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Abstract 

The proper treatment of firm heterogeneity plays a crucial role in the application of benchmarking analyses 
for regulatory purposes. Within the realm of two-step approaches, this paper challenges the widespread 
adoption of single-variable clustering: heterogeneity has often multiple sources, which calls for more 
sophisticated clustering methodologies. In fact, reliable cluster-specific rankings provide firms’ 
management with more realistic objectives as well as freedom to identify the appropriate strategies to 
improve efficiency. In order to provide regulatory guidance on this issue, we use a unique dataset of detailed 
accounting data and unbundled network-related costs for a panel of Italian gas distributors and we test two 
alternative methods: a hybrid clustering procedure (HCP) and a latent class model (LCM). Our results show 
that HCP and LCM perform better than size segmentation in the identification of classes, thereby leading 
to more reliable production frontiers, but do not support a conclusive preference for one or the other 
method. While both methods are sensitive to outliers, LCMs seem to provide deeper insights on the drivers 
of firm inefficiency. However, they also present stationarity and convergence issues, which might favour 
the implementation of HCP methods. Furthermore, the degree of discretionary judgement in the modelling 
decisions (e.g., model specification and choice of the partition) is slightly higher with LCMs than with HCP. 
In this respect, the HCP, with its lower modelling and analytical complexity, may feature as a more appealing 
option, facilitating the interactions between regulator and firm managers.  
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1. INTRODUCTION 

When National Regulatory Authorities (NRAs) set network tariffs for energy distribution systems, they face 

a variety of technical, methodological and policy issues, from information asymmetries to the transition to 

less carbon-intensive energy systems. In practice, incentive-based pricing schemes are often employed to 

promote efficiency and innovation “by rewarding good performance relative to some pre-defined 

benchmark” (Jamasb & Pollitt, 2001, p. 108). Naturally, the proper identification of such benchmark is 

crucial and, to this aim, benchmarking analyses are often the preferred analytical tool (Haney & Pollitt, 

2009). Nonetheless, implementation issues often arise when economic efficiency depends not only on 

managerial decisions, but also on external conditions partially observable by the regulator and, sometimes, 

beyond the firm’s control. In fact, because significant rent extraction may occur, observed and unobserved 

heterogeneity has frequently become ground for judicial controversy and lengthy negotiations between 

firms and NRAs, threatening the stability of the regulatory decisions. In this context, the availability of 

adequate tools to deal with heterogeneity is crucial. 

The Italian gas distribution sector provides an excellent case to study the problem of implementing an 

incentive structure which is robust to the presence of significant heterogeneity across numerous distribution 

system operators (DSOs). Like several other NRAs, the Italian energy regulatory authority (ARERA, 

Autorità di Regolazione per Energia Reti e Ambiente) implements ad hoc segmentation methods to identify classes 

of similar operators and define expected efficiency gains for each class (ARERA, 2008). Using an original 

dataset collected by ARERA from the entire population of Italian DSOs, this paper tests how alternative 

clustering methods can improve the accuracy of efficiency estimates when firm heterogeneity is an issue, 

discussing how well such methods perform when applied to data used for regulatory purposes.  

As a starting point, we rely on the literature that questions the ability of ad hoc segmentation methods to 

lead to homogeneous reference sets (Agrell & Brea-Solìs, 2017). The literature shows that the methodology 

to identify homogeneous classes of firms prior to benchmarking is crucial to improve the accuracy of the 

efficiency estimates (e.g., Agrell & Brea-Solis, 2017; Nieswand & Seifert, 2018) and thus avoid setting 

allowances not reflecting actual costs and potential efficiency gains. Yet, more practitioner-oriented 

contributions are still lacking. Moreover, the few applications focus solely on the electricity sector (Agrell 

et al., 2013; Agrell & Brea-Solìs, 2017; Bjørndal et al., 2018; Dai & Kuosmanen, 2014; Llorca et al., 2014; 

Orea & Jamasb, 2017; Silva et al., 2019). Indeed, none of the existing benchmarking studies on gas 

distribution employs clustering to control for heterogeneity (Carrington et al., 2002; Ertürk & Türüt-Aşik, 

2011; Farsi et al., 2007; Tovar et al., 2015; Zorić et al., 2009), including the only two studies that use Italian 

data (Erbetta & Rappuoli, 2008; Goncharuk & lo Storto, 2017).   

To fill this gap, we apply a two-step benchmarking approach, acknowledged as successfully able to “reduce 

the unexplained variance previously claimed as inefficiency” (Agrell et al., 2013, p. 16). In the first step, we 

partition the sample into classes of firms with similar contextual factors/production possibilities by applying 
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two classification methods, a combination of partitioning and hierarchical clustering techniques (which we 

labelled Hybrid Clustering Procedure, HCP) and a Latent Class Model (LCM). Both based on existing 

literature, these methods are more sophisticated than the simple ad hoc segmentation currently in use, as the 

number of classes is not arbitrarily set in advance but endogenously derived.1 In the second step, we 

perform a Data Envelopment Analysis (DEA) to derive DSOs’ efficiency scores within each class.2 In 

addition to assessing the performance of HCP and/or LCM against ad hoc segmentation or full-sample 

benchmarking (e.g., Agrell et al., 2013), we also highlight advantages and disadvantages of their potential 

implementation in the regulatory practice.  

Our data include highly detailed accounting information gathered by ARERA for the period 2008-2011. 

From the original dataset, we extract a balanced panel of 105 DSOs covering 94% of the natural gas 

delivered in Italy. Our dataset is particularly appropriate to address the methodological problems implied 

by firm heterogeneity as gas distributors in Italy feature an unusually high degree of heterogeneity in terms 

of customers served.3 Moreover, differently from existing studies that use aggregated distribution costs 

related to both regulated and unregulated activities, we can rely on unbundled, network-related costs, which 

allows us to exclude from the analysis all expenditures for deregulated services (e.g., retail costs). This 

feature is crucial to prevent us from estimating DSOs’ efficiency by mixing regulated and unregulated 

services.  

This paper provides an empirical contribution to the literature as well as to the regulatory practice. Our 

findings not only confirm the drawbacks of ad hoc segmentation methods, but also that, by providing a more 

accurate identification of classes in the first step, HCP and LCM allow a more reliable identification of 

production frontiers. Nonetheless, they also support a more critical review of these approaches. If on one 

side HCP and LCM endogenously derive a partition suitable for subsequent efficiency analysis, on the other 

side outliers and, in the case of LCM, partial stationarity (i.e., not all firms stay in the same class over the 

