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Abstract: This work focuses on analyzing acoustic emission (AE) signals as a means to predict failure
in structures. There are two main approaches that are considered: (i) long-range correlation analysis
using both the Hurst (H) and the detrended fluctuation analysis (DFA) exponents, and (ii) natural
time domain (NT) analysis. These methodologies are applied to the data that were collected from
two application examples: a glass fiber-reinforced polymeric plate and a spaghetti bridge model,
where both structures were subjected to increasing loads until collapse. A traditional (AE) signal
analysis was also performed to reference the study of the other methods. The results indicate that the
proposed methods yield reliable indication of failure in the studied structures.

Keywords: acoustic emission; long-range correlations; natural time analysis; heterogeneous materials

1. Introduction

Damage processes in heterogeneous material remains an open research problem.
Classical theoretical methods rely on treating the material as a continuum, where macro
parameters are regularized to facilitate the application of differential analysis, such as
using homogenization [1–3] or plasticity-inspired damage theories [4–6]. However, this
approach contradicts experimental evidence, which shows that the process is spasmodic
and has evident discontinuity patterns. Thus, even if these methods yield satisfactory
results in some instances, much rich information is also missed regarding the inherent
discontinuities that are involved in heterogeneous-material structures. In contrast, other
strategies focus directly on the information contained in the spatial-temporal distribution of
discontinuities. Probably, the first one is the inspiriting Bundle Model that was proposed by
Daniels, 1945 [7] and nowadays explored by Hansen & Prhadhan, 2015 [8]. This approach
essentially consists of a set of thin rods (a “bundle”) with random resistance levels that
are subject to crescent loads. The evolution of the damage within the set is represented by
the number of rods breaking with time, indicating the system’s behavior as it approaches
catastrophic failure. Other inherently discrete methods that include the possibility of
failure include meshfree methods, peridynamics, and the discrete element method. For an
excellent revision regarding these approaches, refer to Jenabidehkordi, 2019 [9].

Acoustic emission (AE) techniques have been developed since the 1940s to monitor
damage processes in structures, especially those that are built from heterogeneous mate-
rial [10]. It consists of detecting the elastic waves that are produced by abrupt changes
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inside the material (rupture, dislocation, among other causes) using sensors on the surface’s
structure. Each “waves’ source” is called an event. The register of an event in an AE sensor
is a signal or hit. Notice that there is no guarantee that an isolated signal informs of only one
event since the waves from different events can affect the sensor simultaneously. Damage
evolution is represented by the spatial-temporal distribution of the events, identified by
a series of global parameters that are calculated from these signals, the most popular one
being called b-value. This parameter could be related to the fractal dimension where the
damage develops [11], being regarded in several works as a reliable precursor for the
collapse, such as in Carpinteri et al. [12–14]. Other parameters are also used with the same
goal. See, for instance, Alava and Zapperi 2006 [15] and Xu et al., 2021 [16].

There is an identifiable pattern in complex systems in several science fields as they
come close to instability, as illustrated by Wilson, 1979 [17] with the normalization group
theory. This method’s central idea is that when a system approaches its critical collapse, its
associated process has characteristics that do not depend on its geometry and boundary
conditions because all scales are activated. This fact is observed in economics [18,19],
solid-state physics [20], and mechanical systems [21], among other fields.

Several AE parameters present typical behavior that indicates when a system is close
to its critical state. In this work, we investigate the behavior of long-range correlations of
the temporal series that are studied using rescaled range (R/S*) analysis (or Hurst method-
H) [22] and detrended fluctuation analysis (DFA) [23]. In addition, we analyze the temporal
series using the natural time (NT) domain, a tool that was introduced by Varostsos et al.,
2001 [24] and subsequently employed by Potirakis et al., 2013 [25].

These two approaches are used to analyze AE signals in two examples from previous
works which employed classical AE techniques. First is a polymer plate that is reinforced
by glass fibers that was studied by Friedrich et al., 2020 [26]. The second was previously
analyzed by Tanzi et al., 2021 [27] and consisted of a spaghetti bridge structure that was
built from spaghetti sticks and monitored while the structure was loaded up to reach the
failure. The proposed parameters from the AE signals are of interest, not only because of
their potential as precursors of failure in the studied systems but also because they illustrate
their underlying principle: all systems present the same basic patterns when they approach
criticality. As shown in this work, this feature is an effective alternative to identify damage
in structures.

Notice that the purpose of the present work is to present the parameters that are related
to DFA, R/S*, and NT analyses, which could be used in a concomitant way with other
strategies of analysis that are used nowadays. The focus here is different from applying the
DFA, R/S*, and NT analyses to practical engineering problems. Our goal is to explore the
sensibility of the cited parameters as precursors of the critical regime.

