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ABSTRACT

Beneš networks represent an excellent solution for the routing of optical telecom signals in integrated, fully
reconfigurable networks because of their limited number of elementary 2x2 crossbar switches and their non-
blocking properties. Various solutions have been proposed to determine a proper Control State (CS) providing
the required permutation of the input channels; since for a particular permutation, the choice is not unique, the
number of cross-points has often been used to estimate the cost of the routing operation. This work presents an
advanced version of this approach: we deterministically estimate all (or a reasonably large number of) the CSs
corresponding to the permutation requested by the user. After this, the retrieved CSs are exploited by a data-
driven framework to predict the Optical Signal to Noise Ratio (OSNR) penalty for each CS at each output port,
finally selecting the CS providing minimum OSNR penalty. Moreover, three different data-driven techniques are
proposed, and their prediction performance is analyzed and compared.

The proposed approach is demonstrated using 8x8 Beneš architecture with 20 ring resonator-based crossbar
switches. The dataset of 1000 OSNRs realizations is generated synthetically for random combinations of the
CSs using Synopsys® Optsim™ simulator. The computational cost of the proposed scheme enables its real-time
operation in the field.

Keywords: Multistage switching architectures, Machine learning, Photonic integrated circuit, Optical switches,
Microring resonators

1. INTRODUCTION

Today’s communication landscape is seeing a rapid increase in internet traffic, mainly due to the development
of new Internet of Things (IoT) concepts and applications, as well as the widespread adoption of bandwidth-
intensive applications. These phenomena introduce the requirement for improving present-day optical infrastruc-
tures, which are the backbone of handling large data traffic. In this context, implementing Photonic Integrated
Circuit (PIC) based solutions for the network hardware can facilitate the expansion of the underlying infras-
tructure. The fundamental network elements that can benefit from these applications are the switching nodes:
through an integrated device implementation severely reduced the cost, footprint, and power consumption, en-
abling widespread adoption. In addition to the hardware improvement brought by PIC-based devices, modern
networks are moving towards flexible and software-oriented protocols, which can optimize the orchestration and
management of the whole system. Software-defined networking (SDN) can enable efficient management, allowing
the virtualization of the network elements and components and their functionality. Due to technologies such as
Wavelength division multiplexing (WDM) optical transport, enabled by coherent optical techniques, the SDN
paradigm can be implemented down to the physical layer,1 improving the performance of reconfigurable photonic
optical switches. Although, this application has some requirements: the network key element must be abstracted
through a virtualized model to allow centralized management of the device. These software models must provide
both the control model for the switching component, as well as its Quality-of-Transmission (QoT) characteristics,
allowing both the control of the wavelengths routing, as well as the impairment evaluation and optimization in
the network grid.2
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Figure 1: Abstraction of the optical switch in a SDN-controlled optical network.

Typically PIC solutions, grant wide-band, low-latency, and high power-efficient performances, can enormously
benefit from the additional orchestration provided by the SDN paradigm. However, suitable models for the rout-
ing and impairment characteristics must be developed to allow the network abstraction shown in Fig. 1. The
characterization and software abstraction of photonics-based switching systems is affected by different prob-
lems than their electrical counterparts. While traditional electronic switching architectures and devices yield
path-independent performances, with similar impairment with respect to the routing paths,3 PIC-based optical
solutions can suffer from heavy path-dependant impairments.4 This issue is brought forth both by the underlying
devices used for the switching operation as well as the mask-level and production uncertainty: this effect intro-
duces the requirement for a more complex device abstraction. To handle this complex framework we proposed to
divide the abstraction problem into the two main modules: the routing model, handling the device configuration
through a deterministic approach, and the QoT prediction model, implemented through a data-driven Machine
learning (ML) based algorithm.5

The proposed case study is carried out on switches based on the Beneš architecture, a well-known and
researched switching structure, which acts as a benchmark for the typical multi-stage switching devices used
for PIC applications. Similarly, the ML techniques introduced in this study have already shown application in
the management and characterization of PICs. The extraction of physical parameters in integrated circuits is
studied in,6,7 In8 deep reinforcement learning techniques are implemented to reconfigure silicon photonic-based
switches, taking into account the traffic profile of high-performance computing systems. At the lower device
level, ML techniques have also shown promising results, as discussed in,9 where ML is used to calibrate 2×2
dual-ring assisted Mach-Zehnder interferometer (DR-MZI) switching structures.