                                                      
1 Applications of partitioning or hierarchical methods are scant in the energy literature and mainly relate to electricity 
customers’ segmentation (e.g., López et al., 2011). As for gas distribution, the only contribution is Alaeifar et al. (2014), 
a non-benchmarking study that employs hierarchical clustering to identify the optimal size of Swiss distributors. To 
the best of our knowledge, this is the first time a partitioning or hierarchical method is applied to energy distribution 
data and coupled with regulatory benchmarking. See Cagliano et al. (2003) for a similar approach applied to e-business 
strategies. Applications of model-based methods in the energy sector are relatively recent and use Monte Carlo 
generated data or data from electricity distribution or transmission (Agrell et al., 2013; Agrell & Brea-Solìs, 2017; Dai 
& Kuosmanen, 2014; Llorca et al., 2014; Orea & Jamasb, 2017).  
2 DEA is largely applied in several regulated industries such as local public transportation (see the survey by Daraio et 
al., 2016), as well as in environmental regulation (Manello, 2017). It is also employed in productivity and efficiency 
studies of non-regulated industries (see Devicienti et al., 2017 for an application to the manufacturing sector). There 
are many DEA applications to the electricity sector (among others, Cambini et al., 2014; Giannakis et al., 2005; Jamasb 
& Pollitt, 2003), far less for gas distribution. The latter studies account for firm heterogeneity by controlling for the 
effect on efficiency of variables such as customer and output density, firm size, age and ownership, and climatic factors 
(Carrington et al., 2002; Farsi et al., 2007; Zoric et al., 2009; Ertürk & Türüt-Aşik, 2011; Tovar et al., 2015).  
3 The ratio between the number of customers served by the largest and the smallest firm in our sample is 2,380 (1,639 
in Erbetta & Rappuoli, 2008). Among the studies employing two-step benchmarking, only Dai and Kuosmanen (2014) 
and Agrell and Brea-Solìs (2017) feature a similar heterogeneity. 
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entire observation period) challenge the implementation of such methods. This sheds light on a number of 

possible implications for the regulatory practice.  

On the one hand, our study indicates that firm heterogeneity has multiple sources, which suggests that 

more sophisticated clustering methodologies should be employed based on multiple separating variables. 

Moreover, cluster-specific rankings can provide firms’ management with more realistic indications of the 

best performing operators working in a similar context, and thus general guidance to identify the 

appropriate actions and strategies to increase efficiency (Dai & Kuosmanen, 2014). 

On the other hand, our contribution highlights that the implementation of LCMs is complex and implies 

discretionary evaluation by the regulator as regards, for example, model specification and selection criteria 

(Agrell Brea-Solis, 2017). HCP also involves discretion in the choice of the separating variables and of the 

appropriate number of classes, but its implementation is relatively simpler as compared to LCM. 

Complexity in implementation might become a critical issue in the methodological choice by the NRA as 

well as in the interactions between managers and regulators during regulatory reviews.  

The remainder of the paper is organized as follows. Section 2 briefly describes the Italian gas distribution 

sector and the main concerns about the regulatory incentive scheme currently in place. Section 3 and Section 

4 describe the dataset and the methodology, respectively. Section 5 presents and discusses the results, while 

Section 6 concludes and derives policy implications. 

 

2. THE ITALIAN GAS DISTRIBUTION SECTOR 

Until 2000 in Italy, natural gas distribution and retail services used to be carried out by local municipalities, 

either directly or through an appointed (private or public) company. This explains the large number of 

distribution companies (over 700). The liberalization process led to unbundling network and commercial 

activities (supply and retail) and to mandatory competitive awarding of service contracts. Since then, many 

small local utilities merged into companies that now serve province- or region-wide areas, while the two 

largest firms operating at the national level further extended their distribution activities through 

acquisitions. As a result, today the sector includes about 200 DSOs, but the largest twenty companies 

distribute 85% of total natural gas (32 billion cubic meters in 2018), suggesting a highly concentrated but 

also heterogeneous industry.  

Since 2000, the Italian NRA has the task to set the annual allowed revenues of each DSO (ARERA, 2000; 

2004; 2008; 2013). These are classified as “large”, “medium” or “small” firms depending on the number of 

customers served (more than 300,000, between 50,000 and 300,000, and below 50,000, respectively). 

Allowed revenues are meant to cover network-related, metering, and commercialization costs, all separately 
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reported by the DSOs.4 In this paper, we focus on network-related activities, i.e. on the core service 

provided by DSOs (delivery of gas). The corresponding allowed revenues are meant to cover capital 

expenditures, depreciation, and operational expenditures. The empirical analysis uses “network-related 

operational expenditures” (hereinafter, opex), including the cost of labor, services, and materials. Two 

further aspects about opex are specifically relevant to this work.  

The first one regards the annual updates during the 4-year regulatory period. Similar to other countries, in 

Italy, opex for each regulated firm is adjusted to account for inflation and an X efficiency factor (i.e., the 

expected annual efficiency gain), whose value is set at the beginning of each regulatory period. The X factor 

is not the same for all firms, but is defined per class, so as to be higher for small DSOs than for medium 

and large ones (respectively, 5.4%, 4.6%, and 3.2%, to be achieved annually in the regulatory period 2009-

2012). The second one is that the NRA acknowledges that DSOs in different classes operate with different 

degrees of cost efficiency. In fact, opex for each firm is estimated at the beginning of the regulatory period 

as the product of a “standard operational unit cost” (in € per customer) and the number of customers 

served. The standard operational unit cost is lower for large firms than for medium and small ones, in line 

with the assumption of economies of scale. Moreover, a relatively higher standard operational unit cost is 

assigned to firms in the same class, whenever they present a lower customer density (measured in number of 

customers per meter of network), pointing to economies of density. To give an example, in the regulatory 

period 2009-2012, the standard operational unit cost was 56.46 €/customer for small DSOs with low 

customer density and 39.30 €/customer for large DSOs with high customer density.5 

The above regulatory framework is the object of interest of our analysis. In fact, the implications of having 

different expectations in terms of standard operational unit costs and efficiency gains based on firm size 

and/or density is potentially quite relevant with respect to the potential of rent extraction, as well as for the 

desirable size of a distribution company (and consequently merger and acquisition strategies).  

 

3. DATA 

We use an original dataset of all the Italian regulated firms (DSOs) collected by ARERA, from which we 

extracted a balanced panel of 105 DSOs tracked from 2008 to 2011, covering 90% of customers in 2011 

(hereinafter referred to as ‘Full Sample’). The empirical analysis focuses on network-related operational 

expenditures which are, on average, 65% of each firm’s total expenditures.  

Table 1 reports the summary statistics for the Full Sample including technical and (inflation adjusted) 

accounting variables, as well as network-related measures of partial productivity. Looking at variables 

                                                      
4 Commercialization costs refer to network-related and metering-related services (not to retail activities).  
5 Table A.1 in Appendix A provides more details on the evolution of incentive regulation in Italy over the period 
2000-2020. 
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capturing DSOs’ output characteristics, number of customers (customers), volumes of distributed gas 

(volumes), and area served (area), we note a remarkable heterogeneity across DSOs (large standard deviations 

with respect to the mean). Similar high levels of heterogeneity characterize the typical contextual variables 

for gas distribution: customer density (customers per network length), which captures differences between urban 

and rural networks; output density (delivered gas volumes per customer), which accounts for both higher per 

capita consumption in colder areas and higher share of non-residential load; and average altitude of the 

service area, capturing both the difficulty of serving mountain areas and the potential for higher distributed 

volumes due to lower temperatures.6  

Table 1. Descriptive statistics – Full Sample (420 observations). 

Variables Mean Std. Dev. p25 p50 p75 
customers  171,012 566,098 11,220 28,795 91,996 
volumes [million m3] 270 836 18.40 51.90 156.00 
area [km2] 1,805 6,532 90 289 751 
customer density [customers/m] 0.088 0.049 0.057 0.080 0.103 
output density [m3/customers] 1856 737 1,391 1866 2,281 
altitude [m] 184 179 57 131 253 
opex [million €] 6.30 16.10 0.48 1.40 3.51 
opex/customers [€/customers] 51.84 31.74 30.58 43.08 65.72 
opex/volumes [€/m3] 0.032 0.022 0.018 0.024 0.040 
network [km] 1,897 5,886 156.31 401.39 1,172.78 
 

Network-related operational expenditures (opex) as well as partial productivity measures (opex/customers and 

opex/volumes) also exhibit large standard deviations, suggesting significant heterogeneity across firms. In 

turn, this leads us to expect relatively low efficiency scores when performing benchmarking on the Full 

Sample, and offers a rationale for the current incentive structure. Finally, the variable network length 

(network) is included to serve as a physical measure of capital.  