2. Theoretical Background

This section presents a brief description of the global AE parameters that are discussed
here. The first one is the b-value, a classic approach that serves as a reference for the
analyses that are provided through the proposed methods. Of the latter, two are long-range
correlation measures: the detrended fluctuation analysis (DFA) and the rescaled range
(R/S*) or Hurst Analysis. The third one is the natural time approach.

2.1. b-Value Analysis

AE data analysis can be based on several criteria: signal amplitude, duration, rise time,
acoustic emission energy, and number of AE signals. One of the most used is the b-value,
which is calculated from the AE amplitude distribution data by the power-law relationship
between the number of events (N) that exceeds a given amplitude (A) and the amplitude of
these events [28]. This relationship is commonly known as Gutenberg–Richter [29]:



Appl. Sci. 2022, 12, 1980 3 of 23

N(≥ A) ∝ A−b (1)

Figure 1 illustrates how the b-value varies during a typical damage process. According
to Aki [11] and Carpinteri et al. [12,30], its physical meaning is related to the fractal
dimension (D) of the domain from which the cracks emanate through the expression
D = 2b.
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Figure 1. The b-value evolution and its physical meaning with respect to an acoustic emission signal.

At the beginning of the damage process, high b-values point out the occurrence of
many small-amplitude AE events that are caused by micro-crack formation distributed
throughout the whole structure’s volume, implying D = 3 and D = 1.5. As the damage
process evolves to produce the localization effect, i.e., events tend to emanate from a
preferential region and form a “cloud” of micro-fissures [26]. Thus, macro-crack nucleation
occurs, and the acoustic events tend to originate from a definite surface, i.e., D = 2 and
D = 1. In terms of Equation (1), this is interpreted as an increment of high-amplitude events.
The b-value is a classic parameter in structural monitoring, and therefore, it is used here as
a reference for evaluating the proposed indexes’ usefulness.

2.2. Long-Range Correlations Measures (DFA and Hurst)

Complex systems appear in many sciences, in topics as varied as heart rate dynamics,
DNA, neuron spiking, meteorology, human motor activity, seismic signals, and economic
time series [31,32]. These systems are characterized by distinct effects such as nonlinearity,
spontaneous order, and adaptation, among others, and can be studied through fractal prop-
erties [33,34]. In AE signals such as those in Figure 2, interpreting events as irregularities
in a time series, their occurrence can be identified through the series properties, such as
self-similarity and scale-invariance. For instance, long-range power-law correlations are
present if a time series exhibits scale-invariant features [35,36]. The strength or persistence
of such long-range correlations helps to unravel or explain data behavior [35]. There are
several methods to assess and quantify the strength of these correlations. This work uses
two: detrended fluctuation analysis (DFA) and rescaled range analysis (R/S*).
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Figure 2. Graphical illustration of the DFA steps. (a) Example of time series; (b) integrated series
divided into different size windows with their corresponding linear-fit trends; (c) log-log plot of
average fluctuations FDFA(n) versus window sizes n. The estimated scaling exponent α is the slope of
the least-squares fitted line; (d) representative examples of white (random), pink (fractal, long-range
correlated, slightly persistent), and blue (anti-persistent) time and power-spectrum series. (Adapted
from ref. [37]).

The DFA is a method that was initially proposed by Peng et al., 1994 [23] to detect
long-range correlations in time series with non-stationaries [34,36,38–40]. Briefly, DFA fits
a power law for estimating α, which is a measure of long-range correlations. It is calculated
by plotting in log-log axes the average fluctuations in the series, named FDFA, over different
sampling scales (window sizes): α corresponds to the angular coefficient in the linear fit of
FDFA versus windows size. Figure 2 exemplifies the application of the DFA method for a
time series in the form {x(i)}Nmax

i=1 , where Nmax is the total number of points in the series, in
the case of a signal series x(i) with Nmax = 1000, Figure 2a. The general steps for applying
the DFA are as follows [23,34,41]:

1. Integrate the series x(i), obtaining y(k) = ∑k
i=1 x(i)− 〈x〉, where k = 1, . . . , Nmax and

〈x〉 stands for the average of x, see Figure 2b.
2. Divide {y(k)}Nmax

i=1 into non-overlapping windows of equal length n.
3. For each n-size window, fit a least-squares line to the integrated signal y(k) (red line

in Figure 2b). The sequence of fitted lines constitutes the trend series yn(k). Figure 2b
shows the integrated series with three different window sizes, n = 250, n = 100, n = 50.