In this work, we proposed an SDN-enabled model for the photonic switching architecture, which can handle
switch control states and QoT degradation. The deterministic approach retrieves the routing control description
of a N×N photonic switching architecture. At the same time, for the QoT, an ML-based scheme is proposed to
predict the switching element QoT impairments. This data-driven framework is a topological and technological
agnostic blind approach, which exploits various ML techniques to model the QoT degradation of the N×N
photonic switching element. The proposed data-driven design is trained on a dataset acquired by considering a
N×N Beneš architecture. The training dataset can either be obtained by experimentation or synthetically by
using a software emulator for the PIC devices. The ML QoT agent delivers the QoT penalty in real-time as
data-driven schemes only require a significant amount of time during the preliminary training; as soon as the
model is considerably trained, they can give outcomes in real-time for the given application.

2. OPTICAL SWITCHING ELEMENTS
AND HIGHER ORDER SWITCHING TOPOLOGY

Optical switching structures can be designed through a variety of different methods, principles of operation and
components: among these solutions, only certain configurations can be designed and built as PICs. Typically,
for integrated devices, the circuit is based on a fundamental Optical Switching Element (OSE) which acts as a



base building block for higher-order N×N switching architectures by arranging such elements in a more complex
circuital topology. In this analysis, the fundamental element consists of a 2×2 crossbar switch, used to build a
higher-order Beneš network, as will be presented in the following sections.

2.1 The 2× 2 crossbar switch

The 2×2 crossbar switch represents one of the most common logical models for switching architectures. This
component can be modeled as a two-state device: depending on the control signal V control the switch can be
piloted into the BAR configuration (straightforward propagation of the input signals) or into the CROSS state
(the two signals are propagated to the opposite port), as shown as a black-box model in Fig. 2a.
These devices are traditionally implemented through two main solutions, represented by the MicroRing Resonator
(MRR) or the Mach-Zehnder Interferometer (MZI). In this work, the OSE has been implemented as a second-
order MRR switch, designed to operate in the C-band, and developed and simulated in the Optsim™ and RSoft™

environments to obtain the transmission characteristic data. On the contrary, the routing analysis can be carried
out on the ideal black-box abstraction, as the logical routing of the device is not affected by the physical PIC
implementation.

2.2 Multistage switching structures

Starting from the elementary OSE, higher order N×N switching devices can be built following different topological
rules. The chosen topology affects the design due to the different number of OSEs needed, as well as the general
structure of the architecture, introducing different amount of crossing interconnections, as well as the routing
properties of the overall device. One of the most common class of such architectures is the rearrangeable
multistage non-blocking network: in such topology the N input signals can be routed to the N output port
in any ordered permutations. Multistage structures are made of a cascade of OSEs, with different amount of
routing conflicts depending on the underlying topology: the possible solutions offer different trade-off between the
number of elements, the footprint and the underlying conflict-avoidance. In particular, strict-sense non blocking
networks are defined as allowing always a new connection between a given input port and an unoccupied output
port, for all possible traffic configurations of the device.

(a) 2×2 crossbar switch model.

(b) Generic Beneš network. (c) Generic N×N transmission model.

Figure 2: Logical circuit model and topology for the implemented switching network.



For our analysis rearrangeable non-blocking network have instead been considered: these solutions allow
the aforementioned input-output connection, although the state of all switches in the network may need to be
rearranged in order to deploy the required connection. This leads to a reduced number of OSEs, as well as a
more complex routing solution, as for every connection update, the already established routes may need to be
re-routed through alternative paths. The most noticeable characteristic of such devices (Beneš network) is their
scalable and recursive structure that reduces the number of required OSEs. This topology has been chosen with
respect to other solutions, such as the Multi-Butterfly and Spanke-Beneš, due to its reduced footprint and power
consumption while upholding the same conflict-avoidance.