In the following, we test whether the size segmentation approach used by the regulator is appropriate to 

account for such heterogeneity. Then, we propose two alternative solutions for the identification of 

homogeneous classes of firms. Our analysis and the ensuing discussion have a bearing on the reliable 

identification of production frontiers, and thus on the accuracy of the expected efficiency gains.  

                                                      
6 The number of customers and the volumes of gas delivered are fundamental drivers of operation, maintenance and 
repair costs of the DSO, and are therefore expected to have a positive impact on opex via labor, services and materials’ 
costs. The same costs are also expected to decrease, on average, with higher customer density and to increase with altitude. 
High output density implies a higher use of the installed network capacity, which is efficient in terms of capital 
expenditures, but at the extreme, might signal a saturation of the existing assets (the need for investments) and lead 
to higher operational costs. Although the literature suggests that size and pipelines’ material can influence opex 
(Carrington at al., 2002), this information is not available for all firms in the sample and therefore not included. 
Nevertheless, over the observed period, steel with cathodic protection constituted 90% to 97% of the material used 
by the DSOs annually sampled by the NRA (e.g., ARERA, 2012).  
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4. METHODS 

To deal with firm heterogeneity, we implement a two-step analysis (e.g., Dai & Kuosmanen, 2014). The 

first step identifies the number and composition of classes of firms with similar characteristics, while the 

second step estimates efficiency scores within each class. As described below, two alternative clustering 

procedures are used in the first step and a non-parametric approach (DEA) in the second (see, for example, 

Llorca et al., 2014). This two-step analysis is in line with the method proposed by Agrell et al. (2013) and 

was preferred over alternative approaches, given the nature of the industrial sector under observation, the 

compatibility with the regulatory practice, and the structure and limitations of the dataset. 

There are, indeed, several alternative ways to account for firm heterogeneity. Focusing on DEA, they 

consist of either observing the impact of contextual variables on efficiency (Simar & Wilson, 2007, 2011; 

Banker & Natarajan 2008) – a method highly debated in the literature – or the simultaneous use of clustering 

and DEA to set more targeted efficiency incentives (Thanassoulis, 1996 and Afsharian et al., 2019). In fact, 

our approach, by deriving the optimal number of clusters in the first step, complements Thanassoulis 

(1996), where the number of clusters is exogenous. Nevertheless, being developed to account for 

differences in the output mix, this method would present some conceptual difficulties when applied to the 

gas distribution sector (where firms provide the same service to all customers). Moreover, although semi-

nonparametric stochastic methods (Johnson & Kuosmanen, 2011) can also identify classes with large 

samples, we opt for DEA given it has been generally preferred by regulators (Haney and Pollit, 2009). 

Alternatively, Stochastic Frontier Analysis (SFA) models including unobserved heterogeneity in the frontier 

estimation (via True Fixed-Effect and True Random-Effect Models, see Greene, 2005) have also been 

employed.7 As for the present study, the limited availability of input price data for many firms could allow 

the application of SFA models to a much smaller sample that our current Full Sample. Therefore, to avoid 

losing too many observations and reduce the heterogeneity of our sample, we decided to use SFA only as 

an additional robustness check. 

4.1 FIRST STEP: HYBRID CLUSTERING PROCEDURE  

The literature proposes three types of clustering techniques: hierarchical, partitioning, and model-based (see 

Everitt et al. 2011 for a comprehensive overview). In this section, we focus on the first two methods, which 

we combine into what we labelled, for brevity, the Hybrid Clustering Procedure (HCP).  

This method involves the use of a hierarchical method first, followed by the application of a partitioning 

algorithm. The hierarchical method generates multiple partitions based on measures of distance between 

                                                      
7 A related problem highlighted by Silva et al. (2019) is limited and noisy data, which make information on production 
technology and heterogeneity difficult to extract. As a solution, the authors propose a Stochastic Frontier Analysis 
(SFA) with generalized maximum entropy, a methodology which seems to be robust even in very small samples. 
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pairs of observations (e.g., Euclidean distance). A function of these pairwise distances (linkage) defines the 

distance between sets of observations. We use the Ward’s linkage, defined as the increase in the variance of 

the distance with respect to all separating variables.8  

Specifically, DSOs’ proximity is measured using customers and customer density as main separating variables, in 

line with current regulatory practice (see Section 2). In line with previous literature (e.g., Farsi et al., 2007), 

volumes of gas delivered, output density, altitude, and area are also considered in alternative combinations to 

further describe firms’ output characteristics and operating environment. All variables are standardized to 

avoid biases due to differences in scale and unit measures.9 

The optimal number of clusters is selected by means of two “stopping” rules for continuous data (Milligan 

& Cooper, 1985), namely the Calinski-Harabasz rule and the Duda-Hart rule, which indicate the ideal 

number of clusters based on the highest value of given ratios (i.e., the “stopping” point of an iterative 

procedure). More specifically, the Calinski-Harabasz ratio is defined as 

trace(B) (g-1)⁄

trace(W) (N-g)⁄
, 

where B is the matrix containing the between-cluster sums of squares and cross-products, W is the 

corresponding within-cluster matrix, g is the number of clusters and N is the sample size. The Duda-Hart 

stopping rule, based on the idea of dividing each group into two subgroups, is given by 
௃௘(ଶ)

௃௘(ଵ)
, that is, the 

sum of squared errors in the two resulting subgroups (Je(2)) over the sum of squared errors within the group 

that is to be divided (Je(1)).10  

Starting from the identified optimal number of clusters, we apply a partitioning algorithm, which changes 

the composition of clusters until a given criterion is satisfied. We use the k-means algorithm, whereby each 

initial cluster is described by its mean, and the clusters’ composition is iteratively updated by reallocating 

each firm to the cluster with the closest mean (in Euclidean distance terms). This process produces the final 

DSOs’ classification, which is then subject to post-clustering tests (ANOVA and Scheffé) to check the 

appropriateness of the variables selected for the clustering.  

This procedure exploits the advantages, while removing the shortcomings of each of the two separate 

techniques: the hierarchical method allows us to determine the optimal number of clusters and the initial 

                                                      
8 To generate the partitions, we used the Stata command “cluster wardslinkage” and relevant post-estimation 
commands. 
9 Before going further, it is worth discussing the issue of sample size for clustering methods. In this respect, the market 
segmentation literature (see for example, Dolnicar et al., 2013) recognizes the lack of rules of thumb to determine an 
adequate sample size for cluster analysis and only generically points to the importance of ensuring a reasonable ratio 
between number of observations and clustering variables. To the best of our knowledge, only few contributions 
explicitly refer to the 5x2k (with k being the number of clustering variables) rule by Formann (1984) for the minimum 
sample size, while Dolnicar et al. (2013) suggest a 70 x k rule. In our work we consider up to 5 clustering variables, 
implying a minimum sample size of 160 as per Formann’s rule and 350 as per Dolnicar et al. (2013) suggestion. The 
size of our sample (412 to 420 observations) is well above both these thresholds. 
10 It is worth noting that a given clustering criterion can generate multiple optimal partitions. 
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cluster composition instead of setting them in advance, while the iterative nature of the partitioning method 

ensures a stable cluster assignment. The only drawback of this “hybrid” procedure is its sensitivity to 

outliers. 

