows.
Moving to maximal flows reduces the number of different
cases to be considered and, hence, also the number of con-
straints composing the models, to the minimum one. In fact,
the number of flows to be considered is minimized. Another
advantage of maximal flows is that their generation occurs
before the formulation of the MaxSMT problem, so that the
variables composing the flow model are not free when included
in the MaxSMT problem formulation, but they are already
assigned specific values. In this way, the number of free
variables is kept low, limiting the solution space to be searched
in the MaxSMT problem, and improving performance.

For each NSR 𝑟, 𝐹𝑀
𝑟 can be computed on the basis of the

transformation behavior of NFs, by means of Algorithm 1.
Initially, the set paths(𝑟, 𝐺𝐴) containing the paths of 𝐺𝐴

that satisfy 𝑟.𝐶 is computed. These are all the paths of 𝐺𝐴 with
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Algorithm 1 computation of 𝐹𝑀
𝑟

Input: a requirement 𝑟 , and an AG 𝐺𝐴, Output: 𝐹𝑀
𝑟

1: 𝐹𝑀
𝑟 = ∅

2: for each 𝑝 = [𝑛0, 𝑛1, ..., 𝑛𝑚+1 ] ∈ paths(𝑟 , 𝐺𝐴) do
3: 𝐹 ← {[𝑛0, 𝑡

𝑟
0,1, 𝑛1, true, 𝑛2, ..., true, 𝑛𝑚+1 ] }

4: for 𝑖 = 1, 2, ..., 𝑚 do
5: 𝐹 ← {𝑙 + [𝑏𝑖 ∧ 𝑏′

𝑖
, 𝑛𝑖 ] + 𝑙′ | 𝑙 + [𝑏𝑖 , 𝑛𝑖 ] + 𝑙′ ∈ 𝐹,

𝑏′
𝑖
∈ {I𝑎

𝑖
, I𝑑

𝑖
}}

6: 𝐹 ← {𝑙 + [𝑏𝑖 ∧ 𝑏′
𝑖
, 𝑛𝑖 ] + 𝑙′ | 𝑙 + [𝑏𝑖 , 𝑛𝑖 ] + 𝑙′ ∈ 𝐹,

𝑏′
𝑖
∈ {D𝑖 𝑗 }}

7: 𝐹 ← {𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1 ∧ T𝑖 (𝑏𝑖) , 𝑛𝑖+1 ] + 𝑙′ |
𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1, 𝑛𝑖+1 ] + 𝑙′ ∈ 𝐹 }

8: 𝐹 ′ ← {𝑙 + [𝑡𝑟
𝑚,𝑚+1 ∧ 𝑏𝑚+1, 𝑛𝑚+1 ] | 𝑙 + [𝑏𝑚+1, 𝑛𝑚+1 ] ∈ 𝐹 }

9: for 𝑖 = 𝑚, 𝑚 − 1, ..., 1 do
10: 𝐹 ′ ← {𝑙 + [𝑏𝑖 ∧ T−1

𝑖
(𝑏𝑖+1) , 𝑛𝑖 , 𝑏𝑖+1 ] + 𝑙′ |

𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1 ] + 𝑙′ ∈ 𝐹 ′ }
11: if 𝐹 ≠ 𝐹 ′ then
12: 𝐹 ← 𝐹 ′

13: goto line 4
14: 𝐹𝑀

𝑟 ← 𝐹𝑀
𝑟 ∪ 𝐹

15: return 𝐹𝑀
𝑟

end points 𝑒𝑠 , 𝑒𝑑 ∈ 𝐸𝐴 such that 𝛼(𝑒𝑠) ∧ 𝑟.𝐶.IPSrc ≠ false
and 𝛼(𝑒𝑑) ∧ 𝑟.𝐶.IPDst ≠ false. Each path is represented by a
list of nodes 𝑝 =[𝑛0, · · · , 𝑛𝑚+1], where 𝑛0 = 𝑒𝑠 and 𝑛𝑚+1 = 𝑒𝑑 .

For each path 𝑝, the elements 𝑓 ∈ 𝐹𝑀
𝑟 such that 𝜋( 𝑓 ) = 𝑝

are computed and added to the result set. This computa-
tion is performed iteratively. At each iteration, two sets of
lists 𝐹 and 𝐹 ′ of alternating nodes and packet classes are
computed. The first set 𝐹 initially contains only the list
[𝑛0, 𝑡

𝑟
0,1, 𝑛1, true, 𝑛2, ..., true, 𝑛𝑚+1] (line 3). In this list, 𝑡𝑟0,1=

(𝛼(𝑛0) ∧ 𝑟.𝐶.IPSrc, ∗, 𝑟.𝐶.pSrc, ∗, ∗) is the largest traffic
that satisfies the source components of 𝑟.𝐶, while the other
packet classes are set to true (i.e., the class of all packets).
Then, at each iteration, a forward traversal and a backward
traversal of the path 𝑝 are performed. In the forward traversal
(lines 4-7), each list in 𝐹 is progressively updated to take into
account the way the traffic is transformed by each NF, and it
is split into sub-lists that satisfy the homogeneity property of
flows: for each node 𝑛𝑖 of the path, the predicate 𝑏𝑖 , which
represents the ingress traffic of 𝑛𝑖 in the current list, is split
into the largest homogeneous subclasses of packets for node
𝑛𝑖 by intersecting it with the classes of packets I𝑎

𝑖
, I𝑑

𝑖
, and

𝐷𝑖 𝑗 , i.e., the classes that can be distinguished by the 𝑑𝑒𝑛𝑦𝑖
predicate and by the T𝑖 transformer respectively (lines 5-6).
In these formulas, the operator + means list concatenation.
Note that, for the packet filters in the APs, I𝑎

