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Abstract: We review and discuss some recent developments on the unconventional interaction be-

tween superconducting systems and the local gravitational field. While it is known that gravitational

perturbations (such as gravitational waves) can affect supercondensates and supercurrents dynamics,

we want to focus here on the more subtle superfluid back-reaction acting on the surrounding gravi-

tational field, analysing some specific favourable situations. To this end, we will consider suitable

quantum macrosystems in a coherent state, immersed in the static weak Earth’s gravitational field,

investigating possible slight local alterations of the latter not explained in terms of classical physics.

Keywords: superconductivity; gravitation; macroscopic quantum effects; gravito–Maxwell;

Ginzburg–Landau

1. Introduction

The gravitational force has the distinctive feature of universal interaction with all
forms of matter and energy. It dominates at large-scales where it is well described by
general relativity. In the latter theory, gravity is not interpreted as a standard force acting on
different masses, but as a direct affection of the geometry of the spacetime: masses generate
curvature, which in turn dictates the motion of the masses. The spacetime then plays a
dynamical role and it is not a rigid background structure.

While classical general relativity gives a consistent description of the large-scale
dynamics dominated by gravity, we know that quantum field theory is the fundamental
formulation to describe physics at the microscopic scale, where the effects gravity are in
general negligible. In the last few decades, different quantum gravity formulations have
been proposed to consistently describe the physics of the particles when the gravitational
field is so intense as to affect the motion of elementary particles (presumably in the vicinity
of a black hole or a neutron star, as well as in the early stages of the evolution of our
Universe). This is clearly an ambitious target, since it will imply a fundamental knowledge
about the functioning of the laws of nature. However, experimental verification of this kind
of theories is really hard to realize, since this would in general imply very high ranges of
energy. Then, direct observation of quantum gravity effects, involving gravitons’ dynamical
interactions with other quantum fields at the microscopic level, is a very difficult task.

A different approach could originate from the study of unconventional, macroscopic
states of matter. In this regard, one should consider quantum macrosystems existing in
nature, like superconductors and superfluids. The latter can be thought as large systems
featuring a macroscopical coherent phase, suitably described by order parameters. It could
be then possible to formulate (and observe) a possible interplay between the extended,
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coherent system and the surrounding gravitational field [1–21]. In this regard, the coupling
with the current flow without resistance in superconductors was exploited to use the latter
as a sensitive detection systems, in particular for gravitational waves [22–38]. Another
remarkable phenomenon, showing quantum effects originating from the interaction of
quantum particles with a weak-field gravitational background, is the gravity-induced
quantum interference [39–48]. This effect takes place in the presence of a gravitational
potential, to be considered in the Schrodinger equation [49,50] and giving rise to a phase
shift for elementary particles (The experimental effect can be measured splitting a nearly
monoenergetic beam of thermal particles and considering the produced interference paths:
a gravity-induced quantum mechanical phase shift is observed, due to the presence of the
Earth’s gravitational field [39,40]).

Inspired by the above results, we then also want to consider the back-reaction of
superfluids and supercurrents on the local gravitational field in some specific, favourable
situation. The first step to achieve the goal will be to formulate an appropriate theoretical
model justifying this anomalous coupling. In the following subsections, we will briefly
discuss the most convincing theoretical basis and experimental evidence in favour of the
existence of this unconventional interaction.

1.1. Theoretical Foundations

We now want to characterize a possible interplay between superfluids and the local
gravitational field in the framework of a quantum gravity theory or, at least, in a suitable
approximation of the latter for weak fields.

Let us first consider the classical picture. Clearly, the absence of (gravitational) charges
of opposite sign excludes the possibility of counteracting the field inside the medium by
a local redistribution, ruling out dielectric-type effects. If we then take the medium to
be a standard quantum mechanical system, the smallness of the gravitational coupling
strongly suppresses the possibility of a (graviton) excitation for a medium particle and any
subsequent affection of the local field. We are then led to consider the interaction of the
gravitational field with an anomalous external source, that is, an unconventional state of
matter exhibiting quantization on a macroscopic scale, like a Bose condensate or a more
generic superfluid.