 

4.2 FIRST STEP: LATENT CLASS MODEL 

The alternative clustering approach is based on a formal statistical model (a latent class model, see 

Lazarsfeld & Henry, 1968) assuming that any given cluster of firms is characterized by different multivariate 

probability density functions (i.e., finite mixtures) for the selected firm-level variables. Therefore, once 

generalized linear models are estimated, regression coefficients vary across clusters, thus capturing firm 

heterogeneity. The well-known advantage of LCMs is their ability to simultaneously perform endogenous 

partitioning and robust technology estimation (Agrell & Brea-Solìs, 2017).11 Nevertheless, they are prone 

to convergence problems and to multiple likelihood maxima (Everitt et al., 2011). Similar to the HCP 

method, selection criteria for the optimal number of classes are still needed. 

In this paper, we apply LCMs to a panel of gas distribution operators by estimating a Cobb-Douglas cost 

driver function. Specifically, our main specification assumes a function with one input (opex), two outputs 

(customers and volumes), and a set of contextual variables (customer density, output density and altitude):  

ln(𝑜𝑝𝑒𝑥௜௧) = 𝛼଴௝ + 𝛼ଵ௝ ln(𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠௜௧) + 𝛼ଶ௝ ln(𝑣𝑜𝑙𝑢𝑚𝑒𝑠௜௧) + 𝛼ଷ௝𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦௜௧ +

𝛼ସ௝𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦௜௧ + 𝛼ହ௝𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒௜ + 𝜀௜௧|௝,           (1) 

where i identifies the DSO, t the year, j is the latent class, and 𝜀௜௧|௝ is the normally distributed error term. 

Since benchmarking is performed in the second step, the latter does not embody any assumptions in terms 

of inefficiency. Moreover, given the limited sample size, we decided not to employ a translog functional 

form to reduce the number of parameters to be estimated. 

The model’s parameters are estimated via maximum likelihood, and the corresponding posterior 

probabilities are used to determine cluster membership. The identification of the more appropriate number 

of clusters is based on the Akaike’s (AIC) and the Bayesian (BIC) information criteria.12 The selected model 

and number of clusters will have the lowest AIC and BIC values, though it is possible that more than one 

suitable model exists. 

 

 

                                                      
11 If technology is homogeneous across firms, differences between latent classes can be mainly interpreted as 
differences in contextual factors (Orea & Kumbhakar, 2004; Llorca et al., 2014). 
12 The appropriateness of AIC and BIC as model selection criteria depends on regularity conditions, which in the case 
of finite mixture models might easily not be verified. 
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4.3 SECOND STEP: THE DEA MODEL 

To estimate the relative performance of DSOs we use DEA, a non-parametric benchmarking approach 

that allows for multiple inputs and outputs and identifies the industry frontier without imposing a functional 

form for production (Coelli et al., 2015).  

Because we account for firm heterogeneity in the first step, we can benefit from a simpler model 

specification in the second step. Given the focus of this study, in the main DEA model (OPEX) we use 

network-related operational expenditures (opex) as the only input. Connecting customers to the grid and 

transporting gas to final users are the main network-related activities of a DSO. Thus, the number of 

customers and the total volume of gas delivered are the output variables (customers and volumes).  

For completeness and in line with the literature, we also consider a second model (OPNTW), which 

includes network length (network) as an input (e.g., Carrington et al., 2002).13 This provides a reliable, 

physical measure of capital expenses, as mains are the major capital component of distribution networks, 

and information on their length is usually accurate. Finally, a third and fourth model (OPEXA and 

OPNTWA) include the area served as an additional output - “larger service areas generally require larger 

and more spread networks, thus more operating and maintenance costs” (Farsi et al., 2007, p. 70). For 

reasons of brevity, these results are only reported in the Supplementary Material.   

All the estimated DEA models are input-oriented, as in the gas distribution sector it is reasonable to assume 

that demand is mostly beyond firms’ control, and assume Variable Returns to Scale (VRS). Scores are 

calculated as input efficiency measures according to Farrel (1957) and are bias corrected via bootstrap 

replications.14  

 

5. RESULTS AND DISCUSSION 

This section presents and discusses the results of our analysis. Section 5.1 examines class identification via 

the current size segmentation approach and applies the Hybrid Clustering Procedure (HCP) as an 

alternative. Section 5.2 implements a Latent Class Model (LCM). To test the ability of these approaches to 

account for firm heterogeneity, Section 5.3 compares the results of the efficiency analysis after clustering 

via the three alternative methodologies and discusses implementation issues.  

 

                                                      
13 Although the Italian NRA applies an X factor to operational expenditures only, most efficiency studies consider a 
model with at least two inputs (e.g., Carrington et al., 2002; Zoric et al., 2009; Ertürk and Türüt-Aşik, 2011).  
14 Nonparametric tests of returns to scale using the “nptestrts” STATA command confirm the appropriateness of the 
VRS assumption. DEA is performed using the “teradialbc” command (Badunenko & Mozharovskyi, 2016) with 2,000 
bootstrap replications. 
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5.1 SIZE SEGMENTATION AND HYBRID CLUSTERING PROCEDURE (HCP) 

The regulatory thresholds that classify firms based on size were defined in 2003. Since they have not 

changed, we start by employing the k-means method over the number of customers to verify whether this 

partition is still valid for the DSOs in our dataset which covers the period 2008-2011. Assuming that the 

number of classes (3) and the separating variable (customers) remain the same, we find that one of the three 

classes contains only two companies. These are indeed the two largest firms in this respect, as they serve a 

number of customers at least 13 times higher than the sample mean. Hence, as customary in clustering 

procedures, and only for the purpose of this preliminary analysis and the following HCP, we excluded the 

two outliers from the Full Sample (“103 Sample” hereafter).  

The resulting delimiting thresholds (184,697 and 472,949 customers) significantly differ from those indicated 

by the regulator (50,000 and 300,000 customers), suggesting that classes identified at a given point in time 

might no longer reflect the structure of the same industry observed in later years. At the same time, 

differences in sample size might also contribute to explain the discrepancy. A comparison of the population 

of DSOs with the Full Sample used for the present paper indicates that the firms dropped due to missing 

or inconsistent data were mainly small.  

When we then employ the hierarchical method, results suggest an optimal number of three classes (see 

Table A.2 in Appendix A), which we use in the subsequent k-means clustering. As a robustness check, we 

applied the HCP to the Full Sample as well. This further analysis confirmed the presence of a fourth cluster 

consisting of the two excluded outlier firms. 

Turning to the detailed results, Table 2 shows that the average values of the classifying (and other) variables 

steadily increase/decrease from Class 1 to 3 (except for output density). Specifically, from Class 1 to Class 3 

firms serve a greater number of customers, transport larger volumes of gas, and serve territories characterized 

by lower altitude but higher customer density. Moreover, going from Class 1 to Class 3, area decreases while 

network increases. In other words, Class 1 can be interpreted as the class of firms serving rural areas, Class 

2 semi-urban areas, and Class 3 urban areas. The variable output density is larger in Class 2 and Class 1, which 

is compatible with a larger industrial consumption outside urban areas and larger residential consumption 

at relatively higher altitudes. As expected, average opex are also increasingly larger when going from Class 1 

to Class 3. Nonetheless, the partial productivity measure opex/customers is consistently higher in Class 1 than 

in Class 2 and 3, while the same measure per volume (opex/volumes) indicates higher partial productivity in 

Class 2 than in Class 3 and Class 1. The identified classes are fully stationary - the DSOs’ allocation does 

not change over the observation period. 
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Table 2. Descriptive statistics of the three classes: HCP.  