2.3 The Beneš network

The Beneš topology can be generalized to any arbitrary number of input ports N, although the strict-sense
definition is more rigorously provided for a number of input N = 2x x ∈ N. The switch can be characterized by
a number of OSE M = N log2(N) − N

2 , arranged in Nstage = 2 log2 N − 1 stages: the general recursive structure
used to build such networks is depicted in Fig. 2b. The generic Beneš switch can therefore be characterized from
the number of ports and needed OSE: due to its non-blocking property all possible signal permutations can be
routed, for a total of Nout = N!, with the number of available switching configurations Nstates = 2M. Two main
conclusions can be drawn from these numbers: firstly the routing solution space grows in a non-polynomial (NP)
fashion, due to the dependency on a factorial term and an exponential term, and secondly, due to Nstates > Nout,
multiple OSEs configurations are able to route the same output permutation request.

Due to the first result it is clear that any brute-force or look-up table solution for the routing problem cannot
be considered, as the NP nature poses severe scalability concerns, requiring a more sophisticated routing and
performance evaluation technique. At the same time, the second result poses a problem concerning the optimality
of any random solutions, as the existence of multiple equivalent paths, together with the path-dependency of the
transmission performances, introduce the requirement for a more careful evaluation of the routing solutions.

3. ROUTING AND PERFORMANCE SIMULATION MODELS

The control of this device can be split into two parallel problems, requiring a different level of abstraction: the
routing problem can be carried out on the black-box virtual representation of the topology previously described.
In contrast, the transmission characteristics and penalties require physical simulations of the device based on the
PIC implementation of the OSE. The block-circuit of the generic transmission simulation scenario is depicted in
Fig. 2c, where the element is considered inside a coherent transmission model to measure the device performances
based on the different control configurations. For our analysis we will consider an 8×8 Beneš switch, shown in
Fig. 3 together with its solution space size.

(a) 8×8 Beneš switch circuit topology.

Network type
Size (N×N)

Beneš
8x8

Switches (M) 20
Permutations (N!) 40,320
Combinations (2M) 1048576

Dataset 2500

(b) Dataset Statistics

Figure 3: Internal topology and solution-space size for an 8×8 Beneš switch.



Figure 4: Statistical analysis of OSNR penalty.

3.1 Routing model

The evaluation of the routing space of the device has been carried out on a matrix representation of the 8×8
Beneš switch. Each device stage is represented by a permutation vector, whose cascade represents the overall
output permutation. Through this representation, the logical output order can be obtained by providing the state
of each of the M elements. The control states have been represented as a binary vector V ∈ R1,M, with Vi = 0
representing the BAR state, while Vi = 1 represents the CROSS configuration. Although it is useful to validate
possible control configurations, an inverse algorithm is needed to highlight the possible routing configurations
given a target output permutation.

The developed routing algorithm yields any of the equivalent paths, ensuring the required output permutation.
Similar algorithms are already present in the literature,10 although they generally are not targeted at extracting
all equivalent paths. The proposed algorithm, extending the concept of matrix-based routing algorithms,11 can
be used to remove the single path limitation. It must be noted that not all output requests can be satisfied by
the same number of OSE configurations. However, the average number can be evaluated to provide a reference

figure for the expected number of alternative solutions. This mean value is equal to Nmean = 2M

N! , therefore for the
presented 8×8 Beneš switch Nmean ≈ 26 configurations can be expected for a random request. The availability
of equivalent logical paths, together with the path-dependency of the transmission performance, leads to the
requirement of a transmission model, as well as a general method to classify these solutions in order to optimize
the configuration performance.

3.2 Transmission model

The transmission quality data can only be obtained by simulating a more realistic device model, taking into
account the physical OSE implementation and its performance in the frequencies and bands of interest. The 2×2
crossbar switch has been modeled as a second-order MMR-based switch, using the blocks and tools available in
the Optsim™ environment.12 This device model has been implemented in the previously described Beneš recursive
structure, allowing the creation of the required 8×8 switch. The newly modelled switch’s input and output ports
are then connected to the transceiver and receiver modules, using the Digital Signal Processing (DSP) simulation
libraries available through the Synopsys simulation suite. These blocks allow for the implementation of realistic
modulation and transmission characteristics, extracting the system QoT through evaluating the Bit-Error Rate
(BER). In our case study the system performance have been evaluated for a PM-64-QAM modulation format,
with symbol rate RS = 50× 109 and central frequencies for the channel f = (193.1 + 0.1× x) THz for x ∈ [1, 8].
The OSNR penalty was extracted as the performance metric from the BER, measuring the added ∆OSNR with
respect to the unfiltered baseline transmission between the transmitter and receiver blocks, without any element in