4. Calculate the average fluctuation FDFA of the integrated series y(k) around the trend

series yn(k). Explicitly, FDFA(n) =
√
(1/Nmax)∑Nmax

k=1 [y(k)− yn(k)]
2.

5. Repeat step 4 for a broad range of scales (sizes of n) to provide a relationship between
FDFA and n, i.e., FDFA(n).
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6. Plot log FDFA(n) versus log(n) (see Figure 2c). If there is an obvious linear relationship
between them, the slope of its least-squares fit estimates the scaling exponent α.

As explained in detail in [34,37], applying the DFA methodology yields both a measure
of persistence and an index of self-similarity in the time series. In short, α ≈ 0.5 indicates
that the signal is uncorrelated or non-similar in variability structure, as in the case of white
noise (Figure 3d). If the signal’s variability structures are long-range correlated, persistent,
or self-similar, i.e., if a small-amplitude signal sample is very likely to be followed by an
even smaller one (or similarly, if a large-amplitude sample tends to be followed by an even
larger one), one finds α > 0.5. That is the case with pink noise. Finally, if α < 0.5, signal
correlation is anti-persistent (the blue noise in Figure 3d): a small-amplitude sample is
more likely followed by a large-amplitude one, and vice-versa.
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Figure 3. Basic parameters involved in standard R/S* analysis: (a) a non-stationary time series x(i);
(b) Example of Hurst exponent considering n = 250, where 〈x〉 is the mean and S(n) the standard
deviation, X(i, n) are the local differences accumulated from the mean, and R(n) is the local range,
that is, the difference between maximum and minimum X(i, n) (adapted from [42]); (c) log-log plot of
the rescaled range R/S* versus window size n. The estimated scaling exponent H is the slope of the
least-squares fitting line; (d) representative examples of H value for a white (random), pink (fractal,
long-range correlated, slightly persistent), and blue (anti- persistent) time series.
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The so-called R/S* analysis is also a classic approach to evaluate the persistence or
self-similarity of a signal. This methodology was introduced by Hurst [22], an English
hydrologist, in an extensive series of empirical studies involving the flow of the Nile River.
Its basic idea is to determine how the range of the cumulative fluctuations depend on the
length of the data subset under analysis [42], being illustrated in Figure 3 for the same time
series that was discussed in Figure 2a, considering windows with size n = 250 [43]. As in
the DFA method, a time series of length Nmax is divided into equal-length windows with
size n. Next, for each window:

1. Take the mean 〈x〉n = (1/n)∑n
j=1 x(j) of the n-th window, marked as the solid red

lines in Figure 3b.
2. Sum the differences from the mean to get the cumulative total X(i, n) at each data

point, from the beginning of the period to any desired point, i.e.,
X(i, n) = ∑n

i=1(x(i)− 〈x〉n), Figure 3b.
3. Calculate the local range R(n) = maxX(i, n)−minX(i, n) as the maximum fluctuation

of the sum of the deviation from the mean, where maxX(i, n) and minX(i, n) are the
maximum and minimum values of X(i, n), respectively, and 1 ≤ i ≤ n (Figure 3b).

4. Take the standard deviation S∗(n) =
√
(1/n)∑n

i=1[x(i)− 〈x〉n]
2 over the window to

normalize the range relative to the input fluctuations in the series (dashed red lines in
Figure 3b).

5. Rescale the range, that is, calculate R(n)/S∗(n).
6. Finally, calculate the mean value of the rescaled range for all windows, nw (four in the

case of Figure 3b):

(R/S∗)n =
1

nw

nw

∑
m=1

Rm/S∗m (2)

For windows with different lengths, the new dimensionless value R/S* is well de-
scribed by the following empirical relation, as illustrated in Figure 3c:

(R/S∗)n ∼ nH (3)

In log-log axes, the slope of a least-squares regression is the estimate of the Hurst
exponent H.

The parameter H varies from 0 to 1 and has the same meaning as the α parameter
(Figure 3d): H ≈ 0.5 for the case of white noise, i.e., uncorrelated; H > 0.5 if the process is
persistent; and for an anti-persistent case, H < 0.5. Moreover, it also expresses the time
series’ fractal dimension (d) from the relation d = 2 − H, where 1 < d < 2 [44]. Thus, d→
1 for persistent correlations, i.e., the series tends to a line, whereas it tends to a plane for
anti-persistent correlations (d→ 2).

About the two methodologies described above, α and H, some considerations are in
order:

• Although this work is focused only on first-order fitting functions, as suggested in [43],
higher-order fitting curves can also be used.

• Window sizes must be limited to avoid significant linearity variations in (FDFA(n) −
n) and (R/S* − n). According to [45] and [46], the windows used here vary from
nmin = 10 for the smallest to nmax = Nmax/4 for the largest.