𝑖
and I𝑑

𝑖
are

unknown, because their configuration is not yet decided. For
these nodes, I𝑎

𝑖
and I𝑑

𝑖
are set respectively to true and false,

i.e., no splitting occurs. The lists resulting from this split are
then restricted through the conjunction of the predicate 𝑏𝑖+1,
which represents the egress traffic of 𝑛𝑖 , and T𝑖 (𝑏𝑖), i.e., the
result of the transformation of node 𝑛𝑖 on the traffic 𝑏𝑖 (line
7). Then, the flows computed in the forward traversal have
to be restricted in order to select only those that satisfy the
destination components of 𝑟.𝐶. This is done by the backward
traversal, which computes a new set of lists, 𝐹 ′, starting from
the set 𝐹 computed in the forward traversal. 𝐹 ′ is initialized
to contain each element of 𝐹, with its last traffic restricted

to the largest traffic that satisfies the destination components
of 𝑟.𝐶 (line 8). Here, 𝑡𝑟

𝑚,𝑚+1=(∗, 𝛼(𝑛𝑚+1) ∧ 𝑟.𝐶.IPDst, ∗,
𝑟.𝐶.pDst, 𝑟.𝐶.tProto). In the backward traversal (lines 9-10),
the predicates representing the ingress traffic of each node are
restricted by propagating the restricted versions backwards.
The procedure stops when, after the last iteration, the flows in
𝐹 and in 𝐹 ′ are the same. If not, a new iteration starts with
𝐹 initially containing the flows present in 𝐹 ′ at the end of the
previous iteration.

VI. FIREWALL ALLOCATION AND CONFIGURATION

Soft constraints are used to find the optimal firewall allo-
cation and configuration choices. They include free variables
representing the choices that the solver can make. Soft clauses
are defined so as to reach the two main optimization goals: 1)
to minimize the number of allocated firewalls; 2) to minimize
the number of rules for each allocated firewall. As free
variables are shared among all clauses, the optimal result is
reached for both goals at the same time. However, weigths are
assigned so as to give priority to goal 1).

For goal 1), as a firewall can be allocated in any 𝑎ℎ ∈ 𝐴𝐴,
a set of soft clauses is introduced to state that it is preferable
that in each 𝑎ℎ ∈ 𝐴𝐴 no firewall is allocated. This is expressed
by (17), where Soft( 𝑓 , 𝑐) stands for a soft clause with formula
𝑓 and weight 𝑐.

∀𝑎ℎ ∈ 𝐴𝐴. Soft(allocated(𝑎ℎ) = false, 𝑐ℎ) (17)

An indication about the value assigned to 𝑐ℎ will be provided
later on, after the other soft constraints have been presented.

For goal 2), the FP of the firewall that can be placed in
𝑎ℎ ∈ 𝐴𝐴 is characterized by a default action 𝑑ℎ and a set of
specific rules 𝑈ℎ .3 The rules 𝑢 ∈ 𝑈ℎ are the typical packet
filtering rules, internally represented as 𝑢 = (𝐶, 𝑎), where
𝑢.𝐶 = (IPSrc, IPDst, pSrc, pDst, tProto) and 𝑢.𝑎 ∈ 𝐴𝑇 =

{DENY, ALLOW}. Although this representation is similar to
the NSRs formalization, this does not mean that for each NSR
a single corresponding firewall rule is needed or is enough in
each firewall. A single firewall rule can be sufficient to enforce
multiple NSRs, while multiple rules in different firewalls could
be needed to enforce a single NSR, depending on the AG.

Given the potentially high number of FP rules that can be
configured for each firewall instance, limiting the number of
soft clauses that have to be generated to reach goal 2) is crucial
for achieving good performance of the method. This limitation
demands for a trade-off between accuracy and scalability.

For this reason, each default action 𝑑ℎ is determined before
solving the MaxSMT problem, choosing the value that would
minimize the number of rules needed to satisfy all the NSRs.
In order to determine this value for 𝑑ℎ , the only NSRs 𝑟 that
are relevant are those for which the set of maximal flows 𝐹𝑀

𝑟

contains at least a traffic flow that passes through the AP 𝑎ℎ
(i.e., such that (18) holds).

∃ 𝑓 ∈ 𝐹𝑀
𝑟 . 𝑎ℎ ∈ 𝜋 ( 𝑓 ) (18)

3The default action 𝑑ℎ has less priority than the rules in 𝑈ℎ , because it
is applied only if there is not any rule in 𝑈ℎ that matches the packet fields.
Besides, the action of each rule is the opposite of the default action.
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Let 𝑧𝑟 be the total number of 5-tuples composing the packet
classes 𝜏( 𝑓 , 𝑎ℎ) such that 𝑓 ∈ 𝐹𝑀

𝑟 and 𝑟 is a reachability
requirement for which (18) holds. Let instead 𝑧𝑖𝑟 be the number
of 5-tuples composing the packet classes 𝜏( 𝑓 , 𝑎ℎ) such that
𝑓 ∈ 𝐹𝑀

𝑟 and 𝑟 is an isolation requirement for which (18)
holds. If 𝑧𝑟 > 𝑧𝑖𝑟 , then 𝑑ℎ is set to ALLOW, otherwise to
DENY. This decision is consistent with the aim of reaching
an optimal solution. If the default action of each firewall is
determined in this way, specific policy rules are not needed
for the NSRs with the same action and the cardinality of the
possible rule set is consequently minimized. The result of this
decision is modeled by the wlst: 𝐴𝐴 → B predicate, which is
true for an AP 𝑎ℎ if the default action of the firewall allocated
on 𝑎ℎ is DENY. Another predicate related to the default action
is enforces: 𝐴𝑇 ×𝑅 → B. enforces(𝑑ℎ , 𝑟) is true if the firewall
default action 𝑑ℎ enforces requirement 𝑟 , i.e., if 𝑑ℎ = 𝑟.𝑎.