Variable Mean  
(Std. Dev.) 

103 Sample Class 1 – HCP Class 2 – 
HCP 

Class 3 – 
HCP 

Customers 102,922 
(211,886) 

42,404 
(87,613) 

92,254 
(192,199) 

229,476 
(331,222) 

volumes [million m3] 169 
(350) 

58 
(70) 

174 
(351) 

289 
(496) 

area [km2] 966 
(2,211) 

1,391 
(2,459) 

920 
(2,312) 

633 
(1,037) 

customer density 
[customers/m] 

0.088 
(0.050) 

0.047 
(0.020) 

0.079 
(0.023) 

0.179 
(0.057) 

output density 
[m3/customers] 

1,862 
(743) 

1,891 
(949) 

1,985 
(639) 

1,259 
(584) 

altitude [m] 184 
(181) 

489 
(166) 

122 
(86) 

79 
(84) 

opex [million €] 4.62 
(9.95) 

2.12 
(4.13) 

4.50 
(10.50) 

8.40 
(11.50) 

opex/customers 
[€/customers] 

52.32 
(31.83) 

63.73 
(40.90) 

51.82 
(29.98) 

39.98 
(20.07) 

opex/volumes [€/m3] 0.032 
(0.022) 

0.039 
(0.026) 

0.028 
(0.017) 

0.040 
(0.030) 

network [km] 1,152 
(2,281) 

797 
(1,253) 

1,214 
(2,530) 

1,322 
(2,069) 

Observations 412 77 275 60 
 

5.2 LATENT CLASS MODEL (LCM) 

We also use an LCM as a clustering alternative. With the specification in eq. (1), convergence is ensured up 

to five classes. As illustrated in Table A.3 in Appendix A, both AIC and BIC show the largest improvement 

when moving from three to four classes. Consistently, we select four as the optimal number of classes and 

use the estimated posterior probabilities to define observations’ class membership.15 The estimated 

coefficients for each class are reported and discussed in Appendix A (see Table A.4).  

Table 3 reports the descriptive statistics per class. Class 1 includes firms delivering relatively small outputs 

(customers and volumes) and characterized by low customer density and high altitude (average output density). 

Average opex are only slightly higher than for DSOs in Class 2, characterized by higher levels of outputs, 

higher customer density, and lower, but still relatively high altitude (and average output density).16 Firms in Class 

3 have the highest outputs across classes, a higher customer density and significantly higher average opex than 

firms in Class 1 and Class 2 (also lower altitude and lower output density). Firms in Class 4 appear peculiar in 

that they produce outputs aligned with those produced by firms in Class 2, but with much higher average 

opex (in the order of three times more than firms in Class 2). Nevertheless, firms in Class 4 also serve areas 

                                                      
15 These probabilities show that firms can be distinguished with an acceptable degree of confidence – minimum 
probabilities are always greater than 0.42. 
16 When looking at the mean, the number of customers in Class 1 is lower than in Class 2, while opex is higher in Class 
1 than in Class 2. When considering median values, Class 1 has a lower number of customers and lower opex (see 
Supplementary Material).  
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with higher customer density and noticeably higher output density. The latter two indicators suggest a saturation 

of production resources, which might partially explain the difference in average opex with respect to Class 

2.  

In order to investigate clusters’ characteristics further, we performed both stationarity and outlier detection 

analyses17, which confirmed that this partition is able to separate out firms’ technological differences 

relatively well. Specifically, the generally high degree of stationarity (73% of DSOs is either in the same class 

over the 4 years or changes class at most once) suggests that the identified clusters tend to capture persistent 

technological differences (particularly Class 2 and 3). Nonetheless, only 30% of the firms in Class 4 are 

stationary. In our case, this seems to indicate that these firms are more likely to be undergoing a 

restructuring process due to mergers and acquisitions, although the interpretation of this result remains 

complex and requires specific knowledge of the sector.  

Interestingly, the outlier detection performed signals Class 1 as a cluster of outliers (24 out of 26). This 

indicates that the class does not necessarily capture a unique, separate technology, thus making the actual 

implementation of LCM for regulatory purposes more difficult. The same issue does not emerge for other 

classes. 

Table 3. Descriptive statistics of the four classes: LCM. 

Variable Mean (Std. 
Dev.) 

Full 
Sample 

Class 1 – 
LCM 

Class 2 – 
LCM 

Class 3 – 
LCM 

Class 4 – 
LCM 

Customers 171,012 
(566,098) 

91,473 
(261,845) 

142,837 
(534,582) 

257,653 
(724,831) 

141,862 
(254,048) 

volumes [million m3] 270 
(836) 

140 
(379) 

231 
(787) 

397 
(1,070) 

223 
(453) 

customer density 
[customers/m] 

0.088 
(0.049) 

0.083 
(0.047) 

0.087 
(0.049) 

0.089 
(0.050) 

0.094 
(0.049) 

output density 
[m3/customers] 

1,856 
(737) 

1,839 
(684) 

1,868 
(686) 

1,793 
(703) 

1,983 
(1,126) 

altitude [m] 185 
(179) 

197 
(208) 

193 
(189) 

169 
(152) 

169 
(175) 

opex [million €] 6.30 
(16.1) 

4.61 
(15.3) 

3.97 
(11.70) 

9.74 
(21.20) 

12.20 
(20.00) 

opex/customers 
[€/customers] 

51.84 
(31.74) 

19.61 
(11.89) 

39.01 
(16.19) 

66.92 
(25.97) 

113.51 
(37.08) 

opex/volumes [€/m3] 0.032 
(0.022) 

0.012 
(0.009) 

0.023 
(0.012) 

0.043 
(0.022) 

0.067 
(0.023) 

network [km] 1,897 
(5,885) 

1,417 
(4,018) 

1,554 
(5,516) 

2,830 
(7,382) 

1,579 
(3,375) 

area [km2] 1,805 
(6,532) 

1,442 
(4,350) 

1,402 
(5,979) 

2,865 
(8,468) 

1,408 
(3,374) 

Observations 420 26 243 115 36 

                                                      
17 Specifically, we applied non-parametric partial frontier efficiency analysis for outlier detection (order-alpha, see 
Tauschmann, 2012). 
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Finally, it is worth noting that, if we look at 12 DSOs classified as large by the NRA, both HPC and LCM 

results allocate DSOs to different clusters, suggesting that environmental variables are at least as important 

as size to define what are similar firms.18  

In terms of efficiency analysis, according to the literature, the LCM is expected to improve on the regulator’s 

ability to deal with observed and unobserved heterogeneity as compared to both size segmentation and 

HCP. To test this, we turn to the second step of the analysis. 