2.3. Natural-Time Analysis

The analysis in the natural time domain allows identifying when a complex system
enters a critical state [47]. For a time series comprising N events, the natural time χk of
the k-th event is defined as this event normalized, divided by the total number of the
considered events, χk = k/N [2], see Figure 4. On the other hand, natural time χk serves
as an index for the occurrence of the k-th event, Figure 4. It is, therefore, smaller than,
or equal to, unity (0,1) [44,48]. We denote by Qk a quantity proportional to the energy
of the individual k-th event, so its normalized energy is given by pk = Qk/∑N

n=1 Qn. In



Appl. Sci. 2022, 12, 1980 7 of 23

the specific case of AE, Qk could be the signal energy measured in defined form or also
the signal magnitude that will relate with the signal energy. In natural time analysis, the
evolution of the pair (χk, pk) is considered [44], see Figure 4.
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κ1 varies when a new k-th event occurs, once natural time χk changes from k/N to
k/(N + 1) and pk changes to Qk/∑N

i=1 Qi. The called order parameter κ1 may identify
the approach of the dynamical system to a critical point [48,49].

Moreover, the entropy (S) in natural-time domain is defined as,

S = 〈χ ln χ〉 − 〈χ〉 ln〈χ〉 ≡
N

∑
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∑
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pkχk

)
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(
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Notice that the entropy in natural time refers to numerical signal data and does not
directly relate to the property from traditional thermodynamics [50], being related to the
information theory instead [51]. Similar to the variance κ1, the entropy S is also a dynamic
parameter depending on the sequential order of events [52].

The third variance term that is considered in this method is the time-reversal entropy
Srev. It is obtained by reversing the order of the energy data (Qk), calculating S with this new
series, and then subtracting the entropy from the original series from the result. According
to Daniel et al., 2020 [53], this entropy parameter is the most sensitive one to the ordering
of the signal data.

It is possible to evaluate another order parameter, which describes the “average”
distance 〈D〉 between the curves of the normalized power spectrum of the events [48],

Π(ω) =

∣∣∣∣∣ N

∑
k=1

pkeiω k
N

∣∣∣∣∣
2

(6)

where ω = 2πφ (φ ∈ (0, 0.5) standing for the frequency in natural time) and the ideal
normalized power spectrum, that is the normalized power spectrum when the sequence is
in critical regime,

Π(ω)ideal =
18

5ω2 −
6 cos ω

5ω2 − 12 sin ω

5ω3 (7)
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if ω → 0 , Equation (7) simplifies to Π(ω)ideal ≈ 1 − 0.07ω2. When Π(ω) approaches
Π(ω)ideal from below, the critical state is indicated.

The application of the natural time method to analyze AE signals can be described
with aid from Figure 5. First, the events/hits are separated from the overall signal, Figure 5a.
Then, they are ordered in the natural time domain, that is, in terms of χk and Qk (Figure 5b).
Next, of the order parameters, κ1 and 〈D〉, and the entropy measurements S and Srev are
calculated with Equations (4)–(7). Finally, according to Varotsos [54–56], the dynamic
system is defined as in a true critical state (“tcrit” is achieved, see Figure 5c) if:

1. The “average” distance 〈D〉 becomes smaller than 10−2.
2. The variance κ1, when descending from above, approaches 0.070;

The entropies S and Srev are both smaller than the entropy of uniform noise
Su = (ln 2/2)− 1/4 ≈ 0.0966.
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Figure 5. Applying the natural-time method: (a) a typical time series from AE signals; (b) series
description in the natural time domain; (c) evolution of the order parameters and entropies in natural
time. tcrit indicates the point of convergence of the criteria, where the structure enters a critical stage;
(d) evolution of the normalized power spectrum until reaching tcrit.

Figure 5c shows an example of true coincidence, indicated as tcrit, where all the
criteria that are listed above are met. Furthermore, in Figure 5d, a typical sequence of the
normalized power spectrum is presented, where it is expected that as it approaches the
critical stage, the obtained data (dashed lines) reach the analytical solution (solid lines).
It has been observed that the instant of (true) coincidence may also be invariant with the
chosen threshold value [57]. This possibility will also be explored in the applications that
are described in Section 3.
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3. Applications
3.1. Three-Point Bending Test of a Glass Fiber-Reinforced Polymeric Plate
3.1.1. Test Description

The first AE test was performed with a glass fiber-reinforced polymer (GFRP) specimen.
GFRP is a resin compound with a glass fiber second layer, which provides high resistance
to traction, flexion, and impact. There are several ways to manufacture GFRP specimens,
see Ref. [58]. The one that was used here was laminated manually with fibers that were
randomly arranged within its matrix, Figure 6a, but some of its parts have their fibers
distributed along a preferential direction. This arrangement is similar to the one that was
used by the company “IMAP Indústria e Comércio” [59] in the making of suspended-
work baskets (Figure 6b). The material’s relevant properties are: modulus of elasticity
E = 74.5 GPa and mass density ρ = 1450.3 kg/m3.
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test conditions; (d) The ruptured specimen final configuration with a detailed view of the fracture.

