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Two fundamental invariants attached to a projective variety 
are its classical algebraic degree and its Euclidean Distance 
degree (ED degree). In this paper, we study the asymptotic 
behavior of these two degrees of some Segre products and 
their dual varieties. We analyze the asymptotics of degrees of 
(hypercubical) hyperdeterminants, the dual hypersurfaces to 
Segre varieties.
We offer an alternative viewpoint on the stabilization of the 
ED degree of some Segre varieties. Although this phenomenon 
was incidentally known from Friedland-Ottaviani’s formula 
expressing the number of singular vector tuples of a general 
tensor, our approach provides a geometric explanation.
Finally, we establish the stabilization of the degree of the dual 
variety of a Segre product X × Qn, where X is a projective 
variety and Qn ⊂ Pn+1 is a smooth quadric hypersurface.
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1. Introduction

Let V R be a real vector space equipped with a distance function and let X ⊂ P (V R⊗R

C) be a complex projective variety. Two fundamental features of X are its degree and 
its Euclidean Distance degree (ED degree). While the first is one of the basic numerical 
invariants of an algebraic variety, the second was recently introduced in [6] and since 
then has found several interesting applications in Pure and Applied Algebraic Geometry 
[5,27,8,7,2,14,16].

The aim of this paper is to initiate a study of the asymptotic behavior of these two 
important notions attached to some special varieties and their duals. These varieties are 
Segre products, i.e. images of direct products of projective varieties through the Segre 
embedding. Our perspective is naturally inspired by the recently emerging interest in 
stabilization properties in Algebraic Geometry and Representation Theory, seeking for 
results about large families of related varieties at once, rather than specific instances. 
The discussion around [5, Conjecture 1.3] motivated this work. Indeed we found the 
geometrical explanation sought in [5] (see Corollary 4.14 and its proof). We hope that the 
specialization technique of this paper may open the road towards new results, including 
the above conjecture.

Whenever a classical Segre variety Pk1×· · ·×Pkd ⊂ P (Ck1+1⊗· · ·⊗Ckd+1) is not dual 
defective, i.e. its dual variety is a hypersurface, the polynomial defining the latter is the 
hyperdeterminant [12, Chapter 14]. These higher analogues of matrix determinants are 
of utmost importance and yet their properties are far from being completely understood. 
Hyperdeterminants play a prominent role behind all the results in this paper.

We now showcase our results. We start off from the very classical (hypercubical) 
hyperdeterminants of the Segre variety P (Cn+1)×d establishing an asymptotic formula 
of its degree as the dimension n + 1 of the vector space goes to infinity.

Theorem (Theorem 3.8). Let N(n1d) be the degree of the hyperdeterminant of format 
(n + 1)×d. Then asymptotically, for d ≥ 3 and n → +∞,

N(n1d) ≈ (d− 1)2d−2

[2π(d− 2)] d−1
2 d

3d−6
2

· (d− 1)dn

n
d−3
2

.

This should be compared to the behavior of the ED degree (with respect to the Frobe-
nius inner product introduced in Definition 4.1) of the Segre variety X = P (Cn+1)×d

for d ≥ 3 and n → +∞, found by Pantone [22]:

EDdegreeF (X) ≈ (d− 1)d−1

(2π) d−1
2 (d− 2) 3d−1

2 d
d−2
2

· (d− 1)dn

n
d−1
2

.

The result is shown using a theorem of Raichev-Wilson [28] and performing a similar 

analysis to the one of Pantone [22], for approximating the number of singular vector 
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tuples introduced by Lim [17] and Qi [25]. Indeed, the source of this result is the sur-
prising similarity between two infinite series a priori unrelated: the generating function 
of the degrees of hyperdeterminants [12, Theorem 2.4, Chapter 14] and the generating 
function of Ekhad and Zeilberger [9, Theorem 1.2] resulting from the ED degree formula 
of Theorem 4.6. Note that the hyperdeterminant grows faster, unless the trivial case 
d = 2 of ordinary matrices, where both sequences collapse to n + 1 (here the hyperde-
terminant coincides with the determinant of a square matrix of order n + 1, whereas 
EDdegreeF (X) = n +1 by the Eckart-Young Theorem). This is in contrast with the first 
nontrivial case of 2 × 2 × 2 tensors, where the degree of the hyperdeterminant is 4 and 
EDdegreeF (X) = 6.

Another asymptotic result is proved for n = 1, i.e., when X is a Segre product of d
projective lines, the basic space of qubits in Quantum Information Theory. In this case, 
we let d → +∞ (see Proposition 3.12).

The stabilization of the Frobenius ED degree of some Segre varieties is a very in-
teresting phenomenon. This is apparent from expanding Friedland-Ottaviani’s formula, 
which expresses the number of singular vector tuples of a general tensor in a given for-
mat. However, to the best of our knowledge, a geometrical explanation was missing. 
We fill this gap providing a geometric view of this behavior that is tightly related to 
hyperdeterminants.

Theorem (Theorem 4.13 and Corollary 4.14). Let dim(Vi) = ni+1 and dim(W ) = m +1, 
N =

∑d
i=1 ni and m ≥ N . Let Det be the hyperdeterminant in the boundary format 

(n1+1) ×· · ·×(nd+1) ×(N+1). Consider a tensor t ∈ P (V1⊗· · ·⊗Vd⊗CN+1) ⊂ P (V1⊗
· · ·⊗Vd⊗W ) with Det(t) 	= 0. Then the critical points of t in P (V1) ×· · ·×P (Vd) ×P (W )
lie in the subvariety P (V1) × · · · × P (Vd) × P (CN+1).
Moreover, for all m ≥ N , we have

EDdegreeF (Pn1 × · · · × Pnd × Pm) = EDdegreeF
(
Pn1 × · · · × Pnd × PN

)
.

Furthermore, Theorem 4.12 gives a rather detailed description of the critical points of 
a tensor t in the hypothesis of the previous result: they exhibit an interesting behavior 
as they distribute either on the subspace where the tensor t lives or on its orthogonal.

Our last contribution deals with the stabilization property of the degree of the dual 
varieties of some particular Segre products of projective varieties.

Theorem (Corollary 5.6). Let X be a projective variety of dimension m. For n ≥ 0, let 
Qn ⊂ Pn+1 be a smooth quadric hypersurface. Suppose that (X×Qm)∨ is a hypersurface. 
Then (X ×Qn)∨ is a hypersurface of the same degree as (X ×Qm)∨ for all n ≥ m.

At first glance, the two stabilization phenomena described in Corollaries 4.14 and 5.6
seem to be independent. Surprisingly, a relationship appears when X is a Segre product 

Pk1 × · · · × Pk� . In this case the variety X ×Qn is the largest irreducible component of 
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isotropic elements in Y = X×Pn+1 and it is, for large n, the only irreducible component 
such that its dual is a hypersurface. If we could apply [20, Theorem 6.3] which states 
2EDdegree(Y ) = deg(Y ∩ Q)∨, then the equivalence between Corollaries 4.14 and 5.6
would follow. Although [20, Theorem 6.3] cannot be directly applied in this case, this was 
a guide for our study. Indeed, from the study of the ED polynomial of the Segre variety 
X×Pn+1 (with respect to the Frobenius inner product), we observed in various examples 
that EDdegreeF (X ×Pn+1) stabilizes for n → +∞ if deg[(X ×Qn)∨] stabilizes too, and 
vice-versa (see §5.1 for some related open problems). In a second step, we generalized 
Corollary 5.6 to an arbitrary projective variety X using an explicit description of the 
polar classes [15, §3] of X ×Qn, showing several binomial identities involving them.

The paper is organized as follows. In §2, we fix notation and introduce the terminology 
used throughout the article. In §3, we derive the asymptotic formula for the degree of the 
(hypercubical) hyperdeterminants. As an additional result, in §3.2 we give an asymptotic 
formula for the degree of the hyperdeterminant of format 2×d as d goes to infinity. In 
§4, we first provide a description of critical points for tensors of boundary format as 
in Theorem 4.12. Thereafter we show Theorem 4.13 and Corollary 4.14, along with 
recording other observations. In §5, we recall polar classes and utilize them to establish 
the stabilization of the degree featured in Corollary 5.6. In §5.1, we mention some by-
products of the stabilization above and formulate some intriguing conjectures, naturally 
emerging from our experiments.

2. Preliminaries

Throughout the paper, we let V1, . . . , Vd be complex vector spaces of dimensions 
dim(Vi) = ni + 1, respectively. A (complex) tensor of format (n1 + 1) × · · · × (nd + 1) is 
a multilinear map t : V ∗

1 × · · · × V ∗
d → C, i.e., an element of the tensor product (over C) 

V := V1 ⊗ · · · ⊗ Vd.

Definition 2.1. A tensor t ∈ V is of rank one (or decomposable) if t = v1 ⊗ · · · ⊗ vd for 
some vectors vj ∈ Vj for all j ∈ [d] := {1, . . . , d}. Tensors of rank at most one in V form 
the affine cone over the Segre variety of format (n1 +1) ×· · ·× (nd +1), that is the image 
of the projective morphism

Seg : P (V1) × · · · × P (Vd) → P (V )

defined by Seg([v1], . . . , [vd]) := [v1 ⊗ · · · ⊗ vd] for all non-zero vj ∈ Vj . The Segre variety 
introduced above is often denoted simply by P (V1) × · · · × P (Vd).

For the ease of notation, in the rest we will abuse notation identifying a tensor t ∈ V

with its class in projective space.

Definition 2.2 (Dual varieties). Let X ⊂ P (W ) be a projective variety, where dim(W ) =

n + 1. Its dual variety X∨ ⊂ P (W ∗) is the closure of all hyperplanes tangent to X
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at some smooth point [12, Chapter 1]. The dual defect of X is the natural number 
δX := n − 1 − dim(X∨). A variety X is said to be dual defective if δX > 0. Otherwise, 
it is dual non-defective. When X = P (W ), taken with its tautological embedding into 
itself, X∨ = ∅ and codim(X∨) = n + 1.

Of particular interest are dual varieties of Segre varieties, whose non-defectiveness is 
characterized by the following result.

Theorem 2.3. [12, Chapter 14, Theorem 1.3] Let X = P (V1) × · · · × P (Vd) be the Segre 
variety of format (n1 + 1) × · · · × (nd + 1), and let nj = max{ni | i ∈ [d]}. Then X is 
dual non-defective if and only if

nj ≤
∑
i�=j

ni ∀ j ∈ [d] .