Then, given for granted this first criterion, it is necessary
to determine, for each 𝑎ℎ ∈ 𝐴𝐴, the set of all the rules that
potentially can be useful for the firewall allocated in 𝑎ℎ , i.e.,
the candidates for being included in 𝑈ℎ . These rules are called
placeholder rules. 𝑃ℎ is the set of all the placeholder rules
which are defined for a firewall in 𝑎ℎ , and each 𝑝𝑖 ∈ 𝑃ℎ is
represented as 𝑝𝑖 = (𝐶, 𝑎), as for the elements of 𝑈ℎ . After
having determined these rules, a soft clause is introduced for
each one of them, which is true if the rule is not included in
𝑈ℎ , thus getting the minimization of the cardinality of 𝑈ℎ .

Placeholder rules are determined by selecting each NSR 𝑟

that can influence a specific 𝑎ℎ ∈ 𝐴𝐴, and by considering the
possible ingress traffics of 𝑎ℎ in the flows that belong to 𝐹𝑀

𝑟 .
In particular, for each 𝑎ℎ ∈ 𝐴𝐴, let us define 𝑄ℎ as the set of
5-tuples for which a rule might be needed in a firewall placed
in 𝑎ℎ . For each requirement 𝑟 ∈ 𝑅, and each flow 𝑓 ∈ 𝑓 𝑀𝑟 ,
the 5-tuples composing the packet class 𝜏( 𝑓 , 𝑎ℎ) are in 𝑄ℎ

if the following two conditions are satisfied: 1) the flow 𝑓

passes through 𝑎ℎ , i.e., 𝑎ℎ ∈ 𝜋( 𝑓 ); 2) the default action 𝑑ℎ
assigned to the firewall allocated in 𝑎ℎ would not enforce 𝑟 ,
i.e., enforces(𝑑ℎ , 𝑟) is false. The set 𝑄ℎ is thus computed as
the smallest set of the 5-tuples, such that (19) holds.

∀𝑟 ∈ 𝑅. ∀ 𝑓 ∈ 𝐹𝑀
𝑟 . (𝑎ℎ ∈ 𝜋 ( 𝑓 ) ∧ ¬ enforces(𝑑ℎ , 𝑟 )

=⇒ (∀𝑞 ∈ 𝜏 ( 𝑓 , 𝑎ℎ) . 𝑞 ∈ 𝑄ℎ))
(19)

For each 𝑞 ∈ 𝑄ℎ , a placeholder rule is defined in 𝑃ℎ . Conse-
quently, the cardinality of 𝑃ℎ is the same as the cardinality of
𝑄ℎ . The action of each placeholder rule 𝑝𝑖 ∈ 𝑃ℎ is the opposite
of the default action 𝑑ℎ (i.e., 𝑝𝑖 .𝑎 = ALLOW if wlst(𝑎ℎ) is
true, 𝑝𝑖 .𝑎 = DENY otherwise). Instead, the conditions of each
𝑝𝑖 are defined over free variables. The values of these variables
are not predetermined, but they are automatically computed by
the solver. The computation of their values is bounded to the
hard constraints that are introduced in the MaxSMT problem.

Each placeholder rule will be then actually included in 𝑈ℎ

only if the optimizer engine will establish it is really necessary
in order to reach the optimal solution. The configured: 𝑃ℎ → B
predicate is introduced to represent this decision. It is true for
the placeholder rules that are included in 𝑈ℎ . To achieve the
optimization goal, the soft constraint (20) is thus exploited to
represent the ideal condition in which no firewall rule needs

to be configured.

∀𝑝𝑖 ∈ 𝑃ℎ . Soft(¬configured(𝑝𝑖) , 𝑐ℎ,𝑖) (20)

If at least a rule belonging to 𝑃ℎ is configured, then a
firewall instance must be allocated in 𝑎ℎ , because this rule
is needed to satisfy a security requirement. This condition is
expressed by the following hard constraint:

(∃𝑝𝑖 ∈ 𝑃ℎ . configured(𝑝𝑖)) =⇒ allocated(𝑎ℎ) (21)

If the consequent of this hard constraint is true, the soft clause
defined by (17) cannot be satisfied for that packet filter, which
needs to be allocated in the topology.

Since the priority of goal 2) is less than the priority of
goal 1), the weight of (17) must be higher than the sum of
the weights of the soft clauses (20) related to all the firewall
placeholder rules: ∑︁

𝑖:𝑝𝑖∈𝑃ℎ

(𝑐ℎ,𝑖) < 𝑐ℎ (22)

An additional set of soft constraints must be introduced, in
case of a security-oriented specific approach, to minimize the
number of allowed traffic flows. This objective is modeled
in the following way: (i) if the firewall has a whitelisting
configuration, the fields of the ALLOW rules should not
be configured with the wildcards feature, allowing only the
required traffic flows; (ii) if the firewall has a blacklisting
configuration, the fields of the DENY rules should exploit the
wildcards feature, so as to block the largest number of flows.
This objective is represented by soft clause (23) for the source
IP address, and similar clauses are defined for the other 5-tuple
fields. In these clauses, the 𝜎 : 𝐴𝐴 → Z function, defined in
(24), is exploited to model the sign of the weights.