The specimen was subjected to a three-point bending test (TPB). Figure 6c shows the
test configuration, including the position of the piezoelectric sensor for acquiring the AE
signals. For detailed information regarding the data acquisition for this application, refer to
Friedrich et al., 2020 [26]. Figure 6d shows the rupture configuration of the tested specimen,
with a detailed view of the fractured region.
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3.1.2. Results

Figure 7a depicts the AE activity during the TPB test in normalized time (time/timepeak,
where timepeak = 72 s is the peak loading time). Approximately 5050 signals above a 0.25 mV
threshold level were separated throughout the TPB test according to the methodology that
was described in [26]. The number of instantaneous and accumulated signals are pre-
sented in Figure 7b, accompanied by the evolution of the load (F/Fmax) and the AE energy
(EAE/EAEmax), which was computed as recommended in RILEM [60]. The results in the
same figure indicate a considerable correlation between the AE energy and the number
of accumulated signals. In addition, one identifies three distinct patterns throughout the
test. The first occurred in the region 0–0.26, where a few sparse avalanches were identified.
Their isolated nature suggests that they were probably caused by local effects, such as the
specimen accommodation on its supports, without a significant change in the specimen
stiffness. Within the 0.26–0.78 range, damage grew indistinctly throughout the structure,
with low-amplitude AE signals from no particularly discernible source. Finally, cracking
coalescence took place in the region 0.78–1.0. This was indicated by the increment in the
signal avalanches, which can be considered a precursor to the imminent collapse in the
structure.

The b-value was the reference parameter to the analyses that was performed through
all methods that were considered in this work, and its calculation is described in Figure 7a.
The test period was divided into 14 intervals, and the b-value was calculated for each of
them [26]. Instead of repeating the expected pattern that is shown in Figure 1, it decreased
locally in several opportunities as large-amplitude AE signals occurred throughout the
process. That suggests that the rupture happened in spasms that were uniformly distributed
along the whole process instead of abruptly, i.e., the energy dissipates in several small
events instead of being stored to a large amount and released at once in an explosive
collapse.

Figure 7c summarizes the corresponding AE signal long-range analysis according to
the DFA and R/S* methods. The DFA (blue points) and Hurst (pink points) exponents
were evaluated for each event throughout the normalized test period, considering a 25-
hit moving window, i.e., parameters were calculated at hit #25, based on a temporal
series starting at hit #1, then from #2 to #26, #3 to #27 and so on. The dotted black
transversal line separates the values of α and H indicating correlated/persistent signals
(>0.5) from noncorrelated/anti-persistent ones (>0.5). The responses from both methods
were similar. The persistence they indicated at the beginning of the test is probably related
to the specimen accommodation on its supports, as already pointed out in Figure 7a. Then,
both exponents tended about 0.5 until the normalized time 0.75 was reached. At this instant,
both exponents presented significant fluctuations, which indicates the spasmodic behavior
of the structure. That agrees with the findings in Skordas et al., 2020 [61], where the DFA
method yielded exponents of about 0.6 (persistent behavior) for seismic signals that were
acquired when large earthquakes were about to occur, then tending to 0.5 (random) after
they occurred.

The evolution of natural-time parameters versus normalized time is plotted in Fig-
ure 7d. For this analysis, we follow the same reasoning as [47] and [62], taking the energy
component (Qk) as equal to Amax,k

1.5, where Amax,k is the maximum amplitude of the sig-
nal, an approach commonly found also in seismology studies [63]. Calculation of Amax

1.5(t)
(with t denoting the conventional time) was performed hit by hit, i.e., every time a new
signal comes up, a new signal is included in the NT analysis, leading to the rescaling of the
(χk, Qk) time series and the recalculation of κ1, S, Srev and 〈D〉. The results are shown in
normalized time for easier identification of the possible entry point to a critical state, that
is, the instant when criticality conditions, as described in Section 2.2 [64,65], are fulfilled.
There are three such points that are indicated in Figure 7d. The first one occurred right
before a dense region of AE events, at normalized time 0.24, with an abrupt change in
the AE energy rate (see Figure 7b). The second was probably related to the consecutive
avalanches that were observed between normalized instants 0.42 and 0.52 (notice the in-
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crease of instantaneous hits in Figure 7b). Finally, there was a third and more extensive
period (0.5288–0.5939) where parameters converge, which indicates the imminent structure
collapse.
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Figure 7. (a) AE signals with b-value analysis; (b) Number of instantaneous signals, number of
accumulated signals, applied load, and accumulated energy versus normalized time. The first was
multiplied by 13 to maintain the same vertical scale for instantaneous and accumulated signals;
(c) Application of Hurst and DFA methods to the AE data; (d) NT analysis of the AE time series
with threshold values (Amax