Definition 2.4 (Hyperdeterminants). Let X = P (V1) × · · · × P (Vd) be the Segre variety 
of format (n1 + 1) × · · · × (nd + 1). When X is dual non-defective, the polynomial 
equation defining the hypersurface X∨ ⊂ P (V ∗) (up to scalar multiples) is called the 
hyperdeterminant of format (n1 + 1) × · · · × (nd + 1) and is denoted by Det. When the 
format (n1 + 1) × · · · × (nd + 1) is such that nj =

∑
i�=j ni for nj = max{ni | i ∈ [d]}, 

the hyperdeterminant is said to be of boundary format. The hyperdeterminant of format 
(n + 1)×d is said to be hypercubical.

3. Asymptotics of degrees of some hyperdeterminants

In this section, we establish the asymptotic results for hyperdeterminants of formats 
(n + 1)d (as n → +∞) and formats 2d (as d → +∞).

3.1. Asymptotics for the hyperdeterminant of (Pn)×d

Let x = (x1, . . . , xd) be a coordinate system in Cd. Let α = (α1, . . . , αd) ∈ Nd be a 
d-tuple of natural numbers. Define xα := xα1

1 · · ·xαd

d .
Raichev and Wilson [28] gave a method to find the asymptotic behavior of the co-

efficients of a multivariate power series 
∑

α∈Nd fαxα in the variables x1, . . . , xd, which 
is the Taylor expansion of a function F = G/Hp, where G and H are holomorphic 
functions in a neighborhood of the origin of Cd. They showed that the asymptotics of 
fnα, for α ∈ Nd, is governed by special smooth points of the complex (analytic) variety 
V := {H(x) = 0} ⊂ Cd.

Definition 3.1 (Strictly minimal point). Let V ⊂ Cn be a complex variety. For a point 
c ∈ Cd, its polydisc is D(c) := {y ∈ Cd such that |yi| ≤ |ci| for all i}. A point c ∈ V is 

strictly minimal if it is the only point in V ∩D(c).
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Definition 3.2 (Critical point). Let V ⊂ Cn be the variety defined by H(x) = 0. A 
smooth point c = (c1, . . . , cd) ∈ V is critical if it is smooth and c1∂1H(c) = c2∂2H(c) =
· · · = cd∂dH(c). It is isolated if there is a neighborhood of c ∈ V where it is the only 
critical point.

Theorem 3.3 ([28, Theorem 3.2]). Let d ≥ 2 and let F = G/H2, whose Taylor expansion 
in a neighborhood of the origin is 

∑
α∈Nd fαxα. Suppose c ∈ V = {H(x) = 0} is a 

smooth with cd∂dH(c) 	= 0, strictly minimal, critical, isolated, and non-degenerate point. 
Then, for all N ∈ N, as n → +∞,

fn1 ≈ c−n1

⎡⎣((2πn)d−1 det g̃′′(0)
)−1/2

1∑
j=0

∑
k<N

(n + 1)2−1−j

(2 − 1 − j)! j!n
−kLk(ũj , g̃)

+ O
(
n1−(d−1)/2−N

)⎤⎦ .

In the original formula of Raichev-Wilson, we substituted α = (1, . . . , 1) = 1 and p = 2.

Theorem 3.4 ([12, Theorem 2.4, Chapter 14]). The generating function of the degrees 
Nd(k1, . . . , kd) of the hyperdeterminants of format 

∏d
i=1(ki + 1) is given by

∑
k∈Nd

Nd(k1, . . . , kd)xk =
[

d∑
i=0

(1 − i)ei(x)
]−2

,

where k = (k1, . . . , kd) and ei(x) is the i-th elementary function in the variables 
x1, . . . , xd.

Henceforth, we let H(x) :=
∑d

i=0(1 − i)ei(x) and V := {H(x) = 0}.

Lemma 3.5. For all i ∈ [d] we have ∂iiH(x) = 0. If additionally we consider the point 
c = ( 1

d−1 , 
1

d−1 , . . . , 
1

d−1 ), then

−∂i1···ikH(c) = k

(
d

d− 1

)d−k−1

∀ 1 ≤ i1 < · · · < ik ≤ d .

Proof. The first part follows immediately from the definition of H. For the second part, 
we have

−∂i ···i H(c) =
d∑

(j − 1)ej−k(ĉi ···i ) =
d−k∑

(i + k − 1)
(
d− k

)(
1
)i

,
1 k

j=k

1 k

i=0
i d− 1
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where ĉi1···ik denotes all the variables cj except ci1 , . . . cik , and ej−k is the (j − k)-th 
elementary symmetric function in d − k variables. Consider the (d − 1) × (d − 1) matrix 
M = (Mij)i,j , where

Mij =
(

d− k

j − k + 2

)(
1

d− 1

)j−k+2

∀ 0 ≤ i, j ≤ d− 2 ,

where we use the convention 
(
a
b

)
= 0 if b < 0. The matrix M just defined has equal rows. 

We found this construction convenient for visualizing the sums. By a direct computation, 
one verifies that the sum of the entries strictly below the diagonal of M is

∑
i>j

Mij =
∑
i,j

Mij −
∑
i≤j

Mij = (d− 1)
d−2∑
j=0

M1j −
∑
i≤j

Mij

= (d− 1)
(

d

d− 1

)d−k

+ ∂i1···ikH(c) .

On the other hand, the sum of the entries strictly below the diagonal of M is

∑
i>j

Mij =
d−3∑
j=0

(d− 2 − j)
(

d− k

j − k + 2

)(
1

d− 1

)j−k+2

= (d− k)
d−3∑
j=0

(
d− k − 1
j − k + 2

)(
1

d− 1

)j−k+2

=

= (d− k)
d−3∑

j=k−2

(
d− k − 1
j − k + 2

)(
1

d− 1

)j−k+2

= (d− k)
d−k−1∑
s=0

(
d− k − 1

s

)(
1

d− 1

)s

=

= (d− k)
(

d

d− 1

)d−k−1

.

Hence

−∂i1···ikH(c) = (d− 1)
(

d

d− 1

)d−k

− (d− k)
(

d

d− 1

)d−k−1

= k

(
d

d− 1

)d−k−1

. �

Proposition 3.6. The point c = ( 1
d−1 , 

1
d−1 , . . . , 

1
d−1 ) ∈ V is smooth with cd∂dH(c) 	= 0, 

strictly minimal, critical, isolated, and non-degenerate.

Proof. We first show that the point c = ( 1
d−1 , 

1
d−1 , . . . , 

1
d−1 ) sits in V. This choice of c
is the one made by Pantone in [22]. We have
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d∑
i=0

(1 − i)ei(c) =
d∑

i=0
(1 − i)

(
d

i

)(
1

d− 1

)i

=
d∑

i=0

(
d

i

)(
1

d− 1

)i

−
d∑

i=0
i

(
d

i

)(
1

d− 1

)i

=

=
(

d

d− 1

)d

− d

d− 1

d∑
i=1

(
d− 1
i− 1

)(
1

d− 1

)i−1

=
(

d

d− 1

)d

− d

d− 1

d−1∑
j=0

(
d− 1
j

)(
1

d− 1

)j

=

=
(

d

d− 1

)d

−
(

d

d− 1

)d

= 0 ,

namely c belongs to V. Moreover, by Lemma 3.5 we have that

−∂dH(c) =
(

d

d− 1

)d−2

	= 0 ,

namely c is a smooth point of V. The criticality of c follows from the symmetry of both 
c and H. Furthermore, the point c is strictly minimal and isolated by the proofs of [22, 
Proposition 2.3, Proposition 2.6].

It remains to show that the point c is non-degenerate. By [28, Definition 3.1], the 
point c is non-degenerate whenever the quantity det g̃′′(0) 	= 0. By [28, Proposition 4.2],

det g̃′′(0) = d qd−1 , q = 1 + c1
∂ddH(c) − ∂1dH(c)

∂dH(c) .

By Lemma 3.5, we have the identities

∂ddH(c) = 0, −∂1dH(c) = 2
(

d

d− 1

)d−3

.

Substituting these values in the expressions for q and det g̃′′(0), we observe that c is 
non-degenerate:

q = 1 −
(

1
d− 1

) 2
(

d
d−1

)d−3

(
d

d−1

)d−2 = d− 2
d

,

det g̃′′(0) = d

(
d− 2

)d−1

= (d− 2)d−1

d−2 	= 0 . �

d d
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Proposition 3.7. The following identity holds true:

L0(ũ0, g̃) = ũ0(c) = (d− 1)2d−2

d2d−4 .

Proof. The quantity Lk(ũj , ̃g) is defined in the statement of [28, Theorem 3.2]. For k = 0, 
we have L0(ũj , ̃g) = ũj(c). By [28, Proposition 4.3], we have ũ0(c) = G(c)

(−cd∂dH(c))2 , which 
gives the second equality in the statement. �
Theorem 3.8. Let N(n1d) be the degree of the hyperdeterminant of format (n + 1)×d. 
Then asymptotically, for d ≥ 3 and n → +∞,

N(n1d) ≈ (d− 1)2d−2

[2π(d− 2)] d−1
2 d

3d−6
2

· (d− 1)dn

n
d−3
2

.

Proof. By Theorems 3.3 and 3.4, for N = 1 and c = ( 1
d−1 , . . . , 

1
d−1 ), we have

N(n1d) ≈ (d− 1)dn
[

1
(2πn) d−1

2 det g̃′′(0) 1
2

(nL0(ũ0, g̃) + L0(ũ0, g̃) + L0(ũ1, g̃))

+ O

(
1

n
d−1
2

)]
,

as n → ∞. Define

ηd := 1
(2π) d−1

2 det g̃′′(0) 1
2
.

Then

N(n1d) ≈ (d− 1)dn
[
ηd L0(ũ0, g̃)n

n
d−1
2

+ ηd(L0(ũ0, g̃) + L0(ũ1, g̃))
n

d−1
2

+ O

(
1

n
d−1
2

)]
.

Since the second and third summand in the square brackets are both O(n 1−d
2 ), then

N(n1d) ≈ (d− 1)dn
[
ηd L0(ũ0, g̃)n

n
d−1
2

+ O

(
1

n
d−1
2

)]
= (d− 1)dn

[
ηd L0(ũ0, g̃)n

n
d−1
2

+ n

n
O

(
ηd L0(ũ0, g̃)

n
d−1
2

)]
= (d− 1)dn

[
ηd L0(ũ0, g̃)n

n
d−1
2

+ ηd L0(ũ0, g̃)n
n

d−1
2

O

(
1
n

)]
= ηd L0(ũ0, g̃)

(d− 1)dn

n
d−3
2

[
1 + O

(
1
n

)]
.