∀𝑝𝑖 ∈ 𝑃ℎ .∀ 𝑗 ∈ {1, 2, 3, 4} . Soft(𝑝𝑖 .IPSrc 𝑗 = ∗, 𝜎 (𝑎ℎ) · 𝑐ℎ,𝑖, 𝑗 ) (23)

𝜎 (𝑎ℎ) =
{
−1 if wlst(𝑎ℎ)
+1 if ¬wlst(𝑎ℎ)

(24)

As this is not one of the two main optimization goals, its
priority is lower than the one for goals 1) and 2). Consequently,
the sum of the weights 𝑐ℎ,𝑖, 𝑗 of all these clauses must be
less than the weight 𝑐ℎ,𝑖 assigned to clause (20) for rule
minimization.

In addition to the clauses presented so far, some other hard
clauses are necessary, in order to finalize the configuration of
the FP of each firewall consistently with the allocation and
configuration choices. To achieve this purpose, it is necessary
to consider, for each AP 𝑎ℎ , the set of possible input traffics
𝑇ℎ = {𝜏( 𝑓 , 𝑎ℎ) | 𝑓 ∈ 𝐹𝑀

𝑟 for some 𝑟 ∈ 𝑅}. For each traffic
𝑡 ∈ 𝑇ℎ , two hard constraints are needed: one, to define how
the policy of the firewall in 𝑎ℎ must be configured, if it must
drop 𝑡, and another one to define how the same policy must
be configured if the firewall must not drop 𝑡 .

In order to formulate these clauses, the matchAll: 𝑃ℎ×𝑄 →
B and matchNone : 𝑃ℎ × 𝑄 → B predicates are introduced.
Given a placeholder rule 𝑝𝑖 ∈ 𝑃ℎ and a 5-tuple 𝑞 ∈ 𝑄,
the matchAll predicate returns true if the rule conditions
completely include the values of the 5-tuple fields, i.e., if
(25) holds. Instead the matchNone predicate returns true if
the packet classes expressed by the rule conditions and by the
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5-tuple fields are disjunct, i.e., if (26) holds.

matchAll(𝑝𝑖 , 𝑞) ⇔ 𝑞 ⊆ 𝑝𝑖 .𝐶 (25)

matchNone(𝑝𝑖 , 𝑞) ⇔ ¬(𝑞 ∧ 𝑝𝑖 .𝐶) (26)

Then, for each 𝑡 ∈ 𝑇ℎ , the two hard clauses in (27) and (28)
are stated. The allocated predicate in the antecedent of both
the implications is motivated by the fact that, if the firewall is
not effectively allocated, then the configuration of its policy
is meaningless.

allocated(𝑎ℎ) ∧ denyℎ (𝑡) =⇒ (a) ∨ (b)

(a) = wlst(𝑎ℎ) ∧ ∀𝑞 ∈ 𝑡 .(∀𝑝𝑖 ∈ 𝑃ℎ .(¬configured(𝑝𝑖) ∨ matchNone(𝑝𝑖 , 𝑞)))
(b) = ¬wlst(𝑎ℎ) ∧ ∀𝑞 ∈ 𝑡 .(∃𝑝𝑖 ∈ 𝑃ℎ .(configured(𝑝𝑖) ∧ matchAll(𝑝𝑖 , 𝑞)))

(27)

allocated(𝑎ℎ) ∧ ¬denyℎ (𝑡) =⇒ (a) ∨ (b)

(a) = wlst(𝑎ℎ) ∧ ∀𝑞 ∈ 𝑡 .(∃𝑝𝑖 ∈ 𝑃ℎ .(configured(𝑝𝑖) ∧ matchAll(𝑝𝑖 , 𝑞)))
(b) = ¬wlst(𝑎ℎ) ∧ ∀𝑞 ∈ 𝑡 .(∀𝑝𝑖 ∈ 𝑃ℎ .(¬configured(𝑝𝑖) ∨ matchNone(𝑝𝑖 , 𝑞)))

(28)

The truth of the antecedents directly depends on the conse-
quences of the implications represented by (15) and (16). If
the firewall is the function identified by (15) to block a specific
traffic flow, then it must be in whitelisting without any rule
that allows the 5-tuples of that traffic, or in blacklisting with
specific rules that block them. Instead, if the firewall should
allow a traffic because of (16), then it should be in whitelisting
with a specific allowing rule that blocks each 5-tuple of the
traffic, or in blacklisting with no rule that would block them.

A. Summary of MaxSMT problem formulation
Having described the problem modeling constraints in Sec-

tions IV and VI, here we summarize how they are used in the
formulation of the MaxSMT problem.

For what concerns hard constraints, on one side, for each
requirement 𝑟 , hard constraint (15) (for isolation) or (16) (for
reachability) is introduced to state that 𝑟 must be satisfied in
the AG enriched with the allocated and configured firewalls.
On the other side, for each network function in the AG, a set of
hard constraints is introduced to constrain how it can forward
flows. Different function types require different constraints,
as it has been discussed in Subsection IV-B. For example,
for each function in node 𝑛𝑖 that cannot drop flows, (6) is
introduced, while for each allocation place 𝑎ℎ where a firewall
can be allocated, (27) and (28) are introduced to define the
forwarding behavior of this firewall.

For what concerns soft constraints, for each allocation place
𝑎ℎ , (17) is used to minimize the number of allocated firewalls,
while constraints (20) are used to minimize the number of
rules in each allocated firewall, and constraints (23) to prefer
aggregate rules. The weights of soft constraints are decided
so as to satisfy constraints (22) and (24). For each allocation
place 𝑎ℎ , the additional hard constraint (21) is introduced in
order to require that a firewall is allocated in 𝑎ℎ only if the
solution includes at least one configured rule in it, along with
the hard constraint (4), which forces the allocation of firewalls
in the positions where the administrator necessarily requests
the presence of a firewall.