1.5)Th = 0.25 mV. The following auxiliary horizontal lines were added:
κ1 = 0.070 (dashed red), 〈D〉 limit = 10−2 (dashed green), entropy limit Su ≈ 0.0966 (dashed blue).
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3.1.3. Discussion

(i) Considering the DFA and Hurst parameters, there is no discernible parameter trend
in Figure 7c to indicate criticality. These parameters’ behavior can be clarified with the
aid of Figure 8, illustrating the analysis of the exponents α and H for two signal samples,
for instants 0.24 and 0.82. There are two discernible regions for each dataset, and the blue
lines show their corresponding linear fits. However, this effect is masked if a single fit
is calculated for the whole dataset (red line). This is a crucial difference because the two
regions indicate different behaviors concerning time correlation: short-term correlations
are persistent, whereas long-term ones are anti-persistent. Similar effects can be found in
other works, such as Varotsos et al., 2003 [54], Lin et al., 2014 [66], and Silva et al., 2004 [67].
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Figure 8. Details of the Hurst and DFA exponents for (a) signal at normalized time 0.24; (b) signal at
normalized time 0.82.

To further explore this behavior, α was re-evaluated for short-term windows (n < 300)
and long-term ones (n ≥ 300), respectively designated αshort and αhigh. The corresponding
results are depicted in Figure 9, where a 100-point moving mean was added to (dotted
line) improve tendency visualization in each region, in the same figure the load evolution
(F/Fmax) during the simulation in black line is presented.
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Figure 9. DFA considering short-term (αshort) and long-term (αhigh) windows for the GFRP plate. The
load and AE signals out of scale.

The correlation force for the short-term windows tends to be persistent throughout the
entire test, increasing significantly between the normalized instants 0.78 and 0.88, which
correspond to intense AE activity as the structure approaches collapse. During the same
period, long-term correlation forces are nearly nil. This opposite convergence of αshort
and αhigh may indicate spasmodic behavior. A similar effect is also observed between
instants 0 and 0.24: initially, both αshort and αhigh have an approximated average of 0.7
until normalized instant 0.18. Then, αhigh falls within the noncorrelated range (<0.5) that
precedes an avalanche (see Figure 7a) with large-amplitude signals.

(ii) Regarding the natural time parameters that are presented in Figure 7d, it is neces-
sary to check whether the identified critical points represent “true coincidence”, i.e., not
only are all the criteria satisfied, but they are also invariant to the selected threshold. Ap-
plying the same methodology that is described in the previous section, two new threshold
values are applied to separate hits from the overall AE signals: those with amplitudes
that are higher than (a) 1 mV and (b) 2 mV. In the first case, the reconstructed time series
comprises of 2832 events, whereas the second one has 1164. The corresponding results
in natural time are given in Figure 10. Compared with Figure 7d, two critical points are
confirmed for all the thresholds: the ones approximately at normalized times 0.27 and
0.59. As for the third possibly critical point that is identified in Figure 7c, it is not an actual
critical point since it does not appear for the other two thresholds.

As mentioned earlier, the first critical state (0.27) is related to a dense region of AE
signals between 0.42 to 0.52 of the normalized time, see Figure 7a,b, where the stiffness of
the structure is affected as shown by the instability that is present in the load curve (see
Figure 7a). The second point (0.59) indicates the critical stage preceding structure failure,
which occurs about 30 s later. Additionally, κ1 tends to stabilize at nearly 0.07 for normalized
time 0.6, regardless of the selected three thresholds value for hit identification. That means
that the system has started to self-organize, an obvious prerequisite for failure [68].
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A second approach to performing the NT analysis is to consider Qk that equals the
acoustic emission energy EAE,k, as suggested in RILEM [60] and shown in Figure 11 for the
original dataset (5050 signals, 0.25 mV threshold). Since the methodology for calculating
the NT parameters is the same as in the case of Figure 10, these new data are presented
according to the same standards.
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In this case, we have four points of true coincidence. The first and second critical points
precede the occurrence of large avalanches, that is, regions of considerable AE activity. The
third point at 0.31 again indicates the approximation of a critical region (0.42, 0.52) of the
normalized time, as already mentioned in the previous approach. Finally, the last point
at 0.785 clearly represents the structure’s entry into a critical pre-failure stage. Thus, the
analysis of the natural time using the AE signal energy also presents as a valid amount of
energy (Q) to find the critical stages of the structure that are monitored by AE in the NT
domain.