Figure 5: Controller scheme for the proposed SDN implementation.

between. The distribution of the measured penalties is shown for the different output ports of the device in Fig. 4.
By observing this data, it is clear that without any method to estimate the penalty the worst-case assumption
must be made, considering ∆OSNR = 3.1dB for every possible configuration, as to avoid any potential out-of-
service case. In reality, both the average and the minimum of the penalty highlight that a much lower value could
be considered for certain output and port configurations, reducing the overall penalty margin in the network.
To this end, we propose an ML-based penalty estimator, which coupled with the deterministic expanded routing
algorithm can provide an optimized solution even in a substantial performance path-dependant scenario, as the
highlighted one. The general structure is shown in Fig. 5: the network control unit, upon receiving a given
routing request, can evaluate all the logical equivalent paths through the deterministic algorithm while using the
ML-agent to predict the performance of such solutions without requiring the simulation of the complete dataset,
removing the NP-solution space problem highlighted in the previous section.

4. MACHINE LEARNING MODELING

The full abstraction of the proposed photonic switching architecture needs two main agents. The first agent,
the Routing agent, is aimed to characterize the control state of the proposed switching architecture using a
deterministic approach. The second agent, the QoT agent, retrieves the Routing agent output and predicts the
QoT penalty using an ML-based framework. The proposed framework enables the network controller to evaluate
the best possible solution of any N×N photonic switch. The ML QoT agent considers the output of the Routing
agent, i.e., the M controls states. At the same time, the utilized response variable is the OSNR penalty of the
specific output port of the N×N switching system.

The proposed ML QoT agent considers three ML techniques; Boosted Tree Regressor, Linear Regressor, and
DNN.13 The proposed models are developed by using a higher-level Application Programming Interface (API)
of the TensorFlow™ platform.14 Additionally, the proposed models are trained and tested on a distinct subset of
the dataset (70% train set and 30% test set). Furthermore, the over-fitting of the models is prevented by setting



1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
OSNR dB

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

BTR    = -0.0 = 0.2
DNN    = 0.01 = 0.16
LR     = -0.01 = 0.21

Figure 6: Probability density functions of ∆OSNR for all ports of the 8x8Beneš switch, using BTR, LR, and
DNN.

the training step as the stopping factor and the Mean square error (MSE) as the loss function defined in Eq. 1,

QoTMSE =
1

n

n∑
i=0

 1

N

N∑
k=1

(
OSNR Penaltypi,k −OSNR Penaltyai,k

)2

 (1)

where n is the number of test realizations, N is the total number of input/output ports of the specific N×N
switching system and OSNR Penaltypi,k−OSNR Penaltyai,k are the predicted and actual OSNR penalty of the k-th
output port of the considered topology. The details and configuring parameters of the proposed three models
for QoT agent is reported below.

4.1 Boosted Tree Regressor

The Boosted Tree Regressor (BTR) is based on a model ensembling process that combines several regression
trees to achieve superior predictive operation. The ensembling process of regression trees utilizes the gradient
boosting for numerical optimization. The gradient BTR typically combines various decision trees’ from a se-
quence of base models. The proposed BTR based QoT agent considered four important tunning parameters i.e.,
min samples leaf=3 , max depth=100, learning rate=10-2 and L1 regularization = 10-3.

4.2 Linear Regressor

The Linear Regressor (LR) is the most attractive type of ML model because of its simple representation. LR uses
a statistical method to learn the linear relationship between the input feature and the output response variable.
The LR-based QoT agent utilized the ordinary least square method in the proposed framework, enabling multiple
input features with training steps=1000.

4.3 Deep Neural Network

The proposed DNN engine is configured by numerous important optimized hyper-parameters values (such as the
training steps, set to 1000), loaded with the Adaptive Gradient Algorithm (ADAGRAD) Keras optimizer, with
learning rate set to 10-2 and L1 regularization set to 10-3. Additionally, various non-linear activation functions
such as Relu, tanh, sigmoid have been examined during the model building. After the assessment, Relu has been
selected to implement DNN as it beats the others in terms of prediction and computational load.15