Let us then consider a quantum gravity framework and write the Lagrangian for
this coherent macrosystem; immersed in the Earth’s gravitational field, (we work in the
“mostly plus” convention, where the Minkowski metric is ηµν = diag(−1,+1,+1,+1), and
set c = h̄ = 1) [8,9]:

L = LEH +Lφ =
1

8πG
(R− 2 Λ)− 1

2
gµν ∂µφ ∗ ∂νφ +

1
2

m2 φ∗φ . (1)

The first term is the Einstein–Hilbert contribution, R being the Ricci scalar and Λ the cosmo-
logical constant. The other terms describe the dynamics of the medium supercondensate
(for example, Cooper pairs of mass m) that we can characterize as a bosonic field φ with
non-vanishing vacuum expectation value (vev) φ0 = 〈0|φ|0〉. We assume this vev to be
forced from the outside to a certain value, as it happens, for instance, in a superconductor
subjected to external electromagnetic fields. In the weak gravity limit, the metric gµν can be
written as

gµν(x) = ηµν + hµν(x) , (2)

sum of the flat Minkowski background ηµν plus perturbations given by the hµν(x) contri-
bution. Now, we expand the bosonic field as

φ(x) = φ0(x) + φ̄(x) , (3)
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where the φ0 vev depends on the medium characteristics and can be seen as an external
source, while the φ̄ contribution is included in the integration variables. The scalar field
φ then suitably describes a superfluid with ground state density φ0 fixed by external
conditions (for example, Cooper pairs density in a supercondensate in the presence of
external EM fields). In the weak gravity limit, the Lφ term then reads

Lφ = Lφ̄ + Lh + L0 . (4)

In the above expansion, the first term is related to the φ̄ contributions, involved in the
negligible excitation processes related to the graviton emission–absorption mechanism,
and several vertices of interaction that turn out to be irrelevant due to the smallness of the
gravitational coupling. The second term takes into account the coupling of the condensate
with the hµν metric fluctuations and is written as

Lh ∝ hµν ∂µφ0
∗ ∂νφ0 , (5)

which determines corrections to the gravitational propagator, which is again a negligible
contribution. Finally, the last term determines a local supercondensate contribution to the
total effective cosmological term of the form

L0 = −1
2

∂µφ0
∗ ∂µφ0 +

1
2

m2|φ0|2 , (6)

connected to the coherent vacuum energy density and depending on the fixed external
source φ0. The above coupling has the correct structure to produce possible, localized insta-
bilities in superfluid regions featuring larger condensate density [8,9]: this could determine
detectable effects in spite of the smallness of the gravitational coupling. We should also
note that, in the latter instable regions, some physical cutoff or regularizing process should
come into play, preventing local contribution of arbitrary intensity (This can be considered a
gravitational analog of the Casimir effect, where observable evidence originates from inho-
mogeneities in the vacuum fluctuations. In the latter case, the metallic conductors impose
a cutoff on the electromagnetic vacuum fluctuations, while the same role is played here
by the coherent superfluid). The field then tends to be pinned, assuming fixed extremal
values which are independent from those in the neighbouring regions. One could expect,
as a physical effect, some kind of slight partial shielding (“absorption”) locally affecting
fields propagation and potentials. As we already pointed out, the introduced superfluid
density φ0(x) is related to the microscopic structure of the involved sample, as well as to
the presence of currents, vortex lattices and electromagnetic fields in the supercondensate
(It has also been conjectured that high-frequency electromagnetic fields could provide the
required energy to enhance the described gravitational field affection [8,15]).

We have then described a theoretical quantum gravity model with an unconventional
coupling between the local gravitational field and the superfluid. The existence of strong
variations of the supercondensate components density (for example, Cooper pairs) produce
small regions with higher density, where a criticality condition could take place, giving rise
to localized instabilities. This gives us a possible way to elude the weakness of the standard
coupling and produce a related affection of the local gravitational field. The key ingredient
is the macroscopic quantum coherence of the condensate that is taken into account when
computing the anomalous interplay, at a fundamental level, between the superfluid and
the external gravitational field.
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1.2. Experimental Evidence

The discussed formulation laid the foundations of a theoretical approach to an un-
conventional coupling between superfluids and gravity, in the framework of a quantum
model. This, however, involves a formalism that makes it almost impossible to extract
quantitative predictions, to be tested in a laboratory experiment. For this reason, one is
then led to also consider many phenomenological research reports and evidence, to better
understand the proposed interplay and obtain an effective theory leading to more explicit
experimental predictions.