5.3 DEA ESTIMATION  

The efficiency scores for the OPEX DEA models estimated on the Full Sample and the 103 Sample are 

similar and suggest the presence of substantial inefficiency in the sector’s network-related activities (Table 

4). As the average DSO operates at 32.3% corrected efficiency for the Full Sample (32.9% for the 103 

Sample), it is clear that these results are significantly lower than those obtained in the two previous studies 

regarding the Italian gas distribution sector. Erbetta and Rappuoli (2008), with smaller samples and less 

heterogeneous data, estimate an average VRS efficiency of 63.4%, while Goncharuk and lo Storto (2017) 

report an average VRS efficiency of 75.1%.19  

Table 4. Descriptive statistics of VRS efficiency scores from OPEX model: Full Sample and 103 Sample. 

 Mean Std. Dev. Min p25 p50 p75 Max Obs. 
Full Sample         
Eff. Scores 0.368 0.213 0.060 0.204 0.314 0.479 1 420 
Bias Corrected Eff. Scores 0.323 0.181 0.048 0.182 0.287 0.420 0.931 420 
103 Sample         
Eff. Scores 0.377 0.227 0.060 0.204 0.317 0.487 1 412 
Bias Corrected Eff. Scores 0.329 0.186 0.049 0.185 0.288 0.434 0.945 412 

 

                                                      
18 For example, 5 firms are assigned to Class 1- HCP, 4 firms to Class 2-HCP, and 1 firm to Class 3-HCP (2 are 
outliers, not included in the HCP classification). Class 1 - HCP and Class 2 - HCP can be interpreted as firms serving 
‘rural’ and ‘semi-urban’ areas. This is in line with expectations, as urban areas in the North and Centre of Italy are 
mostly served by local, municipal companies of medium size. The only “large” company in Class 3 – HCP served 
urban areas located in the South of the country. A more general comparison between HCP and LCM partitions can 
be found in the Supplementary Material. 
19 Nonetheless, it is worth noting that our results are not fully comparable with these studies, because they differ from 
ours in the sample size and in the choice of inputs and outputs. Erbetta and Rappuoli (2008)’s model uses our same 
outputs but total expenditures as the only input. Their sample includes 46 Italian DSOs in the pre-liberalization period 
(1994–1999). In their study of Italian and Ukrainian DSOs, Goncharuk and lo Storto (2017) rely on multiple inputs 
(material costs, employees and fixed assets) and outputs (volumes of natural gas and service area). Their sample 
includes 36 Italian and 30 Ukrainian companies observed in 2013. Notably, both studies refer to gas distribution as a 
whole, while ours focuses on network operations only. Nonetheless, our results differ from other DEA-based 
benchmarking analyses. Carrington et al. (2002) find average VRS efficiency of 87% for their sample of Australian and 
U.S. gas distribution operators; Zoric et al. (2009) average VRS efficiency of 71% in the UK, the Netherlands, and 
Slovenia; Ertürk and Türüt-Aşik (2011) average efficiency of 83% in Turkey; Tovar et al. (2015) 78% in Brazil. For 
further comparison with the literature we refer to the results (reported in the Supplementary Material) obtained using 
the DEA models that include network (as an additional input) and area (as an additional output). 
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Nevertheless, it seems unlikely that such a difference in performance between an average Italian DSO and 

the firm(s) on the DEA frontier is only due to inefficiency. More sensibly, it highlights that clear 

comparability issues arise when using the full sample without accounting for firms’ heterogeneity. For 

example, as shown in Table 5, higher efficiency scores are found, on average, by using the regulator’s size 

segmentation approach. Here we find an average bias corrected efficiency of 36.7%. However, small DSOs 

still exhibit a large variance in their performance, while medium-sized DSOs are associated with higher 

levels of efficiency than large ones. In this respect, two remarks are in order. 

First, this result clearly supports our claim that size (the number of customers) cannot be the only variable 

affecting firms’ efficiency. Moreover, our result is in line with the existing literature, which finds economies 

of scale for smaller DSOs, but none for large ones (Carrington et al., 2002; Farsi et al., 2007; Erbetta & 

Rappuoli, 2008). Second, that same result clearly challenges the regulatory decision to set for medium DSOs 

higher X-factors than for large ones. Indeed, our results suggest that lower efficiency improvements should 

be expected from medium-sized firms rather than from large ones. This is opposite to the current 

regulator’s assumptions, which thus would appear less neutral (where neutrality implies absence of biased 

treatment across operators), in itself a desirable characteristic of regulatory decisions (Agrell & Brea-Solìs, 

2017).  

Table 5. Average VRS efficiency scores per classes (OPEX model) – size segmentation, HCP, and LCM. 

 OPEX Obs. 

 Eff. Scores Bias Corrected 
Eff. Scores 

 

Size segmentation    
Class 1 – Large 0.538 0.417 46 
Class 2 – Medium 0.581 0.529 111 
Class 3 – Small  0.335 0.281 263 
Total 0.422 0.367 420 
HCP    
Class 1 – HCP  0.527 0.468 77 
Class 2 – HCP 0.426 0.377 275 
Class 3 – HCP 0.599 0.514 60 
Total 0.470 0.414 412 
LCM    
Class 1 – LCM  0.820 0.753 26 
Class 2 – LCM 0.502 0.445 243 
Class 3 – LCM 0.714 0.676 115 
Class 4 – LCM 0.810 0.747 36 
Total 0.606 0.553 420 

 

When considering average efficiency scores obtained with HCP, we observe that the average efficiency 

scores obtained for Class 1-HCP and Class 3-HCP (77 and 60 obs., respectively) are aligned or higher than 

those obtained for Class 1-Large and Class 2-Medium (46 and 111 obs., respectively) obtained with size 

segmentation. Also, the number of observations with very low efficiency scores in the largest size 
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segmentation Class 3-Small (263 obs.) decreases when compared with scores in Class 2-HCP (275 obs.).20 

The latter is even more visible for the largest class obtained with the LCM (Class 2-LCM, 243 obs.). 

Furthermore, Class 2-LCM (243 obs.) and Class 3-LCM (115 obs.) have higher average efficiency scores 

than classes of similar or smaller size obtained with size segmentation or with HCP. Notably, when 

employing the LCM, the number of observations with very low efficiency scores (e.g., below 30%) decreases 

substantially, pointing to a key advantage of this approach (detailed descriptive statistics for the efficiency 

scores reported in Table 5 are found in the Supplementary Material – see also Figure S1). 

Moreover, the fact that large firms as per NRA definition are assigned to different clusters in both methods 

confirms again that size is not the only explanation for a DSO’s efficiency. For example, we note that five 

of the large stationary firms are allocated to Class 3-LCM or Class 4-LCM, which exhibit a relatively high 

average efficiency score with respect to other classes. This would be in line with the current regulatory 

approach, whereby efficiency improvements for “large” distributors are relatively less demanding. 

However, a different approach would be envisaged for the “large” firms allocated to Class 2-LCM (relatively 

low average efficiency score). Because these are only four, it would be feasible for the regulator to 

individually analyze their peculiarities and motivate an expectation of higher efficiency improvements. 

Similar considerations can be made for the HCP partition. 