5. RESULTS AND DISCUSSION

The performance of the proposed scheme is analyzed in a two-steps approach. Initially, the switch control
states are evaluated, and then the acquired switch control states are utilized to find the QoT penalty in terms
of OSNR Penaltyi,k for each port k of the considered Beneš architecture. The routing algorithm handles the
evaluation of the control states for the required output permutation, finding not only one acceptable solution
but all logically-equivalent routing configurations. For the ML-based QoT agent, the predicted switching control
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Figure 7: Probability density functions of ∆OSNR for each port of the 8x8Beneš switch using DNN.

states are provided to all the three proposed data-driven approaches as their input to obtain the QoT penalty.
The system of measurement applied to evaluate the accuracy of the ML-based QoT agent is defined as Eq.2:

∆OSNRi,k = OSNR Penaltyai,k −OSNR Penaltypi,k (2)

where all parameters have the same meaning as in Eq. 1.

The distribution of all the three ML approaches is shown in Fig. 6. In Fig. 6 the statistical parameters of
the distributions (mean (µ) and standard deviation (σ)) report the prediction performance order of ML models
LR<BTR<DNN for the considered 8x8 Beneš architecture. The LR shows the worst performances in terms
of prediction as it cannot find the underlying relationship and irregularities. On the other hand, the BTR
performs better than LR as it manipulates the boasting technique, combining different regression trees’ models
and choosing the latest tree that best reduces the loss function. Finally, the DNN performed exceptionally well
because of its cognitional potentiality provided by artificial neuron.

Usually, in most problems where data-driven models are applied, the main aim of utilizing these schemes
is their high accuracy compared to the training time. The ML-based models only require preliminary training,
which takes time, but the testing can be completed in real-time after the training. For this purpose, we preferred
DNN as the superior ML model to proceed with additional analysis. The distribution of ∆OSNRs at each port
of the 8×8 Beneš architecture is shown in Fig. 7, along with µ σ statistics. In Fig. 7, all the distribution
of ∆OSNRs is divided by the dotted red line (∆OSNR = 0) into two slices. The slice where ∆OSNRs ≤ 0
is not critical as the OSNR Penaltyai,k ≤ OSNR Penaltypi,k so, in this case we only waste a little capacity but
the system will never turns into out-of-service. In contrast the portion where ∆OSNRs > 0 is the critical one
as OSNR Penaltyai,k > OSNR Penaltypi,k. In this case, it is necessary to deploy some margin on top of the ML
prediction to keep the system working all the time. The maximum required margins (δk) for this case where
∆OSNRs > 0 are shown as a green dotted line for each port k of Beneš 8×8 architecture.

Analyzing the mandatory margin and the values of µ and σ, we observe the high level of accuracy attained by
the ML QoT agent. In the considered 8×8 Beneš architecture, the worst-case prediction performance is observed
on port 8; the δ8 is less than 0.6 dB. In the envisioned application, the ML agent allows the network operator
to classify the performance of the different equivalent solutions for any given required output permutation. In
Fig. 8 the performances of all the equivalent routings for the target permutation [7, 6, 3, 8, 5, 4, 1, 2] are
highlighted: it is clear that although the average penalty is almost identical if all 8 ports are considered, each
individual port experiences a drastic change in performance depending on the chosen routing. Due to these
control configurations being logically equivalent from an output routing standpoint, the estimation capabilities
of the proposed DNN agent are fundamental from the operator standpoint to characterize the expected penalty
of each lightpath and optimize the configuration choice based on the required performances.

6. CONCLUSIONS

This work presents a deterministic-data-driven hybrid method for managing and optimizing switch performance,
considering a PIC-based device implementation. The deterministic routing model proposed for the 8×8 bench-



Figure 8: OSNR Penalties of the 32 alternative routings for the output permutation [7, 6, 3, 8, 5, 4, 1, 2].

mark can be extended to any arbitrary size N×N Beneš network, allowing a quick evaluation of the possible
configuration states for the output permutation required by the network operator. Considering the QoT predic-
tion requirements, ML has been proven to provide an accurate data-driven model for device behavior, managing
to predict the expected penalty at each egress port with reasonable uncertainty. DNN has shown to be the
more promising ML implementation in terms of general accuracy, allowing a noticeable reduction of the penalty
margin in a network implementation scenario. The achieved model shows promising results, with the QoT
penalty prediction error always less than 0.6 dB, which can be used both for the general evaluation of the correct
out-of-service margin and a reasonable model to select the required configurations between the available ones.
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