The MaxSMT solver is fed with all these hard and soft
constraints, and it computes the optimal solution if a correct
one that satisfies all the hard constraints can be found. In par-
ticular, the values of the allocated and configured predicates

respectively provide information about the APs where firewalls
have been allocated and the rules that have been configured
in their rule sets. Additionally, the values that the solver has
assigned to the free variables composing the configured rules
indicate how the 5-tuple-based conditions and the actions of
the rules must be set up in each allocated firewall.

The optimality of the problem solution can be proved under
the assumption that the MaxSMT solver is correct:

Theorem VI.1. If a solution 𝑠 of the MaxSMT problem exists,
and 𝑠 allocates 𝑛 firewalls, then, the problem does not admit
another solution 𝑠′ that allocates 𝑛′ > 𝑛 firewalls.

Proof. By contradiction, let us assume that 𝑠′ exists. The sum
of weights of 𝑠’s true soft constraints is 𝑐ℎ ( |𝐴𝐴 |−𝑛)+𝛿, where
𝑐ℎ ( |𝐴𝐴 | −𝑛) is the contribution from soft clauses (17) and 𝛿 <∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖) the one from soft clauses (20). Similarly, the

same sum for 𝑠′ is 𝑐ℎ ( |𝐴𝐴 |−𝑛′)+𝛿′, with 𝛿′ <
∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖).

As both 𝑠 and 𝑠′ are solutions of the problem, their sum of
weights of satisfied soft clauses must be the same, i.e.

𝑐ℎ ( |𝐴𝐴 | − 𝑛) + 𝛿 = 𝑐ℎ ( |𝐴𝐴 | − 𝑛′) + 𝛿′

which implies 𝑐ℎ (𝑛′−𝑛) = 𝛿′−𝛿. From 𝛿 <
∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖) and

𝛿′ <
∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖), we have also (𝛿 − 𝛿′) < ∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖).

Then, 𝑐ℎ (𝑛′ − 𝑛) <
∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖) and, since 𝑛′ > 𝑛, we have

𝑐ℎ ≤ 𝑐ℎ (𝑛′ − 𝑛) <
∑

𝑖:𝑝𝑖 ∈𝑃ℎ
(𝑐ℎ,𝑖), which contradicts (22). �

A similar theorem can be proved for the minimization of
the number of rules.

From what concerns correctness, we do not present a formal
proof, which would be too complex, but we provide its
intuition. The solver correctness assumption implies that, if
a solution is found, it is formally guaranteed to satisfy all
the hard constraints of the problem. Of course, we can prove
that the solution is correct, as long as we can prove or assume
that the hard constraints of the problem presented in this paper,
which are first order logic formulas, imply correctness. Specif-
ically, this holds provided that the hard constraints modeling
the possible forwarding behavior of network functions and the
possible traffic flows are a correct representation of reality.
About this point, it is worth mentioning that in literature there
are approaches, such as [38], that can extract a formal model
of the forwarding behavior of a virtual function automatically
from a behavioral representation expressed in a high-level
programming language like Java. Using these approaches, it is
possible to get high confidence about adherence of the models
to the real function behavior.

VII. IMPLEMENTATION AND VALIDATION

We implemented the methodology proposed in this article
by means of a Java framework, which exploits the APIs offered
by the z3 solver [39] to formulate and solve the MaxSMT
problem. The code is publicly available at the following link:
https://github.com/netgroup-polito/verefoo/tree/Budapest. The
framework is accessible through its REST APIs, so that it
can be exploited by external tools as a component of a more
complex architecture. In particular, we tested its interaction
with some NFV and cloud orchestrators, such as Open Baton
and Kubernetes [40].
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Fig. 5: Scalability for increasing number of Network Security Requirements

The framework has been validated in different ways: on
synthetically generated networks, to prove the scalability of
the approach (Subsection VII-A), and on topologies inspired
by production networks, to validate its feasibility in realistic
and complex environments (Subsection VII-B). It has also
been compared to the state-of-the-art approaches and to our
preliminary approach [13] (Subsection VII-C). Finally, the
optimization provided by our approach has been evaluated
(Subsection VII-D). All the MaxSMT instances have been
solved on a machine with an Intel i7-6700 CPU at 3.40 GHz,
32GB of RAM, and z3 version 4.8.5.

A. Scalability validation

The scalability of the approach has been evaluated vary-
ing the follwing factors: the number of APs where firewall
instances can be allocated, the number of NSRs that must
be fulfilled, and the enforceability of the MaxSMT problem.
The results have been analyzed also in relation to the number
of constraints of the MaxSMT problem and the number of
maximal flows to be computed. They have also been compared
with those of our preliminary approach [13].

1) Scalability versus number of APs and NSRs: The charts
in Fig. 4 and Fig. 5 present the results of a series of tests
performed to evaluate scalability versus number of APs and
NSRs. For each test case with a given number of APs and
NSRs, 100 runs have been executed. For the same test case,
runs are differentiated only by the IP addresses that are
assigned to the network nodes, while all the other parameters
(e.g., topology of the AG, types of NSRs) are kept the

same. This choice is motivated by the way z3 manages the
integer theory; the results are, in fact, different in terms of
computation time, according to the integer numbers that are
introduced in the clauses of the MaxSMT problem.

The AGs that have been exploited for scalability validation
have been synthetically generated as extensions of the AG
illustrated in Fig. 2. The number of end points and middle-
boxes is properly adapted to the number of APs and NSRs
that characterize each test case. However, the middleboxes are
functions that do not modify the received packets, so that the
focus of the validation is kept only on the efficiency of the
z3 formulas related to allocation and automatic configuration
of firewalls on one side, and on security requirements, on the
other side. Moreover, the NSRs considered for the tests are
defined using the security-oriented specific approach, which
is the worst case because it introduces the biggest number
of soft constraints in the MaxSMT problem. For each test
scenario, half of the requirements are isolation properties, and
half are reachability properties. All tests refer to cases for
which all NSRs can be enforced. This choice is motivated by
the consideration, confirmed by our experiments, that this is
the worst case.