Conclusion follows by plugging in the identity for L0(ũ0, ̃g) of Proposition 3.7. �
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Remark 3.9. For d = 3 and d = 4 we recover the approximations

N(n13) ≈ 8n+1

3
√

3π

[
1 + O

(
1
n

)]
, N(n14) ≈ 36

29π
√
π

81n√
n

[
1 + O

(
1
n

)]
.

The approximation formula for d = 3 appears also in [29, A176097] and it is interesting to 
compare it with the asymptotic result proved by Ekhad and Zeilberger for the EDdegree 
which is (see [9,22])

C(n13) ≈ 2√
3π

8n

n

[
1 + O

(
1
n

)]
.

Remark 3.10 (A Segre-Veronese hyperdeterminant). Theorem 3.8 can be generalized 
further to a special class of Segre-Veronese varieties, with essentially the same calcula-
tions. We preferred to keep the statement for hypercubical hyperdeterminants of Segre 
varieties for the ease of notation.

Given ω ∈ Z≥0, the degree ω Veronese embedding of P (W ) is the image vωP (W ) of 
the projective morphism

vω : P (W ) → P (SωW ) (3.1)

defined by vω([z]) := [zω], where SωW is the degree ω symmetric power of W .
Segre-Veronese varieties are obtained combining the Veronese embedding vω already 

defined with the Segre embedding Seg introduced in Definition 2.1. More precisely, let 
(ω1, . . . , ωd) ∈ Nd. The degree (ω1, . . . , ωd) Segre-Veronese embedding of P (V1) × · · · ×
P (Vd) is the Segre embedding of the product vω1P (V1) × · · · × vωd

P (Vd), which we keep 
calling vω1P (V1) × · · · × vωd

P (Vd) for simplicity.
Now let N(k1, . . . , kd; ω1, . . . , ωd) be the degree of the hyperdeterminant, namely the 

polynomial defining the dual hypersuperface, when defined, of vω1P (V1) ×· · ·×vωd
P (Vd). 

Assume that ω1 = · · · = ωd = ω for some ω ∈ N. Applying [12, Theorem 2.4], one verifies 
that the generating function of the degrees Nd(k1, . . . , kd; ωd) is given by

∑
k∈Nd

Nd(k1, . . . , kd;ωd)xk =
[

d∑
i=0

(1 − ωi)ei(x)
]−2

.

In order to apply again Theorem 3.3, a possible choice of a point is c =(
1

ωd−1 , . . . ,
1

ωd−1

)
. Then asymptotically, for d ≥ 3 and n → +∞

N(n1d;ωd) ≈ (ωd− 1)2d−2

[2π(ωd− 2)] d−1
2 ω

4d−5
2 d

3d−6
2

(ωd− 1)dn

n
d−3
2

.

Remark 3.11 (The case of the discriminant). Now we focus on a special case of Re-
mark 3.10, namely when d = 1. Here, the number N(n; ω) is the degree of the dis-

criminant polynomial Δn,ω, i.e., the degree of the dual variety of the Veronese variety 
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X = vωP (V ). It is interesting to recall that when ω is even, denoting by ‖x‖2 the squared 
Euclidean norm of x, for any f ∈ SωV the polynomial

ψf (λ) := Δn,ω(f(x) − λ‖x‖ω) , (3.2)

where ‖x‖ω =
(
‖x‖2)ω/2, vanishes exactly at the eigenvalues of f (see [26, Theorem 

2.23], [30, Theorem 3.8]). This is a beautiful result first discovered by Liqun Qi, who 
called ψf the E-characteristic polynomial of f . Its degree is equal to

EDdegreeF (X) =
{
n + 1 for ω = 2
(ω−1)n+1−1

ω−2 for ω > 2 ,
(3.3)

where the quantity EDdegreeF (X) is recalled in Definition 4.2. The identity (3.3) was 
proved in [4, Theorem 5.5] and is a particular case of [11, Theorem 12]. However, this 
result had already essentially been known in complex dynamics by the work of Fornæss 
and Sibony [10].

From equation (3.3), we see that EDdegreeF (X) is much less than the degree of Δn,ω, 
which is N(n; ω) = (n + 1)(ω − 1)n. The reason of this huge degree drop in (3.2) is 
that the polynomial ‖x‖ω (for ω > 2) defines a non-reduced hypersurface, hence highly 
singular, where Δn,ω vanishes with high multiplicity: having a root of high multiplicity 
in (3.2) for λ = +∞ corresponds to a large degree drop. Our asymptotic analysis for the 
hyperdeterminant originally arose from the desire to understand whether some analogous 
result could have been true in the non-symmetric setting. One has the ratio

N(n;ω)
EDdegreeF (X) ≈ ω − 2

ω − 1 n as n → +∞ .

One might also analyze the asymptotics of N(n; ω) and EDdegreeF (X) for n fixed and 
ω → +∞. In this case, we have the ratio

N(n;ω)
EDdegreeF (X) ≈ n + 1 as ω → +∞ .

Instead of EDdegreeF (X), we might consider the generic ED degree of X, recalled in 
Definition 4.3. It was shown in [6, Proposition 7.10] that

EDdegreegen(X) = (2ω − 1)n+1 − (ω − 1)n+1

ω

(see Remark 4.21 for a more general case). From the last formula, we obtain the ratio

N(n;ω) n + 1

EDdegreegen(X) ≈ 2n+1 − 1 as ω → +∞ .
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3.2. Asymptotics for the hyperdeterminant of (P 1)×d

The degree of the hyperdeterminant of X = (P 1)×d is denoted by N(1d). Here we 
analyze the asymptotics with respect to d. By [12, Corollary 2.10, Chapter 14], the 
exponential generating function for N(1d) is

+∞∑
d=0

N(1d)x
d

d! = e−2x(1 − x)−2 .

Proposition 3.12. For d � 0, we have

N(1d) ≈
√

2π d
2d+1

2 (d + 3)
ed+2 .

Proof. We have

e−2x(1 − x)−2 =
+∞∑
i=0

(−2)i

i! xi
+∞∑
j=0

(j + 1)xj =
+∞∑
d=0

[
d!

d∑
i=0

(−2)i

i! (d− i + 1)
]
xd

d! .

Therefore,

N(1d) = d!
d∑

i=0

(−2)i

i! (d− i + 1) =

= d!
[
(d + 1)

d∑
i=0

(−2)i

i! −
d∑

i=1

(−2)i

(i− 1)!

]
= d!

⎡⎣(d + 1)
d∑

i=0

(−2)i

i! + 2
d−1∑
j=0

(−2)j

j!

⎤⎦ .

Both the inner sums converge to e−2 as d → +∞. Using the Stirling approximation for 
the factorial

d! ≈
√

2π d
2d+1

2

ed
, (3.4)

we obtain the desired asymptotic formula. �
Remark 3.13. Applying Theorem 4.6, one verifies that

EDdegreeF (X) = d! .

Moreover, the generic ED degree of X is (see Remark 4.21 for a more general formula)

EDdegree (X) = d!
d∑ (−2)i (2d+1−i − 1) = d!

[
2d+1

d∑ (−1)i −
d∑ (−2)i

]
. (3.5)
gen

i=0
i!

i=0
i!

i=0
i!
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The two inner sums converge to e−1 and e−2 as d → +∞, respectively. Using (3.4) we 
obtain the asymptotic formulas

EDdegreeF (X) ≈
√

2π d
2d+1

2

ed
, EDdegreegen(X) ≈

√
2π d

2d+1
2

ed+2 (2d+1e− 1) ,

so that

N(1d)
EDdegreeF (X) ≈ d + 3

e2 ,
N(1d)

EDdegreegen(X) ≈ d + 3
e2(2d+1e− 1) as d → +∞ .

In particular, the degree of the hyperdeterminant N(1d) grows faster than EDdegreeF (X)
and slower than EDdegreegen(X) as d → +∞.

4. Stabilization of the ED degree of some Segre varieties

Throughout the section, we let V R
1 , . . . , V R

d be real vector spaces of dimensions 
dim(V R

i ) = ni + 1, respectively. Recall from §2 that a real tensor of format (n1 + 1) ×
· · · × (nd + 1) is a multilinear map t : (V R

1 )∗ × · · · × (V R
d )∗ → R, i.e., an element of the 

tensor product (over R) V R := V R
1 ⊗ · · · ⊗ V R

d .
Suppose each V R

j comes equipped with an inner product (and so with a natural 
distance function). Their tensor product V R inherits a natural inner product defined as 
follows.

Definition 4.1. The Frobenius inner product of two real decomposable tensors t = x1 ⊗
· · · ⊗ xd and t′ = y1 ⊗ · · · ⊗ yd is

qF (t, t′) := q1(x1, y1) · · · qd(xd, yd) , (4.1)

and it is naturally extended to every vector in V R. When V R
j is equipped with the 

standard Euclidean inner product for all j ∈ [d], one finds that

qF (t, t′) =
∑

i1,...,id

ti1,...,idt
′
i1,...,id

(4.2)

for all t, t′ ∈ V R. The (squared) distance function is then δF (t, t′) := qF (t − t′, t − t′) for 
all t, t′ ∈ V R.

Analogously to what happens in a Euclidean space, it is natural to look at critical 
points of the distance function δF (t, ·) : XR → R from a given tensor t ∈ V R with respect 
to some special sets XR ⊂ V R. The most relevant for our purposes is the real affine cone 
over the Segre variety XR = P (V R

1 ) × · · · × P (V R
d ). This leads us to the more general 
definition of ED degree of an affine variety to be discussed in a moment.
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Let V R be a real vector space equipped with a distance function δ : V R × V R → R. 
Let XR ⊂ V R be a real affine variety and let u ∈ V be general. Consider the complex 
vector space V := V R ⊗C and the complex variety X := XC. The distance function δ is 
extended to a complex-valued function δ : V × V → C (which is not a Hermitian inner 
product). The point is that even though the function δ is truly a distance function only 
over the reals, the complex critical points of δ on X are important to draw all the metric 
information about the real affine cone XR.

Definition 4.2 (ED degree [6]). The Euclidean distance degree (ED degree) of X is the 
(finite) number of complex critical points of the function δ(u, _): X \Xsing → C, where 
Xsing is the singular locus of X. We denote it by EDdegreeδ(X) in order to stress its 
dependence on δ.

Definition 4.3 (Generic ED degree). The isotropic quadric associated to δ is the quadric 
hypersurface Qδ := {x ∈ V | δ(v, v) = 0}. When X is transversal to Qδ (this assumption 
holds for a general Qδ), the ED degree of X with respect to δ is called generic ED degree
of X and it is denoted by EDdegreegen(X).

In the following, we focus on the case when V = V1⊗· · ·⊗Vd, X = P (V1) ×· · ·×P (Vd)
and δ = δF . We write EDdegreeF (X) to indicate EDdegreeδF (X). The elements of the 
isotropic quadric QδF are called isotropic tensors of V .