In sum, the overall average bias-corrected efficiency increases to 41.4% with HCP, and to 55.3% with 

LCM.21 This confirms that, by running a cluster analysis before benchmarking, NRAs would reduce the 

heterogeneity component otherwise erroneously attributed to inefficiency, and obtain more reliable and 

realistic measures of relative performance within classes.22 Moreover, relatively to the Italian gas 

distribution, the LCM performs better than other approaches when the same input-output relationship is 

employed in the two steps (Llorca et al., 2014), also in the presence of contextual factors (Nieswand & 

Seifert, 2018). Another advantage of LCM with respect to HCP is that, by estimating a cost driver function, 

it captures better the differences in the technology employed by firms. Instead, HCP relies more on 

topological differences, which do not necessarily imply technological differences. This feature is especially 

relevant for the regulator’s understanding of the drivers of firm efficiency, a field where the evidence 

provided by the existing literature is inconclusive.23 For example, results are mixed in the two previous 

                                                      
20 This would result in relatively easier efficiency targets for the firms in this class, reflecting a feasibility principle – 
improvements in cost efficiency take time to be implemented. 
21 These results are closer to those in Erbetta and Rappuoli (2008) and Goncharuk and lo Storto (2017), and are also 
robust to the inclusion of area as an additional output (see Supplementary Material) - average efficiency scores increase 
further compared to the OPEX model, although not substantially. Moreover, as expected, the models including 
network length as an input exhibit even higher average efficiency scores. 
22 Note that average efficiency scores were also higher than those obtained under size segmentation when HCP and 
LCM were applied using customers number as the only separating variable and assuming a three-class partition. 
Nonetheless, in both cases the average efficiency scores were lower than those obtained using multiple clustering 
variables. More details on the different partitions can be found in the Supplementary Material. We thank an 
anonymous referee for pointing out this issuesuggesting this additional analysis. Further details on can be found in 
Appendix B. 
23 Ertürk and Türüt-Aşik (2011) find that climate and customer density help explain differences in firms’ efficiency. 
Differently, Carrington et al. (2002) find that climate and network age have no significant effect, but they identify that 
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benchmarking studies on Italian DSOs. Erbetta and Rappuoli (2008) highlight the disadvantages of low 

customer density and suggest mergers among small firms. Goncharuk and lo Storto (2017) find no clear 

relationship between efficiency and geographical extension of the service area or its population. 

However, from the practitioners’ point of view, it is important that also the application of the HCP leads 

to interesting results. In fact, the identification of classes via LCM in the first step is, in practice, a rather 

complex task. In this regard, our analysis suggests that the difficulty in addressing heterogeneity can be 

amplified both by practical limitations in the implementation of LCMs and by data availability. Specifically, 

we highlight the convergence problems in LCM’s estimation. We ran several specifications, but most of 

them did not converge with more than three classes – in particular those that included input prices, which 

are to prefer for a proper specification of the cost function.24 Moreover, the choice of the number of classes 

based on information criteria entailed some discretion: while the AIC criterion generally showed 

improvements as the number of classes increased, the BIC criterion exhibited a non-univocal pattern, thus 

making the choice less straightforward. Further reasons for dismissing a partition were a discrepancy 

between the sign of the estimated coefficients and common technological knowledge of the sector under 

study, or the presence of at least one class with very few observations (precluding a robust estimation in 

the second step, even with a parsimonious DEA model). 

Overall, while our results clearly suggest moving away from simple size segmentation methods to better 

address firm heterogeneity, the choice between the alternative approaches (HCP and LCM) is less 

straightforward, especially in terms of practical implementation by the regulator. Indeed, both methods are 

statistically sophisticated, but also sensitive to outliers. Despite LCMs seem to provide deeper insights on 

the drivers of firm inefficiency, issues like data availability and recurrent convergence problems might favor 

the implementation of HCP methods.25 Furthermore, the degree of discretionary judgement in the 

modeling decisions (e.g., model specification and choice of the partition) is slightly higher for LCMs than 

for HCP. In this respect, the HCP, with its lower modeling and analytical complexity, may feature as a more 

appealing option. 

 

6. CONCLUSIONS AND POLICY IMPLICATIONS 

This paper focuses on Italian gas distribution to evaluate the challenges posed by firms’ heterogeneity in 

the application of benchmarking analysis for the regulation of network infrastructures. This is a particularly 

                                                      
small scale is a relevant source of inefficiency, in line with Zoric et al. (2009) that find that larger (and older) distributors 
perform better. Tovar et al. (2015) point out that customer and output density matter, while Farsi et al. (2007) find 
that network size and customer density are relevant efficiency drivers. 
24 Similar difficulties occurred in other applications (e.g., Agrell & Brea-Solìs, 2017) but not in others (e.g., Agrell et 
al., 2013 meet convergence problems after six classes, while Llorca et al., 2014 report none). 
25 For example, the use of LCMs may significantly restrict the number of specifications that can be employed, up to 
a point where it might “preclude the implementation of the theoretically appropriate model chosen by the regulator” 
(Agrell & Brea-Solìs, 2017, p. 367, footnote 15). 
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relevant issue not only in the Italian context, but also in other countries characterized by regulated sectors 

with a relatively high number of firms. In Europe, countries with a relatively high number of natural gas 

distribution companies include Germany, France, Poland, Romania and Portugal, while countries outside 

Europe include, for instance, Brazil, Colombia, Chile, Peru, and the US. Moreover, the ability of dealing 

with heterogeneity in an appropriate way is also crucial when performing international benchmarking 

analyses. 

Differently from existing studies that use aggregated distribution costs, we employ unbundled, network-

related costs, thus excluding expenditures for deregulated services (e.g., retail costs). We analyze and 

compare three approaches in terms of their ability to identify realistic and reliable best practices for DSOs 

and in terms of implementation complexity. All three involve a two-step analysis that identifies 

homogeneous classes of firms before estimating efficiency scores within classes through DEA, but they 

differ in the clustering methodology they use in the first step: size segmentation, hybrid clustering 

procedure, and latent class approach.  

We find that all clustering solutions are superior to benchmarking on the full sample, but HCP and LCM 

perform better than size segmentation in providing realistic efficiency estimates. These results indicate that, 

for the identification of best practices within heterogeneous firms, benchmarking based on clustering is 

superior to one on the full sample. This superiority holds when focusing on a single activity and/or cost 

component (e.g., network operations) of the tariff setting procedure. At the same time, our results do not 

univocally lead to a strong preference for one or the other more advanced methodologies.  

Our study has several policy implications for the regulatory and industry practice. First, our results advise 

against size segmentation methods for classification purposes and advocate in favor of clustering 

procedures that account for multiple sources of heterogeneity. In this respect, variables that are normally 

available to regulators with a high level of precision and that are stable over longer periods of time (e.g., 

customer density) are very useful.  

Second, our study challenges the Italian NRA’s assumption that expected productivity gains should linearly 

depend only on the DSOs’ size. On the contrary, equitable and realistic efficiency goals should guide 

managerial decisions in network-related activities. In fact, a narrow focus on firm size might even prevent 

managers exploring different opportunities for efficiency gains. On a side note, given the ongoing 

restructuring process of the Italian gas distribution sector, we also argue that the clustering criteria should 

be at least periodically updated.  

Third, when it comes to the choice of alternative clustering techniques, NRAs should consider that both 

HCP and LCM can adequately address heterogeneity through endogenous clusters’ creation. The adoption 

of a benchmarking method that properly accounts for firm heterogeneity will reduce lengthy negotiations 

with regulated firms and favor regulatory stability. However, both methods require proper treatment of 

potential outliers and imply a non-negligible degree of subjective judgment on the part of the regulator. The 
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latter is slightly higher for LCMs, where particular attention should also be paid to model specification: on 

the one hand, different specifications may lead to different (sometimes unrealistic) partitions; on the other 

hand, it may be difficult to identify at least one partition producing a workable number of observations per 

class. In these cases, the regulator would need to adopt one of the few viable specifications, thus making a 

discretionary choice that might be difficult to justify to firm management and industry stakeholders. 