Fig. 4a and Fig. 5a show the peak memory usage that is
required to build the variables and constraints of the MaxSMT
problem by using the z3 Java APIs. This may be a critical
parameter for the solver, which is highly memory-demanding.
However, even in the worst case considered, the amount of
memory that is required is inferior to 19 MB. Consequently,
this result shows that our framework can work without any
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worrisome limitation due to memory.
Fig. 4b and Fig. 5b show the average computation time

of each test case. From these two charts, the most important
result is that, even though the MaxSMT problem belongs to
the NP-complete class in terms of computational complexity,
the computation time does not increase exponentially. This
achievement is valid for the scalability both versus the number
of APs and versus the number of NSRs. According to such
results, the framework can manage AGs with up to 100 APs
and 100 NSRs in less than 200 seconds (for each test case, the
total number of nodes is two times the number of the APs,
but higher nodes to APs ratios do not require significantly
greater resources). This result can be motivated by three
reasons. First, and most importantly, NP-completeness only
implies exponential time for the worst case, but the actual time
for solving a MaxSMT instance is often less than the worst
case time, also depending on which theories are used in the
formulas [37]. Second, we have defined models that capture all
the required aspects, but avoiding excessive complexity in the
actual SMT problem to be solved (e.g., avoiding redundancy
in variables and constraints, avoiding quantifiers, and solving
maximal flow computations separately). Leveraging this trade-
off between expressiveness and complexity was a key factor
that enabled the achievement of such scalability results. Third,
state-of-the-art solvers like Z3 employ internal strategies that
are quite efficient in exploring the solution space [39].

Fig. 4c and Fig. 5c show the value distribution of the
computation time measures by means of whisker plots; the
number of NSRs is fixed to 100 in Fig. 4c, and the number
of APs is fixed to 100 in 5c. Analyzing the whisker plots, it
is possible to state that the distribution of the values is mostly
gathered between the first and the third quartiles. The number
of values that are outside this interval is really low. Another
consideration is that the average value is almost identical to
the median value: this also proves that the number of outliers,
which would make the average much bigger than the median,
is almost null.

In Fig. 4b, 5b, 4c, and 5c, a baseline (red dotted horizontal
line) is introduced, in order to have a reference: it is the
Deployment Process Delay (DPD) introduced by a well known
orchestrator (Open Source MANO) for deployment. DPD is
the time the orchestrator takes to deploy and instantiate a VNF
within an already booted VM and setup an operational network
service. According to [41], this time is 134ms. The figures of
our experiments show that the time taken by our framework
to automatically allocate and configure firewalls in SGs with
up to 100 APs and with up to 80 NSRs does not exceed the
DPD, so being acceptable even in highly dynamic situations.

2) Scalability versus enforceability: All the MaxSMT prob-
lems that were employed for the previous scalability validation
could be solved, i.e., there always existed a solution that
could satisfy all their hard constraints. Here we study the
cases of non-enforceability, i.e., when some NSRs cannot be
successfully refined into the firewall allocation scheme and
configuration. For example, there may not be enough APs in
the logical topology represented by the AG. New tests have
been run to assess how memory usage and computation time
change for these cases. These tests were carried out under the

TABLE V: Number of hard and soft constraints

APs 20 40 60 80 100 20 40 60 80 100
NSRs 20 20 20 20 20 100 100 100 100 100
Hard 240 376 494 621 748 673 734 795 923 1037
Soft 117 164 229 285 341 315 434 562 634 720
Total 357 540 723 906 1089 988 1168 1357 1557 1757

same conditions that have been previously explained for the
tests related to Fig. 4, with the difference that the topology is
built so that no solution can be found by the MaxSMT solver.
The memory usage is the same as the one shown in Fig. 4a,
because it is determined by the set of variables and clauses,
depending on the graph size, which is the same. Instead, the
computation time required to manage non-enforceability cases
is way less, as shown in Fig. 6a. More precisely, managing
non-enforceability cases requires a computation time that is
two magnitude orders less than the other cases, under the
same dimension of the network and the same NSRs set. This
outcome was expected, as state-of-the-art MaxSMT solvers
like z3 usually can efficiently find out if no solution exists to
satisfy the constraints of a certain problem [39]. This feature
is beneficial to our approach, as the user of the framework
can know in really fast times if a solution of the problem can
be found, or if the specified NSRs cannot be refined into a
correct firewall configuration.

3) Scalability versus number of MaxSMT constraints: A
central factor in assessing the scalability of the approach is
the number of constraints composing the MaxSMT problem.
Their number is strictly dependent not only on the numbers
of APs and NSRs, but also on the way the formal models are
used for the definition of the MaxSMT problem. Therefore,
validating the approach with respect to this factor contributes
to validating the impact of formalization on performance.
After all, defining formal models with a trade-off between
expressiveness and performance has been a main motivation
behind the formulation proposed in this paper.

The results of the scalability tests related to the number
of constraints are presented in Fig. 6b. This chart shows the
average computation time, on 100 iterations, for ten different
combinations of numbers of APs and NSRs. The number of
constraints composing the MaxSMT problem corresponding
to each combination is reported on top of each symbol in the
plot lines. The information about the number of constraints is
enriched by TABLE V, where the exact division between hard
and soft constraints is included.