Given a tensor t ∈ V , we refer to (complex) critical points of δF (t, ·) on X simply 
as critical points. Lim [17] and Qi [25] independently defined singular vector tuples of 
tensors and associated them to non-isotropic critical points of the distance function from 
the affine cone over the Segre variety XR. The next result is a reformulation of [17, Eq. 
(9)] and of [11, Lemma 19].

Theorem 4.4. Given a real tensor t ∈ V R, the non-isotropic decomposable critical points 
of t correspond to tensors v = σ

(
x(1) ⊗ · · · ⊗ x(d)) ∈ V such that qj

(
x(j), x(j)) = 1 for 

all j ∈ [d] and

qF

(
t, x(1) ⊗ · · · ⊗ x(j−1) ⊗ _⊗ x(j+1) ⊗ · · · ⊗ x(d)

)
= σ qj

(
x(j),_

)
∀ j ∈ [d] (4.3)

for some σ ∈ C, called a singular value of t corresponding to v. The corresponding d-ple (
x(1), . . . , x(d)) is called singular vector d-ple of t. (In view of these results, we shall refer 

to singular vector tuples simply as critical points.)

For each j ∈ [d], equation (4.3) may be written as

t
(
x(1) ⊗ · · · ⊗ x(j−1) ⊗ x(j+1) ⊗ · · · ⊗ x(d)

)
= σ xj , (4.4)

where, on the left-hand side, we have a contraction of the tensor t along the j-th direction. 

In analogy with matrices, the best rank one approximation problem for t is solved as 
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indicated in the following result by Lim [17, Eq. (9)] which we reformulate similarly to 
[11, Theorem 20].

Theorem 4.5. Let t ∈ V R be a real tensor. Then t admits real singular values and real 
critical points. Suppose σ̃ is a real singular value of t such that σ̃2 is maximum, and 
assume ṽ = σ̃

(
x̃(1) ⊗ · · · ⊗ x̃(d)) is a critical point corresponding to σ̃. Then ṽ is a best 

rank one approximation of the tensor t. Moreover, a best rank one approximation of t is 
unique if t ∈ V is general.

The number of singular vector d-ples of a general tensor t ∈ V , i.e., the ED degree of 
the Segre variety X = P (V1) × · · · × P (Vd) with respect to the distance function δF in 
V R, is the content of the next result.

Theorem 4.6. [11, Theorem 1] The ED degree of the Segre variety X = P (V1) × · · · ×
P (Vd) ⊂ P (V ) with respect to the Frobenius inner product δF in V R equals the coefficient 
of the monomial hn1

1 · · ·hnd

d in the polynomial

d∏
i=1

ĥni+1
i − hni+1

i

ĥi − hi

, ĥi :=
d∑

j �=i

hj .

Now assume that the tensor t ∈ V is expressed in coordinates by the multidimensional 
array (ti1··· id), where ij ∈ [nj + 1] for all j ∈ [d]. Then the critical points of t are of the 
form σ(x(1) ⊗· · ·⊗x(d)) ∈ V , with no zero component, and satisfy equations (4.4) which 
can be rewritten as∑

i�∈[nl+1]

ti1··· ij ··· id x
(1)
i1

· · · x̂(j)
ij

· · ·x(d)
id

= σ x
(j)
ij

∀ ij ∈ [nj + 1] .

Eliminating the parameter σ ∈ C, one derives the multilinear relations (for all 1 ≤ k <

s ≤ nj + 1 and for all j ∈ [d]) that all critical points must satisfy:

∑
i�∈[nl+1]

(
ti1··· k ··· id x

(1)
i1

· · ·x(j)
s · · ·x(d)

id
− ti1··· s ··· id x

(1)
i1

· · ·x(j)
k · · ·x(d)

id

)
= 0 . (4.5)

Definition 4.7 (Critical space of a tensor). The critical space (or singular space) Ht of 
the tensor t ∈ V is the linear projective space defined the equations (in the unknowns 
zi1···id that serve as linear functions on V )∑
i�∈[nl+1]

(ti1··· k ··· id zi1··· s ··· id − ti1··· s ··· id zi1··· k ··· id) = 0 ∀ 1 ≤ k < s ≤ nj+1, ∀j ∈ [d] .

Remark 4.8. The tensor t belongs to its critical space Ht [19, §5.2]. For a general tensor 

t, let Zt denote the set of critical points and consider its projective span 〈Zt〉. Then 
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〈Zt〉 ⊂ Ht and [7, §3.5] shows that they coincide for formats (n1 + 1) × · · · × (nd + 1)
satisfying a triangle inequality (i.e. the so-called sub-boundary format). However, they 
do not coincide in every format. For the Segre variety of format 2 × 2 × 4, Zt consists of 
8 critical points with 〈Zt〉 ∼= P 6, but Ht

∼= P 7.

Lemma 4.9. Let X = P (V1) ×· · ·×P (Vd) ×P (W ) with dim(W ) = m +1. Let t ∈ V ⊗W

be a non-concise tensor, i.e. there exists a proper subspace L ⊂ W such that t ∈ V ⊗ L. 
Then either a critical point is in X ∩ P (V ⊗ L) or its singular value is zero.

Proof. Fix bases for the vector spaces Vi and a basis {yi} for W , and assume dim(L) =
� +1 ≤ m +1. By assumption, there exists a change of bases such that we may write the 
tensor t ∈ V ⊗W as

t =
�∑

i=1
ti ⊗ yi .

Now, let v = x1 ⊗ · · · ⊗xd ⊗ z ∈ X be a critical point of t with a non-zero singular value 
σ 	= 0. By their defining equations (4.4), we have

t(x1 ⊗ · · · ⊗ xd) = σz .

Denote by {y∗j } ⊂ W ∗ the dual basis of {yj}. Since t ∈ V ⊗L, and since z is the result of a 
contraction of t, this vector satisfies y∗j (z) = 0 for all � +1 ≤ j ≤ m. However, in the given 
basis, these are the defining equations of P (L) ⊂ P (W ) and so v ∈ X ∩ P (V ⊗ L). �
Remark 4.10. Let d = 3 and n1 = n2 = m = 1. A general tensor t ∈ V ⊗ W has 6
distinct singular values. Assume that t is non-concise, in particular t ∈ V ⊗ L, where 
L ⊂ W with dim(L) = 1. We consider the ED polynomial EDpolyX∨,t(ε2) of the dual 
variety of X = P (V1) ×P (V2) ×P (W ) at t (see §5.1 for the definition of ED polynomial). 
It turns out that the roots of EDpolyX∨,t(ε2) are the squared singular values of t (see 
[31, Proposition 5.1.4]). The second author computed symbolically in [31, §5.4] the ED 
polynomial EDpolyX∨,u(ε2), for any u ∈ V⊗W , as a univariate polynomial in ε2 of degree 
6 whose coefficients are homogeneous polynomials in the entries uijk of u. In particular, 
when u = t and assuming that V ⊗ L has equations t112 = t122 = t212 = t222 = 0, one 
verifies by direct computation that

EDpolyX∨,t(ε2) = c(t) det(AAT − ε2I) ε8

where c(t) is a homogeneous polynomial in tijk and A ∈ V is the 2 × 2 slice (tij1) of t. 
On one hand, det(AAT − ε2I) = EDpolyY ∨,A(ε2), where
Y = X ∩ P (V ⊗ L) = P (V1) × P (V2) × P (L) ∼= P 1 × P 1 ⊂ P 3 ,
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Table 1
Singular vector triples and singular vectors of a non-concise 2 × 2 × 3 tensor.

a0 0.844 0.222 0.980 0.194 0.785+0.443
√
−1 0.785-0.443

√
−1 0.755 0.892

a1 0.536 -0.975 -0.200 -0.981 -0.862+0.404
√
−1 -0.862-0.404

√
−1 -0.656 0.452

b0 0.898 0.275 0.077 0.974 0.846+0.265
√
−1 0.846-0.265

√
−1 0.382 0.410

b1 0.440 -0.961 -0.997 -0.225 -0.681+0.329
√
−1 -0.681-0.329

√
−1 0.924 -0.912

c0 0.751 0.999 0.356 0.512 0.995+0.146
√
−1 0.995-0.146

√
−1 0 0

c1 0.660 0.054 -0.935 -0.859 -0.401+0.361
√
−1 -0.401-0.361

√
−1 0 0

c2 0 0 0 0 0 0 1 1

σ 5.161 2.446 -0.715 -2.321 -2.946-0.495
√
−1 2.946-0.495

√
−1 0 0

i.e., the variety of 2 × 2 matrices of rank one. In particular, two of the singular values 
of t are non-zero and correspond to critical points in Y . On the other hand, the factor 
ε8 = (ε2)4 tells us that the remaining 4 singular values of t are zero, thus confirming 
Lemma 4.9.

Example 4.11. Keep the notation from Lemma 4.9. It is possible that a given non-concise 
tensor t possesses critical points outside X∩P (V ⊗L) as shown by the next example. Let 
d = 3, n1 = n2 = 1 and m = 2. Consider the following non-concise tensor t ∈ V ⊗ L ⊂
V ⊗W , where L is the hyperplane L = {z2 = 0}:

t = 4x0y0z0 + 0.1x1y0z0 + 0.556x0y1z0 + 2.5x1y1z0 + 2x0y0z1 + 2.667x1y0z1

+ x0y1z1 + x1y1z1 .

We list in Table 1 the 8 singular vector triples [(a0, a1), (b0, b1), (c0, c1, c2)] of t, to-
gether with their corresponding singular values σ. Observe that t possesses two critical 
points with singular value zero in the orthogonal L⊥ = 〈z2〉.

For the convenience of the reader, here we collect a piece of code we used to compute 
numerically the singular vector triples and the singular values of a format 2 ×2 ×3 tensor 
shown in Table 1, which inspired our results of §4. The following code is written in the 
software Macaulay2.