In Figure 11, the true coincidence points 2 and 3 were monitored to evaluate the
behavior of the normalized power spectra Π(φ) versus the natural frequency (φ) relationship
that was obtained by analyzing the series of signals, in comparison with the ideal estimate
by Equation (7). For each point, we analyzed three normalized time instants prior to the
critical time being reached, black circles and black stars, respectively. It can be seen in the
results that are presented in Figure 12, that when approaching the point of true coincidence,
the curves that are obtained from the series of AE signals, and those that were theoretically
determined, approach from the bottom to the top. At the same time if we look at Figure 11,
we notice that the value of κ1 also approaches to 0.07, so both order parameters for criticality
converge.
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3.2. “Spaghetti” Bridge Model
3.2.1. Test Description

The same analysis methods that were proposed here were applied to another AE
dataset that was obtained from the spaghetti bridge that is depicted in Figure 13a. This
bridge was built in 2018 by undergraduate engineering students to take part in the contest
at the Engineering School of Federal University of Rio Grande do Sul (UFRGS), which
has occurred twice a year since 2004. Detailed information regarding the contest is given
in [69], and all the appropriate steps for acquiring the corresponding AE data are described
in Tanzi et al., 2021 [27].
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3.2.2. Results

The “Spaghetti” bridge model results throughout the loading test are shown in Fig-
ure 14. For a threshold level of 0.7 mV, the AE sensors detected 230 signals, Figure 14a.
These results appear in Figure 14b as the numbers of instantaneous and accumulated
signals, the loading evolution (F/Fmax), and the acoustic emission energy (EAE/EAEmax)
against the normalized time. For this test, signals occur nearly when the load increases,
indicating that their distribution depends explicitly on the loading pattern. Additionally,
up to t ≈ 0.6, signal counts grow at an approximately constant rate. Then, there is a sharp
increase in the number of signals for a brief period. After that, the signal counts grow once
again at a nearly constant rate but a faster pace. That agrees with the expected general
behavior for AE-based analysis methods, and this work seeks to confirm such a conclusion
through the methods that are presented in Section 2, as summarized in Figure 14.

The b-value parameter (Figure 14a) was calculated in [27] by separating the dataset
into packs of 25 signals, with five-signal overlaps between the successive packs. The sudden
coefficient changes at t ≈ 0.6 coincide with the avalanche that is observed in the signals
count, confirming this point as critical for the test in question.

The long-range correlation results for the spaghetti bridge appear in Figure 14c. The
calculation methodology is the same one that is used with the GFRP plate, but since this
test has yielded fewer signal samples, a 6-signals moving window was used to compute α
and H. Both parameters behave similarly until t ≈ 0.55, with values of about 0.9 indicating
persistent correlations. Then, they present significant local changes, most notably at normal-
ized instants 0.6, 0.65, and 0.79, with the Hurst exponent appearing as more sensitive to the
observed signal changes. Contrary to the GFRP plate case, no anti-persistent correlations
are observed, just strong long-range correlations with local instabilities for the points of
more significant AE activity.

Finally, the results for natural time analysis are presented in Figure 14d, considering
Qk = Amax,k

1.5 and using the same calculation method that was described for the GFRP
plate. A single coincidence point is identified at a normalized time 0.1206. If only the order
parameters for criticality (κ1 and 〈D〉) are considered, new convergence points are observed
at the normalized instant 0.54, which is close to the already discussed sudden rise in AE
energy at t ≈ 0.6 (Figure 14b), which was also identified through the b-value (Figure 14a).
The last convergence point occurs at t = 0.62, where the two exponents change behavior
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again until the structure collapses. Subsequent analysis can show that these results do not
change with respect to the amplitude threshold for identifying hits. Contrary to the GFRP
plate, however, there is no discernible coincidence point in the vicinity of the structure’s
failure.
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Figure 14. (a) The AE signals and corresponding b-values for the spaghetti bridge loading test, as
described in [27]); (b) The numbers of instantaneous signals, the number of accumulated signals, the
applied load, and the accumulated energy versus normalized time. The first was multiplied by 7 to
maintain the same vertical scale for instantaneous and accumulated signals; (c) The application of
Hurst and DFA methods to the AE data; (d) NT analysis of the AE time series (this figure’s format
follows that of Figure 7d).
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3.2.3. Discussion

(i) As in the first application, important information was omitted during the first
calculation of parameters H and α. For this reason, such a calculation was repeated
for different time scales to further evaluate these parameters’ usefulness in monitoring
structural damage.