From the results depicted in Fig. 6b, it can be observed that
the number of soft and hard clauses required for generating
the use case with 20 NSRs and 100 APS can be solved
by z3 in around 50 seconds. Instead, it requires almost 200
seconds to obtain the result for the use case with 100 APs
and NSRs. The former case is characterized by 748 hard and
341 soft constraints, while the latter by 1037 hard and 720
soft constraints. From the relative increases of the two clause
categories, it derives that soft constraints have a bigger impact
then hard constraints on the performance of the methodology.
This result was expected, because soft constraints are relaxable
and therefore the MaxSMT solver has the faculty of deciding
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Fig. 6: Other tests related to the scalability validation

TABLE VI: Test results for GÉANT and Internet2 AGs

GÉANT AG Internet2 AG

Number of vertices 49 53
Number of end points 19 18

Number of APs 11 17
Number of directed links 86 80

Number of NSRs 50 50
Number of flows 106 201

Average path length (vertices) 22 31
Average computation time (s) 32.77 144.27

whether to satisfy each one of them, thus increasing the
dimension of the overall solution space. These clauses are also
the ones where the highest number of free variables appear.
Instead, all hard constraints must be satisfied, so the solver is
simply in charge of checking if the variable assignments are
compatible with those clauses.

4) Impact of maximal flows computation time: All the tests
that have been carried out so far envision both the application
of the maximal flows algorithm, discussed in Section V, and
the resolution of the MaxSMT problem to output the firewall
allocation scheme and configuration. However, interesting
considerations can be taken by evaluating the performance of
the former separately from the latter, so as to understand the
scalability of the code that implement the flow algorithm.

The results of the scalability tests related to the maximum
flows algorithm are presented in Fig. 6c. This chart shows the
computation time, averaged on 100 iterations, for ten different
combinations of numbers of APs and NSRs. The number of
maximal flows corresponding to each combination is reported
on top of each symbol in the plot lines. From these results,
it is clear how the time required for the computation of the
maximal flows is negligible with respect to the time needed
for solving the MaxSMT problem. For example, when the
network is composed of 100 APs and 100 NSRs must be
enforced, the total time required by the framework is 166s, but
the computation of the maximal flows only takes a minimum
fraction of that time, i.e., 0.338s. Therefore, the impact of this
algorithm on performance is minimum. At the same time, it
allows bringing over all the advantages showed in Section V.

5) Comparison with preliminary approach: The perfor-
mance of the proposed methodology has been also compared
with the one of the preliminary version of this work [13],
which was not based on the computation of maximal flows and
was characterized by very different formal models and con-

straints of the MaxSMT problem. Fig. 6d reports the average
computation time over 100 iterations, for both approaches, for
progressive numbers of APs and NSRs. From these results,
it is evident that the new approach presented in this article
improves the performance by at least one magnitude order in
all the evaluated test cases.

B. Validation on production network topologies
The framework has been also validated with GÉANT and

Internet2, two AGs inspired by the production networks4.
In comparison with the synthetic topology exploited in the
scalability tests, the two graphs representing these topologies
have a much more complex and ramified structure. This
characteristic has some critical consequences: not only the
number of middleboxes that each traffic flow has to cross to
reach the destination is higher, but also the number of traffic
flows that satisfy the conditions of the same NSR is higher.

With the aim to verify that the NSRs are correctly enforced
by the computed solution, we have used the Mininet emulator
to instantiate the two use cases in a controlled environment.
The tests made on the Mininet emulation confirmed that all
NSRs are satisfied, as expected.

TABLE VI reports the main characteristics of the two AGs
and the average time which is required, out of 100 runs,
to compute the firewall allocation scheme and configuration,
when the number of NSRs is set to 50 (this is a reasonable
number with respect to the size of the end point set). The
number of APs is low with respect to the total number of
vertices and links. A first reason for it is that these topologies
have been built directly as AGs, with the APs placed only
in specific positions inspired from the GÉANT and Internet2
features. A second reason is that in these AGs links are
bidirectional, so each bidirectional link counts as two directed
links. More detailed information about the exact topologies of
the two AGs and the set of NSRs that have been exploited for
these tests is provided in the supplemental material.

The computation time required for the Internet2 AG is
higher than that taken for the GÉANT AG, because in the
former case the number of possible paths between any pair
of end points and, consequently, also the number of traffic
flows, is higher. However, in both cases, the achieved result
is satisfactory, considering that it is much less than the time
needed for a manual configuration and that this automated
approach avoids human errors.

4https://geant3plus.archive.geant.net/, https://www.internet2.edu/
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TABLE VII: Comparison with most related approaches (features versus scalability)

Approach Network Allocation Configuration Formal Optimization Scalability
[7] Traditional X X X(with [14]) X No Info
[8] Traditional X X X X No Info
[9] Traditional X X X X 10 devices - No info

[10] Both X(SG) X X
X(allocation: minimize deployment cost,

and maximize security and usability) 20FW - 80s

[12] Virtual X(SFC) X X X 20 devices - 4s
[15] Traditional X X X X No Info
[16] Both X X X X 5FW - 50s
[31] Both X(SFC) X X X No Info
[30] Both X(SG) X X X(allocation: minimize rule set cardinality) 60FW - No Info

Our approach Both X(SG) X X
X(allocation & configuration: minimize

number of FWs and of rules) 100FW - 90s

C. Comparison with state-of-the-art approaches

TABLE VII shows a comparison of our approach with the
most related state-of-the-art approaches available in the litera-
ture. The table compares the following main features of each
approach: “Network” specifies if the approach can work only
on traditional physical networks, only on virtual networks, or
on both types; “Allocation” specifies if the approach has the
capability of computing the firewall allocation scheme (on a
SG or on a SFC); “Configuration” specifies if the approach has
the capability of computing the firewall configuration rules; 4)
“Formal” specifies if the approach is formal; 5) “Optimization”
specifies if the approach finds an optimized solution and with
which criteria; 6) “Scalability” reports the maximum size of
the problem (in terms of number of firewalls) the approach
has been tested on, and the computation time required by it
for computing a solution in a network of that size, if they are
provided by the related paper.