R = CC[a0,a1,b0,b1,c0,c1,c2,sigma];
aa = matrix{{a0,a1}}; bb = matrix{{b0,b1}}; cc = matrix{{c0,c1,c2}};
for i to 1 do for j to 1 do for k to 2 do t_(i,j,k) = 100*random(CC)
for i to 1 do for j to 1 do t_(i,j,3) = 0
T = sum(2, i -> sum(2, j -> sum(3, k -> t_(i,j,k)*aa_(0,i)*bb_(0,j)*cc_(0,k))));
-- I is the ideal of the singular vector triples and the singular values of T
I = ideal(apply(2, i -> sub(contract(aa_(0,i),T),aa_(0,i)=>0)-sigma*aa_(0,i))|

apply(2, i -> sub(contract(bb_(0,i),T),bb_(0,i)=>0)-sigma*bb_(0,i))|
apply(3, i -> sub(contract(cc_(0,i),T),cc_(0,i)=>0)-sigma*cc_(0,i))|
sum(2, i-> aa_(0,i)^2)-1, sum(2, i -> bb_(0,i)^2)-1, sum(3, i -> cc_(0,i)^2)-1);

H = first entries gens I;
-- Now we compute numerically the zeros of I using PHCpack
needsPackage "PHCpack";
elapsedTime solutions = solveSystem H;

triples = apply(#solutions, j -> (solutions#j).Coordinates);
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The list triples stores the eight singular vector triples of T (up to sign) and their 
singular values.

Recall that the Segre variety Pn1 × · · · × Pnd × PN , where N =
∑d

i=1 ni, and the 
corresponding hyperdeterminant are said to be of boundary format. This format turns 
out to be important for our purposes.

Keeping the notation from above, let dim(Vi) = ni + 1 and dim(W ) = m + 1. Let 
t ∈ V ⊗L ⊂ V ⊗W , where L ⊂ W is a hyperplane, namely t is non-concise and has the 
last slice zero. Then the hyperdeterminant vanishes on t, i.e. Det(t) = 0.

By definition, this means that the tensor t is degenerate: there exists a non-zero 
decomposable tensor v1 ⊗ · · · ⊗ vd ⊗ z ∈ V ⊗W such that

t(v1, . . . , Vi, . . . , vd, z) = 0 ∀ i ∈ [d] and t(v1, . . . , vd,W ) = 0 . (4.6)

The kernel K(t) of a tensor t is the variety of all non-zero v1⊗· · ·⊗vd⊗z ∈ V ⊗W such 
that (4.6) is satisfied. The description of the critical points of t outside the hyperplane 
L can be given in terms of K(t), this is the content of our next result.

Theorem 4.12. Let dim(Vi) = ni + 1 and dim(W ) = m + 1, N =
∑d

i=1 ni and m ≥ N . 
Let t ∈ V ⊗W be a tensor such that the flattening map

πW : V → W ∗ (4.7)

has rank N , i.e., t ∈ V ⊗ L where L ⊂ V is a subspace of dimension N . Assume that t
is general with this property. Then

(i) the kernel K(t) of t consists of N !∏
i ni! linear spaces of projective dimension m −N

corresponding to the intersection of the kernel of the flattening map (4.7) with the 
Segre variety of rank one matrices X = P (V1) ×· · ·×P (Vd), which has degree N !∏

i ni! ,
(ii) the points of K(t) are exactly the critical points of t with zero singular value. More-

over, the latter critical points of t are the only ones not lying on V ⊗L. In fact, they 
lie on its orthogonal complement V ⊗ L⊥.

Proof. (i) The projectivization P (Ker(πW )) of the kernel of the flattening map (4.7)
has codimension N in P (V ). By the genericity assumption on t, the intersection 
P (Ker(π)) ∩X is given by deg(X) = N !∏

i ni! points.
For each one of these points v1 ⊗ . . . ⊗ vd, consider the linear equations in the 
unknown z ∈ W

t(v1, . . . , Vi, . . . , vd, z) = 0 ∀ i ∈ [d] . (4.8)

These are N linear homogeneous equations, which define a linear subspace of P (W )

of projective dimension m − N [21, Theorem 3.3(i)]. Note that the decomposable 
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tensors satisfying the linear system (4.8) are critical points. On the other hand, they 
are points of K(t) by definition of the kernel of a tensor.

(ii) By Lemma 4.9, each critical point of t is either in V ⊗L or it has zero singular value. 
On the other hand, since the tensor t is general in V ⊗L, we may assume Det(t) 	= 0. 
This implies that every critical point of t in V ⊗ L has a non-zero singular value. 
As a consequence, the only critical points outside V ⊗ L are the ones with singular 
value zero.
To see where they are located and thus establishing the last sentence, we proceed 
as follows. Since our vector spaces V and W are equipped with an inner product, 
they come with an identification with their duals: V ∼= V ∗ and W ∼= W ∗. Therefore 
the flattening map πW above may be regarded as a linear map πW : V → W . Note 
that the other flattening map πV : W → V induced by t is dual to πW . In bases, 
this amounts to say that πV = πT

W .
Now, suppose that t has a critical point v⊗ z ∈ V ⊗W with singular value σ, where 
v = v1 ⊗ · · · ⊗ vd is a decomposable tensor and z ∈ W . By definition, this means 
that v and z are non-zero with πW (v) = σz and πT

W (z) = σv. Assume z /∈ L. As 
noticed above, this critical point has singular value σ = 0. Since t ∈ V ⊗L, we have 
Im(πW ) = L. Note that Ker(πT

W ) = Im(πW )⊥ = L⊥. Since πT
W (z) = σv = 0, one 

finds z ∈ Ker(πT
W ) = L⊥. In conclusion, the critical points of a general tensor t, that 

are outside V ⊗ L, lie on its orthogonal complement. �
Using directly equations (4.4) satisfied by the critical points, we also show the following 

result.

Theorem 4.13. Keep the notation from Theorem 4.12. Let Det be the hyperdeterminant 
in the boundary format (n1 + 1) × · · · × (nd + 1) × (N + 1). Consider a tensor t ∈
V ⊗CN+1 ⊂ V ⊗W with Det(t) 	= 0. Then the critical points of t on the Segre product 
P (V1) × · · · × P (Vd) × P (W ) lie in the subvariety P (V1) × · · · × P (Vd) × P (CN+1).

Proof. We show that the critical space of t in P (V ⊗W ) lies inside P (V ⊗ CN+1). We 
may assume dim(W ) = N + 2.

Consider the equations (4.4) for j = d, s = N+2. Since by assumption ti1···id,N+2 = 0, 
these relations simplify and we obtain:

⎡⎣ ∑
i�∈[nl+1]

ti1···id,k x
(1)
i1

· · ·x(d)
id

⎤⎦x(d+1)
N+2 = 0 ∀k ∈ [N + 2] .

The equations inside the brackets have no non-zero solutions by the assumption Det(t) 	=
0 and by the description in [12, Chapter 14, Theorem 3.1]. Hence x(d+1)

N+2 = 0, which proves 

the statement. �
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Corollary 4.14. Let N =
∑d

i=1 ni. For all m ≥ N , we have

EDdegreeF (Pn1 × · · · × Pnd × Pm) = EDdegreeF
(
Pn1 × · · · × Pnd × PN

)
. (4.9)

Proof. Note that, given a smooth projective variety X ⊂ P (V ), when the number of 
critical points (of the distance function with respect to X) of a given point t ∈ V

is finite, it coincides with EDdegree(X). In other words, we may consider convenient 
specializations in order to compute the ED degree. To evaluate the ED degree on the 
left-hand side of (4.9), we specialize t as in Theorem 4.13. Then the result of Theorem 4.13
shows that the critical points of t are the same as the ones needed to compute the right-
hand side of (4.9). �

Theorem 4.13 generalizes to the partially symmetric case. The proof is analogous, 
following the critical space in the partially symmetric case, as defined in [7].

Theorem 4.15. Keep the notation from Theorem 4.12. Let ωi ∈ Z≥0 for all i ∈ [d]. Let 
Det be the hyperdeterminant in the boundary format space Sω1V1 ⊗ · · ·⊗SωdVd⊗CN+1. 
Consider a tensor t ∈ Sω1V1 ⊗ · · · ⊗ SωdVd ⊗CN+1 ⊂ Sω1V1 ⊗ · · · ⊗ SωdVd ⊗Cm+1 with 
Det(t) 	= 0. Then the critical points of t in vω1P (V1) × · · · × vωd

P (Vd) × P (Cm+1) lie in 
the subvariety vω1P (V1) × · · · × vωd

P (Vd) × P (CN+1).

Corollary 4.16. Let N =
∑d

i=1 ni and ωi ∈ Z≥0 for all i ∈ [d]. For all m ≥ N , we have

EDdegreeF (vω1P
n1 × · · · × vωd

Pnd × Pm)

= EDdegreeF
(
vω1P

n1 × · · · × vωd
Pnd × PN

)
.

Remark 4.17. Corollary 4.16 does not hold if the last factor Pm is replaced by vsPm

for some integer s ≥ 2. This can be checked also from the formula in [11, Theorem 12]
(generalizing Theorem 4.6 to the case of partially symmetric tensors) which does not 
stabilize anymore for m → +∞.

Conjecture 4.18. Let X = P (V1) × · · · × P (Vd) ⊂ P (V ) and let W be an (m + 1)-
dimensional complex vector space W , where m ≥ 0. Then

EDdegreeF (X × P (W )) =
m∑
j=0

EDdegreeF (X ∩Hj) , (4.10)

where Hj ⊂ P (V ) is a general subspace of codimension j.

Example 4.19. As an illustration of Conjecture 4.18, we consider the Segre products 
X × Pm for m ≥ 0 and for some choices of X. The values of EDdegreeF (X × Pm) are 
listed in Table 2 for the different varieties X. The entries of the i-th column in Table 3

correspond to the values of EDdegreeF (X ∩ Hi−1). The numbers in Table 2 as well as 
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Table 2
Values of EDdegreeF (X × Pm) for different choices of m and X.

X X × P0 X × P1 X × P2 X × P3 X × P4 X × P5

P1 × P1 2 6 8 8 8 8
P1 × P2 2 8 15 18 18 18
P2 × P2 3 15 37 55 61 61
P2 × P3 3 18 55 104 138 148

Table 3
Values of EDdegreeF (X ∩ Hj) for different choices of X and j.
X X ∩ H0 X ∩ H1 X ∩ H2 X ∩ H3 X ∩ H4 X ∩ H5

P1 × P1 2 4 2 0 0 0
P1 × P2 2 6 7 3 0 0
P2 × P2 3 12 22 18 6 0
P2 × P3 3 15 37 49 34 10

in the first column of Table 3 are computed according to Theorem 4.6. The boxed ED 
degrees in Table 3 have been checked numerically with the software Julia [3], and the 
remaining ones with the software Macaulay2 [13].

Observe that each number in the i-th column of Table 2 is the sum of the first i entries 
in the corresponding row of Table 3, thus confirming Conjecture 4.18.