Moreover, LCMs typically require large datasets. Even with a relatively high number of DSOs, a sufficiently 

long time series would still be necessary. This could be an issue for recent NRAs (that lack the necessary 

data), when accounting rules change, or when the industry undergoes structural modifications (which would 

undermine the stability of clusters’ composition).  

Nonetheless, in contexts where data availability is not an issue and the chosen model specification produces 

reasonable results, LCMs should be still preferred, as the method offers deeper insights on the drivers of 

firms’ inefficiency. When this is not the case, the HCP becomes the most suitable option. The method is 

relatively simpler to implement, and the operating conditions of potential outlier firms could be separately 

addressed by the regulator. In this sense, it provides an appealing option for regulators in jurisdictions 

where less modeling complexity would facilitate communication with different stakeholders (consumer 

associations, regulated firms) and ensure higher trust and participation in the regulatory process. 

To conclude, when selecting a clustering approach preliminary to benchmarking, all these factors should 

be carefully considered to balance implementation complexity and effective identification of firms’ best 

practices. While our study offers a first contribution in this direction, further work should focus on solving 

these complexities and providing clear guidelines to NRAs that have to deal with heterogeneity in 

benchmarking analyses. To this end, further empirical investigation (and related micro-data collection) is 

needed on the technological characteristics that drive the variance of the efficiency of energy firms. This 

will be crucial to inform policy decisions that shape the performance of network system operators under 

the current technology transition.  
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APPENDIX A.   

 

Table A.1 reports the standard operational unit cost and the expected efficiency gains (X factor) in the 

Italian regulation over the period 2000-2020. 

 

Table A.1. Summary of regulatory deliberations (2000-2020). 

Deliberation 
Nr. 

Tariff 
Period Years Standard operational unit cost 

[€/customer] X factor 

237-00 I 2000-03 n.a.  

170-04 II 2004-08 122.13 5% 

159-08 III 2009-12 
Between 56.46 for small firms with low 

customer density, and 39.30 for large firms 
with high customer density 

Small 5.4%; 
Medium 4.6%; 

Large 3.2% 

367-14 & 
775-16 IV 

2014-19 (standard 
operational unit costs 
are given for the year 

2017 as values changed 
over the period) 

Between 51.35 for small firms with low 
customer density, and 24.40 for large firms 

with high customer density 

Small 2.5%; 
Medium 2.5%; 

Large 1.7% 

570-19 V 2020-25 

Between 43.59 for small firms with low 
customer density and 26.55 for large firms 

with high customer density (if public tender 
not completed), and between 33.68 for 
smaller concessions with low customer 

density and 26.55 for larger concessions with 
high customer density (if public tender 

completed) 

Small 6.59%; 
Medium 4.79%; 

Large 3.53% 

  

Table A.2 shows the results obtained when applying the Calinski-Harabasz rule and the Duda-Hart rule, 

to select the optimal number of clusters in the HCP. The selected number of clusters is three, as it 

corresponds to the highest values of both rules’ statistics. 

Table A.2. Stopping rules. Calinski-Harabasz rule (panel A) and Duda-Hart rule (panel B). 

Number of Clusters Calinski-Harabasz rule Duda-Hart rule 
 Pseudo-F Je(2)/Je(1) Pseudo T-squared 
1 - 0.77 122.55 
2 122.55 0.72 125.39 
3 125.13 0.80 69.81 
4 108.52 0.77 68.51 
5 101.38 0.64 49.93 
6 114.56 0.47 77.99 
7 123.32 0.51 64.31 
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Table A.3 reports the Akaike’s (AIC) and the Bayesian (BIC) information criteria for the identification of 

the more appropriate number of clusters in the LCM. As both AIC and BIC show the largest improvement 

when moving from three to four classes, the selected number is four.  

Table A.3. Choice of the number of classes: AIC and BIC criteria. 

Number of classes AIC BIC 
1 675.28 695.48 
2 668.15 720.68 
3 637.89 718.69 
4 599.01 708.10 
5 593.60 730.97 

 

Table A.4 shows the LCM estimation results with four classes. Results indicate that as output (customers) 

rise, opex increases. As expected, also volumes of gas served increase opex in all classes but for Class 3. As for 

the latter, although the sign is negative, the same variable does not have a significant effect on opex.  Customer 

density was expected to have a negative, significant effect on all classes. This appears to be true only for 

Class 3. While the same variable has no significant effect in Class 1 and in Class 2, the effect on opex is 

significant and positive in Class 4. Notably, Class 4 has the highest customer density across classes, pointing 

to increasing difficulties encountered when serving extremely dense areas. Finally, altitude was expected to 

have a positive, significant effect on all classes. This is confirmed, however, only for relatively lower altitudes 

(for Class 3 and Class 4).  Note that, the contextual variable output density was dropped because of collinearity. 

Table A.4. LCM estimation results with four classes. 

 Class 1 Class 2 Class 3 Class 4 
 coefficient 

(standard error) 
Coefficient 

(standard error) 
coefficient 

(standard error) 
coefficient 

(standard error) 
log (customers) 0.866*** 

(0.135) 
0.557*** 
(0.077) 

0.902*** 
(0.38) 

0.506*** 
(0.044) 

log (volumes) 0.435*** 
(0.139) 

0.365*** 
(0.074) 

- 0.063 
(0.039) 

0.410*** 
(0.045) 

customer density - 0.816 
(1.035) 

- 0.899 
(0.628) 

- 1.309*** 
(0.399) 

1.051* 
(0.608) 

Altitude 0.000 
(0.000) 

0.000 
(0.000) 

0.001*** 
(0.000) 

0.000* 
(0.000) 

const. - 3.353*** 
(1.204) 

1.817*** 
(0.601) 

6.320*** 
(0.324) 

2.395*** 
(0.440) 

Sigma 0.204*** 
(0.039) 

0.361*** 
(0.026) 

0.102*** 
(0.015) 

0.092*** 
(0.014) 

prior class probability 0.095 
(0.025) 

0.603 
(0.041) 

0.219 
(0.034) 

0.083 
(0.016) 

a Note: ***, **, *: significant at 1%, 5% and 10%, respectively. 
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APPENDIX B.   

To directly compare the results of the size segmentation approach with the HCP and LCM methods, the 

latter two were applied using a single separating variable (size) and assuming a pre-fixed number of classes 

(3). The resulting allocation is as follows: 

 Size-segmentation: 11% of the observations are Large, 27% are Medium, and 62% are Small; 

 HCP: 8% of the observations are in Class 1-HCP, 88% are in Class2-HCP, and 5% are in Class3-

HCP; 

 LCM: 30% of the observations are in Class 1-LCM, 49% are in Class2-HCP, and 21% are in Class3-

HCP. 

As illustrated in Table B.1, the HCP partition tends to aggregate most DSOs in one class, separating out 

DSOs characterized by bigger size. On the contrary, no evident overlap emerges between size segmentation 

and LCM, where each class includes DSOs of all sizes.  

Table B.1. Direct comparison of size-segmentation with HCP and LCM partitions assuming one 
separating variable (size) and three classes. 

 
Class 1-

HCP 
Class 2-

HCP 
Class 3-

HCP 
Class 1-
LCM 

Class2-
LCM 

Class 3-
LCM 

Large 50% 0% 50% 29% 59% 12% 
Medium 7% 93% 0% 29% 52% 19% 

Small 0% 100% 0% 32% 47% 21% 
 