The table confirms our previous discussions in Section
II and III-D, i.e., that no other existing approach jointly
computes the firewall allocation scheme and the configuration
starting from a provided SG, as we do. Also, no prior work
achieves all the three features of full automation, optimization,
and formal correctness, with the exception of [10], which,
however, supports only the automatic generation of the firewall
allocation scheme, without computing the configuration of
each allocated instance, and it pursues different optimization
goals. Finally, as we already discussed, even no combination
of existing approaches can be used to obtain automatically the
same results that our approach can obtain.

For these reasons, there is no alternative equivalent ap-
proach to which we can compare the performance of our
tool. Nevertheless, it may be interesting to make a rough
comparison between the scalability data reported by the other
approaches and our data (the “Scalability” column of TABLE
VII). Our framework proves to be competitive with respect
to the other relevant works in terms of scalability, especially
considering the added value of the results achieved. Many
existing approaches, such as [7], [8], and [15], do not provide
any information about the size of the networks on which
the approach has been tested or the computation time. Other
approaches, such as [9], [10], [12], and [16], can scale up
to small sized networks (between 5 and 20 firewalls). An
approach that has been tested on bigger networks is [30].
However, even though it was tested on a distributed firewall

having up to 105 rules, the authors do not report the time taken,
so that the actual scalability remains unknown. In addition, the
huge number of rules reported in the paper may be due to the
fact that this approach does not support wildcards (∗) in rules.
Our method, instead, using wildcards, defines more powerful
rules, each one capable of representing many wildcard-free
rules. Finally, it is important to recall that the approach in [30]
solves a problem that is much simpler than our one, because it
cannot start from a given SG, but it generates, from scratch, a
network of firewalls that interconnect the given end points and
it assumes a simple pre-defined strategy to populate firewalls
with rules.

D. Evaluation of Optimization

The optimization that our methodology can achieve in terms
of number of allocated firewalls and number of rules has
been evaluated varying the size of the problem. Because,
as already discussed, there are no other existing automated
approaches that can obtain the same results, as a reference
we consider the configuration strategies introduced in section
III-D. However, in order to have a uniform target, we consider
all cases targeting a blacklisting approach. Specifically, we
consider (a) the worst-cost strategy that allocates a firewall in
each AP, with allow default action, and installs one deny rule
for each isolation NSR; (b) a more optimized strategy that,
for each isolation NSR, allocates a firewall with allow default
action in each AP that is closest to the source specified by the
NSR, with a rule that enforces the NSR.

Fig. 7a, Fig. 7b and Fig. 7c report, respectively, the total
number of allocated firewalls, the average number of generated
rules for each allocated firewall, and the total number of gener-
ated rules for varying numbers of NSRs and APs, considering
a number of NSRs that is twice as big as the number of APs.
In this evaluation, all approaches, including our own, adopt a
blacklisting target. Fig. 7a shows that our approach achieves a
relevant gain in terms of allocated firewalls, which increases
progressively with bigger topologies (and higher numbers of
NSRs), not only with respect to the worst-case strategy (a), but
also with respect to strategy (b). Looking at Fig. 7b and Fig.
7c, our approach achieves a good gain in terms of total number
of rules, while the average number of rules per allocated
firewall is lower for strategy (b). This is easily explained by the
fact that strategy (b) allocates many more firewalls. Note that,
because of the big difference between the results of strategy
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Fig. 7: Optimization tests, in comparison with configuration strategies

(a) and the other ones, the y-axis in Fig. 7b and Fig. 7c is in
logarithmic scale, to make this difference observable.

For each case analyzed for the tests whose results are
depicted in the previous figures, 50% of the NSRs are isolation
NSRs, the other ones are reachability NSRs. Additional tests
have been carried out to evaluate the impact of the NSR types
on optimization. Fig. 7d reports the optimization in terms of
total number of allocated firewalls, while considering the worst
case of the previous tests, i.e., keeping the numbers of APs
and NSRs respectively fixed to 50 and 100, but varying the
percentages of isolation versus reachability NSRs. In these
tests, we have also changed the target of our approach to
the security-oriented case, which is more complex than the
blacklisting one. Instead, the other reference strategies remain
as previously described, as they cannot support our security-
oriented mode. Therefore, the number of reachability NSRs
does not influence their results. From Fig. 7d, it is evident how
both strategy (b) and our method generate bigger allocation
schemes and rule sets when the number of isolation NSRs
is higher, but the increase for our approach is much more
mitigated than the one for approach (b). Finally, the behavior
of our method, when used in the more complex security-
oriented specific approach, has been proved to be similar to the
one characterizing the blacklisting approach. This result was
expected, because the minimization of the firewall allocation
scheme is always the primary optimization objective in our
method, whatever approach is employed.

VIII. CONCLUSIONS

We presented a new methodology to compute, in a fully
automatic way, the optimal allocation scheme and configu-
ration of packet filter firewalls that enforces a given set of
NSRs on a given SG, with formal correctness assurance. This
technique allows a service designer who wants to enrich a
SG with packet filters in order to enforce a set of NSRs in
an NFV environment, to avoid human errors, to save resource
consumption in the servers where the enriched SG will be
deployed, and to perform the enrichment operation rapidly
enough even with SGs with several tens of APs and with
several tens of NSRs. This is the first time a method featuring
all these properties has been proposed.

In the future, our purposes are to extend the presented
methodology to the allocation and auto-configuration of other
NSFs, such as web application firewalls, anti-spam filters

and intrusion detection systems, to further enrich the set of
security requirements which can be specified by the user of
the framework. Moreover, we are planning to integrate this
methodology in mitigation mechanisms, so that the security
orchestration is performed not only to satisfy user-specified
policies, but also as automatic reaction to cyber attacks.
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