Remark 4.20. Using the notations of Theorem 4.12, we assume d = 2. Let t ∈ V ⊗ L, 
where L ⊂ W is a linear subspace. The critical points of t generally fill up several 
components of different dimensions, forming the critical locus. These components are 
either in V ⊗L or in V ⊗L⊥. By the description of the critical points in Theorem 4.12, 
the critical locus of a general t sitting inside V ⊗ L⊥ coincides with the contact locus
of t, see [21, §3] (these last two observations apply to all formats with any number of 
factors). For a general tensor t ∈ V ⊗ L, define CL and CL⊥ to be the critical loci inside 
V ⊗ L and V ⊗ L⊥, respectively. In Table 4 we collect the dimensions and the degrees 
of these loci for the first few cases of boundary formats and where the linear subspace L
is varying.

Remark 4.21. One might also compute the ED degree of a Segre-Veronese product of 
projective spaces X = ω1Pn1 × · · · × ωdPnd , with respect to a metric that makes X
transversal to the isotropic quadric (i.e., the generic ED degree of X). The next formula 
is obtained by a Chern class computation made by the second author [31] and applying 
[6, Theorem 5.8] (here N = dim(X) = n1 + · · · + nd):

EDdegreegen(X) =
N∑
j=0

(−1)j(2N+1−j−1)(N−j)!

⎡⎣ ∑
i1+···+id=j

d∏
l=1

(
nl+1
il

)
ωnl−il
l

(nl − il)!

⎤⎦ . (4.11)

For example, if d = 2, n1 = ω1 = ω2 = 1 and n2 = n, then the identity (4.11) simplifies 

to
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Table 4
Dimensions and degrees of the critical loci CL and CL⊥ for boundary for-
mats. The blue dimension is when L is a hyperplane. (For interpretation 
of the colors in the table, the reader is referred to the web version of this 
article.)

(n1, n2,m) dim(L) (dim(CL), deg(CL)) (dim(CL⊥ ), deg(CL⊥ ))
(1, 1, 2) 3 (0, 8) CL⊥ = ∅
(1, 1, 2) 2 (0, 6) (0, 2)
(1, 1, 2) 1 (0, 2) (2, 2)

(1, 2, 3) 4 (0, 18) CL⊥ = ∅
(2, 3, 4) 3 (0, 15) (0, 3)
(1, 2, 3) 2 (0, 8) (2, 3)
(1, 2, 3) 1 (0, 2) (4, 2)

(2, 2, 4) 5 (0, 61) CL⊥ = ∅
(3, 3, 5) 4 (0, 55) (0, 6)
(2, 2, 4) 3 (0, 37) (2, 6)
(2, 2, 4) 2 (0, 15) (4, 4)
(2, 2, 4) 1 (0, 3) (6, 2)

(2, 3, 5) 6 (0, 148) CL⊥ = ∅
(3, 4, 6) 5 (0, 138) (0, 10)
(2, 3, 5) 4 (0, 104) (2, 10)
(2, 3, 5) 3 (0, 55) (4, 7)
(2, 3, 5) 2 (0, 18) (6, 4)
(2, 3, 5) 1 (0, 3) (8, 2)

EDdegreegen(P 1 × Pn) =
n+1∑
i=0

(−1)i(2n+2−i − 1)(n + 1 − i)!
[ (

n+1
i

)
(n− i)! +

2
(
n+1
i−1
)

(n + 1 − i)!

]

=

A︷ ︸︸ ︷
n+1∑
i=0

(−1)i 2n+2−i(n + 1 − i)
(
n + 1
i

)

−

B︷ ︸︸ ︷
n+1∑
i=0

(−1)i(n + 1 − i)
(
n + 1
i

)

+ 2

C︷ ︸︸ ︷
n+1∑
i=0

(−1)i 2n+2−i

(
n + 1
i− 1

)
−2

D︷ ︸︸ ︷
n+1∑
i=0

(−1)i
(
n + 1
i− 1

)
,

where one might check easily that

A = 4(n + 1) , B = 0 , C = (−1)n+1 − 1 , D = (−1)n+1 .

Therefore

EDdegreegen(P 1 × Pn) = A−B + 2C − 2D = 4(n + 1) − 2 = 4n + 2 .

In particular EDdegreegen(P 1 × Pn) diverges when n → +∞, in contrast with 
EDdegreeF (P 1 × Pn) = 2 for all n ≥ 1.
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5. Stabilization of the degree of the dual of a special Segre product

In this section, we start introducing classical material on dual varieties. We refer to [12]
for details on the rich theory of projective duality. We shall demonstrate Theorem 5.4, 
showing a stabilization property of dual varieties to some Segre products.

Definition 5.1 (Segre products). Let X1 ⊂ P (V1) and X2 ⊂ P (V2) be two projective 
varieties. Their direct product X1 ×X2 may be embedded in P (V1 ⊗ V2) via the Segre 
embedding introduced in Definition 2.1. The image of this embedding is called the Segre 
product of X1 and X2 and it is again denoted by X1 ×X2.

Definition 5.2. Let Y ⊂ P (V ) ∼= Pn be an irreducible projective variety of dimension 
m, where V is a Euclidean space. The Euclidean structure of V allows us to naturally 
identify V with its dual V ∗. The conormal variety of Y is the incidence correspondence

NY := {(z1, z2) ∈ V × V | z1 ∈ Ysm and z2 ∈ Nz1Y } ,

where Nz1Y denotes the normal space of Y at the smooth point z1.

A fundamental feature of the conormal variety is the content of the biduality theorem
[12, Chapter 1]: one has NY = NY ∨ . The latter implies (Y ∨)∨ = Y , the so-called 
biduality.

The polar classes of Y are defined to be the coefficients δi(Y ) of the class in cohomology

[NY ] = δ0(Y )snt+ δ1(Y )sn−1t2 + · · ·+ δn−1(Y )stn ∈ A∗(P (V )×P (V )) ∼= Z[s, t]
(sn+1, tn+1) ,

where s = π∗
1([H]), t = π∗

2([H ′]), the maps π1, π2 are the projections onto the factors of 
P (V ) ×P (V ) and H, H ′ are hyperplanes in P (V ). If we assume Y smooth, δi(Y ) may be 
computed utilizing the Chern classes of Y . These are the Chern classes of the tangent 
bundle TY of Y . One computes [15, §3]:

δi(Y ) =
m−i∑
j=0

(−1)j
(
m + 1 − j

i + 1

)
cj(Y ) · hm−j =

m−i∑
j=0

(−1)j
(
m + 1 − j

i + 1

)
deg(cj(Y )) .

(5.1)
The right-hand side of (5.3) is always a nonnegative integer. The integer codim(Y ∨) − 1
equals the minimum i such that δi(Y ) 	= 0. Whenever Y ∨ is a hypersurface, one has

deg(Y ∨) = δ0(Y ) =
m∑
j=0

(−1)j(m+1− j)cj(Y ) ·hm−j =
m∑
j=0

(−1)j(m+1− j) deg(cj(Y )) .

(5.2)
When Y is not smooth, we can replace Chern classes with Chern-Mather classes. They 
are constructed as follows. Let Y ⊂ P (V ) ∼= Pn be a projective variety of dimension m. 



24 G. Ottaviani et al. / Advances in Applied Mathematics 130 (2021) 102242
We denote by G(m + 1, V ) the Grassmannian of (m + 1)-dimensional vector subspaces 
of V . Consider the Gauss map

γY : Y ��� G(m + 1, V )
y �−→ TyY

which is defined over the smooth points of Y . The Nash blow-up of Y is the closure 
Ỹ of the image of γY . It comes equipped with a proper map ν : Ỹ → Y . Now let U →
G(m +1, V ) be the universal bundle over G(m +1, V ) of rank m +1, where U := {(v, W ) ∈
V ×G(m + 1, V ) | v ∈ W}. The vector bundle U gives a short exact sequence

0 → U → OP(V ) ⊗ V → Q → 0 ,

where Q denotes the quotient bundle. From this it follows that Q ⊗U∨ is isomorphic to 
the tangent bundle TG(m+1,V ). The push-forwards under ν of the Chern classes of the 
universal bundle restricted to the Nash blow-up Ỹ are the Chern-Mather classes cMi (Y )
of Y . They agree with Chern classes whenever Y is smooth.

The polar classes δi(Y ) may be written in terms of the Chern-Mather classes cMi (Y ), 
thus generalizing the classical formula in (5.1). This generalization is due to Piene ([24, 
Theorem 3] and [23]), see also [1, Proposition 3.13]:

δi(Y ) =
m−i∑
j=0

(−1)j
(
m + 1 − j

i + 1

)
cMj (Y ) · hm−j =

m−i∑
j=0

(−1)j
(
m + 1 − j

i + 1

)
deg(cMj (Y )) .

(5.3)
In equation (5.3) we use a slightly different convention than in [1]. Indeed, for us cMi (Y )
is the component of dimension m − i (as with standard Chern classes), while in Aluffi’s 
paper it is the component of dimension i. We have also the following generalization of 
equation (5.2), when Y ∨ is a hypersurface:

deg(Y ∨) = δ0(Y ) =
m∑
j=0

(−1)j (m + 1 − j) cMj (Y ) · hm−j

=
m∑
j=0

(−1)j (m + 1 − j) deg(cMj (Y )) . (5.4)

Lemma 5.3. Let X be a projective variety of dimension m. For every integer n ≥ 0, let 
Yn ⊂ Pn+1 be a smooth hypersurface of degree d. Then

δ0(X × Yn) =
m∑
i=0

αi deg(cMi (X)) ,
where for all i ∈ {0, . . . , m}



G. Ottaviani et al. / Advances in Applied Mathematics 130 (2021) 102242 25
αi(n,m, d) =
n+m∑
s=i

(−1)s(m + n + 1 − s)
[
s−i∑
k=0

(
n + 2
k

)
(−d)s−i−k

](
m + n− s

n− s + i

)
. (5.5)

Proof. Write cM(X) =
∑m

i=0 c
M
i (X)xi and cM(Yn) = c(Yn) = (1+y)n+2

1+d y for the Chern-
Mather polynomials of X and Yn, respectively. The expression for c(Yn) is derived from 
the short exact sequence of sheaves