Figure 15 illustrates H and α for signals that were identified at normalized instants
0.59 and 0.65. The red line indicates the overall linear fit for the data, whereas the fits for
each subset are shown in blue. The values for H and α are high for short-time ranges, i.e.,
high-frequency signals are persistent as expected from [48], whereas low-frequency ones
(n ≥ 400) are anti-persistent.
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Figure 15. Details of the Hurst and DFA exponents for (a) signal #84 at normalized time 0.59; (b) signal
#127 at normalized time 0.65.

Naming the DFA values for n < 400 e n ≥ 400 as αshort and αhigh, respectively, their
behavior throughout time appears in Figure 16, where the AE signals’ amplitudes are out
of scale. As in the first application, these parameters have opposite tendencies as a high-
AE-activity point is approached. While high-frequency correlations are always persistent,
low-frequency ones are persistent for noncritical periods, turning into anti-persistent
at critical points, such as at the normalized instant 0.6 and during the subsequent
avalanches.
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(ii) The natural time analysis of the spaghetti bridge’s AE results was also performed
using Qk = EAE,k, as shown in Figure 17a. Now, two possibly critical points are identified,
one at t = 0.4046 (F/Fmax = 0.3178) and the other at t = 0.6025 (F/Fmax = 0.4695), where
the latter is followed by significant changes in both the order parameters and the two
entropy metrics, anticipating the bridge collapse. Figure 17b depicts the normalized power
spectrum Π(φ) versus the natural frequency (φ) that was calculated for the AE signal (blue),
compared to its expected theoretical value (red). Once again, the criticality parameter Π(φ)
appears as a good predictor of critical stages throughout the test.
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4. Conclusions

This work focused on using time series methods to analyze acoustic emission data from
two experimental tests with different materials: (i) a fiber-reinforced polymer plate under-
going a three-point bending test; (ii) a spaghetti bridge model from an undergraduate-level
student loading contest. The time series analysis was carried out through two approaches:
calculating DFA and Hurst exponents to characterize long-range correlations and analysis
in the natural time domain. The purpose was to identify the possibility of using these
methodologies to predict the critical points or failure in the studied structures. From the
results, one concludes that:

• Both the Hurst and DFA exponents yielded very similar results, which indicate that
no high-order trends are present in the data.

• For both applications, the DFA parameter that was calculated for the whole dataset
was inconclusive. However, when considered separately, the low (αlow) and high
(αhigh) state levels indicated a critical region where one converged to extreme anti-
persistent correlations, and the other, to extreme persistent ones. That highlights these
parameters’ usefulness in indicating the criticality of the structure.

• The analysis in the natural time domain showed that the convergence of the order
parameters and the entropies could predict the structure’s entry in a critical stage,
whether it is calculated from the AE energy or from counting the ruptured samples.

• In both the analyzed examples it was possible to clearly perceive (see Figures 7, 9 and
11) the correlation between the critical interval that was determined by the DFA, R/S*,
NT, and the b-value analyses, from which the imminent increments in the acoustic
emission activity follow.

• The indexes that were analyzed here, among others used the b-value which led to
identifying when the damage process approaches a critical regime. In this situation, an
unstable behavior is imminent and it is characterized by an increment in the global AE
activity and in the amplitude of the AE signals. However, it is worth pointing out that
it may also happen that, after reaching a critical phase with a large emission of energy,
if the conditions of the damage continue to evolve in the structure, another stable
one follows, which can be followed by another critical one, etc. Therefore, reaching
a critical phase can always be correlated with local instability, but it is not always
necessarily correlated with global structural failure. See, e.g., Ref. [14].
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Nomenclature

N Cumulative number of events/hits
A Signal amplitude
Amax Maximum signal amplitude
b b-value parameter
D, d Fractal dimension
FDFA Average fluctuations in DFA
n Window size
α Angular coefficient of log FDFA x log n
Nmax Total number of points in the series
x A time series
y Integrate the time series
X Sum the differences from the mean in Hurst analysis
R Local range
S* Standard deviation
nw Total number of windows
H Hurst exponent
nmin Smallest window size
nmax Largest window size
χ Natural time
Q Energy of the individual event
p Normalized energy (Q)
κ1 Natural time χ’s variance
S Entropy in natural time
Srev Time-reversal entropy
<D> “Average” distance
ω Natural angular frequency
φ Frequency in natural time
Π Normalized power spectrum
Su Entropy of uniform noise
E Young’s modulus
p Mass density
αshort Short-term windows
αhigh Long-term windows
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