0 → TYn
→ TPn+1|Yn

→ NYn/Pn+1 → 0 ,

and applying Whitney formula. Keeping into account the relations xm+1 = 0 = yn+1, 
we have

cM(X × Yn) =
[

m∑
i=0

cMi (X)xi

]
(1 + y)n+2

1 + d y

=
[

m∑
i=0

cMi (X)xi

]⎧⎨⎩
n∑

j=0

[
j∑

k=0

(
n + 2
k

)
(−d)j−k

]
yj

⎫⎬⎭
=

m∑
i=0

n∑
j=0

[
j∑

k=0

(
n + 2
k

)
(−d)j−k

]
cMi (X)xiyj

=
m∑
s=0

⎧⎨⎩
s∑

j=0

[
j∑

k=0

(
n + 2
k

)
(−d)j−k

]
cMs−j(X)xs−jyj

⎫⎬⎭
+

n∑
s=m+1

⎧⎨⎩
m∑
j=0

[
s−m+j∑
k=0

(
n + 2
k

)
(−d)s−m+j−k

]
cMm−j(X)xm−jys−m+j

⎫⎬⎭
+

n+m∑
s=n+1

⎧⎨⎩
n+m−s∑

j=0

[
s−m+j∑
k=0

(
n + 2
k

)
(−d)s−m+j−k

]
cMm−j(X)xm−jys−m+j

⎫⎬⎭
=

n+m∑
s=0

ps(X) ,

where ps(X) is a homogeneous polynomial of degree s in the variables x and y. Using 
(5.4), the polar class δ0(X × Yn) is given by

δ0(X × Yn) =
n+m∑
s=0

(−1)s(m + n + 1 − s)ps(X) · (x + y)m+n−s .
A computation reveals that ps(X) · (x + y)m+n−s = as(X) xmyn, where
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as(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑s
j=0

[∑j
k=0
(
n+2
k

)
(−d)j−k

] (
m+n−s
n−j

)
cMs−j(X)

for 0 ≤ s ≤ m,∑m
j=0

[∑s−m+j
k=0

(
n+2
k

)
(−d)s−m+j−k

] (
m+n−s

m+n−s−j

)
cMm−j(X)

for m + 1 ≤ s ≤ n ,∑m+n−s
j=0

[∑s−m+j
k=0

(
n+2
k

)
(−d)s−m+j−k

] (
m+n−s

m+n−s−j

)
cMm−j(X)

for n + 1 ≤ s ≤ n + m.

Plugging in the relations above in the definition of δ0(X × Yn) and factoring out the 
Chern-Mather classes cMi (X) we derive that

δ0(X × Yn) =
{

n∑
s=0

(−1)s(m + n + 1 − s)

×
[

s∑
k=0

(
n + 2
k

)
(−d)s−k

](
m + n− s

n− s

)}
deg(cM0 (X))

+
m−1∑
i=1

{
n+m∑
s=i

(−1)s(m + n + 1 − s)

×
[
s−i∑
k=0

(
n + 2
k

)
(−d)s−i−k

](
m + n− s

n− s + i

)}
deg(cMi (X))

+
{

n+m∑
s=m

(−1)s(m + n + 1 − s)
[
s−m∑
k=0

(
n + 2
k

)
(−d)s−m−k

]}
deg(cMm(X)) .

Therefore, for all i ∈ {0, . . . , m} the coefficient of deg(cMi (X)) is

αi(n,m, d) =
n+m∑
s=i

(−1)s(m + n + 1 − s)
[
s−i∑
k=0

(
n + 2
k

)
(−d)s−i−k

](
m + n− s

n− s + i

)
. �

Theorem 5.4. Let X be a projective variety of dimension m. For every integer n ≥ 0, let 
Yn ⊂ Pn+1 be a smooth hypersurface of degree d. Then

δ0(X × Yn) = (d− 1)n−mδ0(X × Ym) ∀n ≥ m.

Proof. For all i ∈ {0, . . . , m}, let αi = αi(n, m, d) be the coefficient of deg(cMi (X))
introduced in (5.5). In what follows, we use that 

(
a
b

)
= 0 if b is a negative integer and 

we shall sometimes use the formalism of gamma functions [32, §6] for convenience.
In order to prove the statement, it is sufficient to show that

αi(n + 1,m, d) = (d− 1)αi(n,m, d)
for all n ≥ m and for all i ∈ {0, . . . , m}. We have that
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αi(n + 1,m, d) =
n+m+1∑

s=i

(−1)s(m + n + 2 − s)
[
s−i∑
k=0

(
n + 3
k

)
(−d)s−i−k

]

×
(
m + n + 1 − s

n + 1 − s + i

)
= (−1)i(n + m + 2 − i)

(
m + n + 1 − i

n + 1

)

+
n+m+1∑
s=i+1

(−1)s(m + n + 2 − s)
[
s−i∑
k=0

(
n + 3
k

)
(−d)s−i−k

]

×
(
m + n + 1 − s

n + 1 − s + i

)
.

For the ease of notation, set ρ := (−1)i(n + m + 2 − i)
(
m+n+1−i

n+1
)
. Then

αi(n + 1,m, d) = ρ +
n+m∑
r=i

(−1)r+1(m + n + 1 − r)

×
[
r+1−i∑
k=0

(
n + 3
k

)
(−d)r+1−i−k

](
m + n− r

n− r + i

)

= ρ +
n+m∑
r=i

(−1)r+1(m + n + 1 − r)

×
[
r+1−i∑
k=0

(
n + 2
k

)
(−d)r+1−i−k

](
m + n− r

n− r + i

)

+
n+m∑
r=i

(−1)r+1(m + n + 1 − r)
[
r−i∑
k=0

(
n + 2
k

)
(−d)r−i−k

](
m + n− r

n− r + i

)

= ρ +
n+m∑
r=i

(−1)r+1(m + n + 1 − r)

×
[
r−i∑
k=0

(
n + 2
k

)
(−d)r+1−i−k +

(
n + 2

r + 1 − i

)](
m + n− r

n− r + i

)

−
n+m∑
r=i

(−1)r(m + n + 1 − r)
[
r−i∑
k=0

(
n + 2
k

)
(−d)r−i−k

](
m + n− r

n− r + i

)

= ρ + d

n+m∑
r=i

(−1)r(m + n + 1 − r)
[
r−i∑
k=0

(
n + 2
k

)
(−d)r−i−k

](
m + n− r

n− r + i

)

+
n+m∑

(−1)r+1(m + n + 1 − r)
(

n + 2
r + 1 − i

)(
m + n− r

n− r + i

)

r=i
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−
n+m∑
r=i

(−1)r(m + n + 1 − r)
[
r−i∑
k=0

(
n + 2
k

)
(−d)r−i−k

](
m + n− r

n− r + i

)

= ρ−
n+m∑
r=i

(−1)r(m + n + 1 − r)
(

n + 2
r + 1 − i

)(
m + n− r

n− r + i

)

+ (d− 1)
n+m∑
r=i

(−1)r(m + n + 1 − r)

×
[
r−i∑
k=0

(
n + 2
k

)
(−d)r−i−k

](
m + n− r

n− r + i

)

= (d− 1)αi(n,m, d) + ρ−
n+m∑
r=i

(−1)r(m + n + 1 − r)

×
(

n + 2
r + 1 − i

)(
m + n− r

n− r + i

)
.

To finish off the proof, we have to show the binomial identity

n+m∑
r=i

(−1)r(m+n+1−r)
(

n + 2
r + 1 − i

)(
m + n− r

n− r + i

)
= (−1)i(n+m+2−i)

(
m + n + 1 − i

n + 1

)
(5.6)

for all n ≥ m and for all i ∈ {0, . . . , m}.
Case i = 0 of (5.6). We have to show the identity

n∑
r=0

(−1)r(m + n + 1 − r)
(
n + 2
r + 1

)(
m + n− r

n− r

)
= (n + m + 2)

(
m + n + 1

n + 1

)
∀n ≥ m.

(5.7)
Since 

(
m+n−r
n−r

)
= 0 for r > n, we let r run from 0 to n. The summand on the left-hand 

side of (5.7) is

(m + n + 1 − r)
(
n + 2
r + 1

)(
m + n− r

n− r

)
= (n + 2) (n + 1)!

(n− r + 1)! (r + 1)!
(m + n− r)!
(n− r)!m! (m + n + 1 − r)

= (n + 2) (n + 1)!
(n− r + 1)! (r + 1)!

(m + n + 1 − r)!
m! (n− r + 1)!

= (n + 2)
(
n + 1
r + 1

)(
m + n + 1 − r

m

)
.

Therefore, setting f(n) :=
∑n

r=0(−1)r
(
n+1
r+1
)(

m+n+1−r
m

)
and dividing (5.7) by n + 2, we 
get that (5.7) is equivalent to
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f(n) =
(
m + n + 2

m

)
∀n ≥ m. (5.8)

We prove (5.8) by induction on n. Our base case is n = m. We invoke Zeilberger algorithm 
[34] with the Maple [18] code

with(SumTools[Hypergeometric]);
T1 := (-1)^r*binomial(m+1,r+1)*binomial(2*m+1-r,m);
ZeilbergerRecurrence(T1,m,r,f,0..m)

and the output gives the identity

f(m) = 2Γ(2 + 2m)
(2 + m)Γ(m + 1)2 ,

where Γ(z) is the gamma function, whose value on a positive integer n is Γ(n) = (n −1)!
[32, §6]. Since m ∈ N, we see that

2Γ(2m + 2)
(m + 2)Γ(m + 1)2 = 2(2m + 1)!

(m + 2)m!m! = 2 (2m + 1)! (m + 1)
(m + 2)m!m! (m + 1) = (2m + 2)!

(m + 2)!m!

=
(

2m + 2
m

)
,

which establishes the base case. Suppose now n > m. Again, using Zeilberger algorithm, 
we find the recurrence

(1 + n−m)f(n) + (n + 3)f(n + 1) = 2Γ(n + 3 + m)
Γ(n + 2)Γ(m + 1) . (5.9)

Using (5.9), we derive

f(n + 1) = 1
n + 3

[
2Γ(n + 3 + m)

Γ(n + 2)Γ(m + 1) − (1 + n−m)f(n)
]

= 1
n + 3

[
2 (m + n + 2)!
m! (n + 1)! − (1 + n−m)f(n)

]
= 1

n + 3

[
2(n + 2)

(
m + n + 2

m

)
− (1 + n−m)f(n)

]
.

By induction hypothesis, one has f(n) =
(
m+n+2

m

)
and hence

f(n + 1) = 2(n + 2) + m− n− 1
n + 3

(
m + n + 2

m

)
= m + n + 3

n + 3

(
m + n + 2

m

)
=
(
m + n + 3

m

)
,

which verifies the assertion.
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Case i = m of (5.6). We have to show the identity

n+m∑
r=m

(−1)r(m + n + 1 − r)
(

n + 2
r + 1 −m

)
= (−1)m(n + 2) . (5.10)

Let s = r −m. Thus the left-hand side of equality (5.10) becomes

n∑
s=0

(−1)m+s(n + 1 − s)
(
n + 2
s + 1

)
= (−1)m

n∑
s=0

(−1)s(n + 2) (n + 1 − s) (n + 1)!
(s + 1)! (n− s + 1)! =

= (−1)m(n + 2)
n∑

s=0
(−1)s (n + 1)!

(s + 1)! (n− s)! = (−1)m(n + 2)
n∑

s=0
(−1)s

(
n + 1
s + 1

)
= (−1)m(n + 2) ,

as 
∑n

s=0(−1)s
(
n+1
s+1
)

= 1. This proves equality (5.10).
Cases i ∈ [m − 1] of (5.6). We have to show the identity

n+m∑
r=i

(−1)r(m+n+1−r)
(

n + 2
r + 1 − i

)(
m + n− r

n− r + i

)
= (−1)i(n+m+2−i)

(
m + n + 1 − i

n + 1

)
(5.11)

for all i ∈ [m −1] and n ≥ m. Put j = m − i and s = r−m + j. Then (5.11) is equivalent 
to the equality

n+j∑
s=0

(−1)s (n + 1 − s + j)!
Γ(n + 2 − s) (s + 1)! Γ(n− s + 1) = (n + 2 + j)!

(n + 1)! (n + 2)! , (5.12)

for all j ∈ [m − 1] and n ≥ m. Since j = m − i ≥ 1 and 0 ≤ s ≤ n + j, the last index 
we are summing over is ≥ n + 1. Note that the summands on the left-hand side vanish 
whenever s ≥ n + 1, therefore we may define

g(n, j) :=
n∑

s=0
(−1)s (n + 1 − s + j)!

Γ(n + 2 − s) (s + 1)! Γ(n− s + 1)

and rewrite (5.12) as

g(n, j) = (n + 2 + j)!
(n + 1)! (n + 2)! . (5.13)

Zeilberger algorithm gives the recurrence relation

2 2 Γ(n + 3 + j)
(n + 1 − j)g(n, j) + (n + 5n + 6)g(n + 1, j) = Γ(n + 2)2 . (5.14)
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Now, the function

h(n, j) := (n + 2 + j)!
(n + 1)! (n + 2)!

is seen to satisfy the same recurrence (5.14). One checks g(j, j) = h(j, j) for all j ∈ N

by induction. For all n ≥ j, one has g(n, j) = h(n, j) using (5.14) and g(j, j) = h(j, j) as 
base case. �

A result due to Weyman and Zelevinsky detects the dual defectiveness of Segre prod-
ucts [33, Theorem 0.1] assumed in Corollary 5.6.

Theorem 5.5 (Weyman-Zelevinsky). Let X1 and X2 be (embedded) irreducible projective 
varieties. The dual variety (X1 ×X2)∨ is a hypersurface if and only if

(i) codim(X∨
1 ) − 1 ≤ dim(X2), and

(ii) codim(X∨
2 ) − 1 ≤ dim(X1).

We are finally ready to state the main result of this section.

Corollary 5.6. Let X be a projective variety of dimension m. For n ≥ 0, let Qn ⊂ Pn+1

be a smooth quadric hypersurface. Suppose that (X × Qm)∨ is a hypersurface. Then 
(X ×Qn)∨ is a hypersurface of the same degree as (X ×Qm)∨ for all n ≥ m.

Proof. By Theorem 5.5, the variety (X × Qm)∨ is a hypersurface if and only if m ≥
codim(X∨) −1. If this condition is satisfied, then it is satisfied for all n ≥ m. In addition, 
equation (5.2) gives deg[(X×Qn)∨] = δ0(X×Qn). The statement follows by Theorem 5.4
with d = 2. �
Example 5.7. Let X = P 1×P 1 ⊂ P 3 and Qn be a smooth quadric hypersurface in Pn+1. 
Thus dim(X) = 2 > 1 = codim(X∨). By direct computation, one finds that

deg[(X ×Qn)∨] =

⎧⎪⎪⎨⎪⎪⎩
4 for n = 0
12 for n = 1
24 for n = 2 .

Theorem 5.4 implies deg[(X ×Qn)∨] = 24 for all n ≥ 2 = dim(X).

5.1. The ED polynomial of a Segre product of two projective varieties

The stabilization behavior highlighted in Corollary 5.6 has an interesting counter-
part related to the ED degree and the ED polynomial of the Segre product between a 

projective variety and a projective space.
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For a polynomial function f on a complex vector space V , we denote by V(f) the 
variety defined by the vanishing of f . Let V1 and V2 be two complex vector spaces 
equipped with (real) quadratic forms q1, q2. As in §4, V1 and V2 are complexifications 
of two real Euclidean spaces. Let ni + 1 = dim(Vi) and denote Q1 and Q2 the isotropic 
quadric cones defined by the vanishing of q1 and q2, i.e. Qi(x) = V(qi(x, x)).

As above, V := V1 ⊗ V2 itself is equipped with an Euclidean structure given by the 
Frobenius inner product q := q1 ⊗ q2, see Definition 4.1. Note that this can be regarded 
as the familiar space of matrices. Denote by Q the induced isotropic quadric in V1 ⊗ V2.

Consider two affine cones X1 ⊂ V1 and X2 ⊂ V2. We also denote by X1 and X2
the corresponding projective varieties in P (V1) and P (V2). Let X1 ×X2 be their Segre 
product, see Definition 5.1.

The (squared) distance ε2 = q(t − p) between t ∈ V1 ⊗ V2 and a point p ∈ (X1 ×X2)∨
satisfies an algebraic relation of the form

c0(t) + c1(t)ε2 + · · · + cN (t)ε2N = 0 , (5.15)

where N = EDdegreeF (X1 ×X2) = EDdegreeF ((X1 ×X2)∨), and the cj(t)’s are ho-
mogeneous polynomials in the coordinates of the tensor t ∈ V1 ⊗ V2.

Definition 5.8 (ED polynomial). The polynomial on the left-hand side of (5.15) is the 
ED polynomial of (X1 × X2)∨. This is a univariate polynomial in ε2 and is denoted 
EDpoly(X1×X2)∨,t(ε2).

A consequence of [20, Corollary 5.5] is the following result.

Proposition 5.9. Assume that (X1 ×X2) ∩Q is a reduced variety. Then the locus of all 
t ∈ V1 ⊗ V2 where EDpoly(X1×X2)∨,t(0) vanishes is

(X1 ×X2)∨ ∪ [(X1 ×X2)∩Q]∨ = (X1 ×X2)∨ ∪ [(X1 ∩Q1)×X2]∨ ∪ [X1 × (X2 ∩Q2)]∨ .

Furthermore, by [31, Proposition 4.4.13], whenever (X1 ×X2)∨ is a hypersurface, then 
its defining polynomial appears with multiplicity two in the term c0.

A similar argument used in the proof of [31, Proposition 5.2.6] leads to the following 
inclusion.

Proposition 5.10. The following inclusion holds true:

V(cN ) ⊂ [(X1 ∩Q1) × (X2 ∩Q2)]∨ .

In other words, if t ∈ V1 ⊗ V2 admits strictly less critical points than N , then it is 

forced to have a specific isotropic structure.
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Summing up, we may write the extreme coefficients of EDpoly(X1×X2)∨,t(ε2) as

c0 = f2 gα, cN = hβ ,

for some square-free polynomials f , g, h, where

V(f) = (X1 ×X2)∨,

V(g) = [(X1 ∩Q1) ×X2]∨ ∪ [X1 × (X2 ∩Q2)]∨,

V(hβ) = [(X1 ∩Q1) × (X2 ∩Q2)]∨ ,

whenever the varieties on the right-hand side are hypersurfaces. (The polynomials are 
set to be 1 if the corresponding varieties have higher codimensions.)

Note that when X1 = V1 and X2 = V2 we are looking at the distance function from 
a Segre product of projective spaces. An immediate consequence of the Eckart-Young 
Theorem tells us that (assuming n1 ≤ n2)

EDpoly(P(V1)×P(V2))∨,t(ε2) = det(t tT − ε2In1) .

In particular, EDpoly(P(V1)×P(V2))∨,t(ε2) is a monic polynomial, i.e. the exponent β of 
h is zero. On the other hand, the lowest coefficient is det(t tT ). When n1 = n2, then 
det(t tT ) = det(t)2 = f2, whereas g = 1 because its corresponding variety is not a 
hypersurface. Otherwise n1 < n2 and then det(t tT ) = g, whereas in this case f = 1
because (P (V1) × P (V2))∨ is not a hypersurface. That means that the exponent of g is 
α = 1.

These observations lead to the following more general conjecture, confirmed by ex-
perimental data from the software Macaulay2.

Conjecture 5.11. Assume that (X1 × X2) ∩ Q is a reduced variety. Then the extreme 
coefficients c0 and cN of EDpoly(X1×X2)∨,t(ε2) are respectively

c0 = f2 g, cN ∈ R ,

where V(f) = (X1 ×X2)∨ and V(g) = [(X1 ∩Q1) ×X2]∨ ∪ [X1 × (X2 ∩Q2)]∨.

The validity of Conjecture 5.11 implies the stabilization of the ED degree of X×P (V2)
for n2 increasing.

Proposition 5.12. Assume Conjecture 5.11 is true. Let X ⊂ P (V1) be a projective variety 
and assume that X ∩ Q1 is reduced. Then EDdegreeF (X × P (V2)) stabilizes for n2 ≥

dim(X) + 1.
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Proof. By Definition 5.8, we have the equality

deg(cN ) + 2 EDdegreeF (X × P (V2)) = deg(c0) ,

where V(c0) and V(cN ) are described respectively in Proposition 5.9 and Proposi-
tion 5.10.

By Theorem 5.5, the varieties (X × P (V2))∨ and [(X ∩Q1) × P (V2)]∨ are not hyper-
surfaces for all n2 ≥ dim(X) +1, whereas the variety (X ×Q2)∨ is a hypersurface for all 
n2 ≥ dim(X) + 1. Therefore, for all n2 ≥ dim(X) + 1 we have c0 = gα for some positive 
integer α, where V(g) = (X1 ×Q2)∨.

By the assumption on the Conjecture 5.11, we conclude that α = 1 and deg(cN ) = 0. 
In particular, we derive

2 EDdegreeF (X × P (V2)) = deg((X ×Q2)∨) ∀n2 ≥ dim(X) + 1 .

Conclusion follows from Corollary 5.6. �
The previous result proves a stabilization property of the ED degree of the Segre 

product X×P (V2). Furthermore, some experiments with the software Macaulay2 suggest 
the following conjecture which is a somewhat more general version of Conjecture 4.18.

Conjecture 5.13. Let X ⊂ P (V1) be a projective hypersurface such that X∩Q1 is reduced. 
Consider the Segre product X × P (V2). Then

EDdegreeF (X × P (V2)) =
n1−1∑
j=0

EDdegreeF (X ∩ Lj) ,

where Lj ⊂ P (V1) is a general subspace of codimension j.
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