One the first attempts to formulate an effective quantum model describing the in-
teraction between conductors and the local gravitational field was given in [51], where a
quantum-mechanical formalism is developed to calculate an (additional) electric field com-
ponent, generated in the vicinity of a conductor by the presence of the Earth’s gravity. The
main consequence of this formulation is the definition of generalized electric-type fields and
potentials, existing near the surface of a conductor and featuring a gravitationally-induced
component. We can schematically express this generalized field as

E = Ee + Eind V = Ve + Vind (7)

where Ee is the standard electric field, while Eind is the gravitationally-induced component.
In [52,53], the induced Eind and Vind were experimentally detected as a direct affection
to the free fall of electrons in the presence of conductors. This evidence of existence
of generalized fields and potentials was then theoretically analysed and experimentally
verified in subsequent works [54–61].

Analogous concepts were subsequently extended to superconductors, obtaining
similar results [11,33,62–73]: generalized gravitoelectric and gravitomagnetic fields can be
induced by the presence of a local gravitational field coupled to the supercondensate.

In the following section, we discuss a formal derivation of a consistent form for
these generalized fields and potentials, exploiting a weak field expansion for the local
gravitational field. This approach will lead us to the definition of a generalized form for
Maxwell equations.

2. Linearized Gravity: Gravito–Maxwell Fields

It is well known that gravity is in general mediated by a symmetric gµν tensor field,
featuring 10 independent components (potentials). However, under certain approxima-
tions and suitable gauge choice, the gravitational field behaviour can be described in an
electromagnetic-like fashion, by means of vector-like field equations instead of the corre-
sponding tensorial expressions. In particular, linearized gravity can be considered as a
consistent weak-field limit of the complete tensorial theory, in the regime where nonlinear
effects can be ignored (In the linear-order assumption, the gravitational field does not
transfer energy to the gravitational sources; this also cancels matter–gravity coupling from
the domain of linear approximations).

Let us the consider a nearly-flat spacetime, characterized by the presence of a weak
and static gravitational field. This means we can consider small perturbation of the
Minkowski metric ηµν and express the spacetime metric gµν as

gµν » ηµν + hµν , (8)

where the symmetric tensor hµν is a small perturbation of the constant flat ηµν in the mostly
plus convention, ηµν = diag(−1,+1,+1,+1). The inverse metric, in linear approximation,
is given by

gµν » ηµν − hµν . (9)
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while the metric determinant can be expanded as

g = det
[
gµν

]
= εµνρσg1µ g2ν g3ρ g4σ » −1− h ⇒

√
−g » 1 +

1
2

h , (10)

where h = hσ
σ.

We are now going to exploit the above weak-limit expansion of the metric to ob-
tain a linearized form for the Einstein and London equations. We will then take ad-
vantage of the obtained results to define suitable backgrounds to test the discussed
gravity/superfluid interplay.

2.1. Generalizing Maxwell Equations

Let us put ourselves in an inertial coordinate system. To first order in hµν, the
connection is expanded as

Γλ
µν »

1
2

ηλρ
(
∂µhνρ + ∂νhρµ − ∂ρhµν

)
. (11)

The Riemann tensor is defined as:

Rσ
µλν = ∂λΓσ

µν − ∂νΓσ
µλ + Γσ

ρλ Γρ
νµ − Γσ

ρν Γρ
λµ , (12)

while the Ricci tensor is obtained from the contraction

Rµν = Rσ
µσν , (13)

and, to linear order in hµν, it is expressed as

Rµν » ∂σΓσ
µν + ∂µΓσ

σν +��Γ Γ−��Γ Γ

=
1
2
(
∂µ∂ρhνρ + ∂ν∂ρhµρ

)
− 1

2
∂ρ∂ρhµν −

1
2

∂µ∂νh

= ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh ,

(14)

having used Equation (11).
The Einstein equations are written as:

Rµν −
1
2

gµν R = 8πG Tµν , (15)

where R = gµνRµν is the Ricci scalar. In linear-order approximation, we have

1
2

gµν R »
1
2

ηµν ηρσRρσ =
1
2

ηµν

(
∂ρ∂σhρσ − ∂2h

)
, (16)

having used Equation (14). The l.h.s. of (15) then reads

Rµν −
1
2

gµν R » ∂ρ∂(µhν)ρ −
1
2

∂2hµν −
1
2

∂µ∂νh− 1
2

ηµν

(
∂ρ∂σhρσ − ∂2h

)
. (17)

Let us now introduce the symmetric traceless tensor

h̄µν = hµν −
1
2

ηµν h , (18)
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so that (17) is rewritten as

Rµν −
1
2

gµν R »
1
2
(
∂ρ∂µ h̄νρ + ∂ρ∂ν h̄µρ − ∂ρ∂ρ h̄µν − ηµν ∂ρ∂σ h̄ρσ

)
= ∂ρ∂[ν h̄ρ]µ + ∂ρ∂σηµ[σ h̄ν]ρ

= ∂ρ
(

∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ

)
.

(19)

We also define the tensor
Gµνρ ≡ ∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ , (20)

in terms of which the Einstein equations take the compact form:

∂ρGµνρ = 8πG Tµν . (21)

2.1.1. Gauge Fixing

We now consider the harmonic coordinate condition, expressed by the relation [74,75]:

∂µ

(√
−g gµν

)
= 0 ⇔ 2xµ = 0 , (22)

that in turn can be rewritten in the form

gµν Γλ
µν = 0 , (23)

also known as De Donder gauge. The requirement of the above coordinate condition (22)
then plays the role of gauge fixing. In particular, in harmonic coordinates, the metric
satisfies a manifestly Lorenz-covariant condition, so that the De Donder gauge becomes a
natural choice. Moreover, if one considers the weak-field expansion of the Einstein–Hilbert
action in De Donder gauge, the action itself (as well as the graviton propagator) takes a
particularly simple form.

Using Equations (8) and (11) together with the above gauge fixing (23), in first-order
approximation, we find:

0 »
1
2

ηµν ηλρ
(
∂µhνρ + ∂νhρµ − ∂ρhµν

)
= ∂µhµλ − 1

2
∂λh , (24)

that in turn implies the condition

∂µhµν »
1
2

∂νh ⇔ ∂µhµν »
1
2

∂νh . (25)

We can also write

∂µhµν = ∂µ

(
h̄µν +

1
2

ηµνh
)

= ∂µ h̄µν +
1
2

∂νh , (26)

so that, using Equation (25), we obtain the Lorentz gauge condition:

∂µ h̄µν » 0 . (27)

This condition further simplifies Equation (20) for Gµνρ, which takes the simple form

Gµνρ » ∂[ν h̄ρ]µ , (28)
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and satisfies the relation

∂[λ|G0|µν] = 0 ⇒ G0µν ∝ ∂µAν − ∂νAµ , (29)

The above expression then suggests the existence of a potential. In the following paragraphs,
we are going to analyse in detail suitable expressions for fields and potentials defining the
desired formalism.

2.1.2. Gravito–Maxwell Equations

Let us now define the following fields [19,63,68,76,77] (for the sake of simplicity, we
initially set the physical charge e = m = 1)

Eg ≡ Ei = − 1
2

G00i = − 1
2

∂[0h̄i]0 , (30.i)

Ag ≡ Ai =
1
4

h̄0i , (30.ii)

Bg ≡ Bi =
1
4

εi
jk G0jk , (30.iii)

with i = 1, 2, 3 and

G0ij = ∂[i h̄j]0 =
1
2
(
∂i h̄j0 − ∂j h̄i0

)
= 4 ∂[i Aj] . (31)

From the above definitions, it follows that

Bg =
1
4

εi
jk 4 ∂[j Ak] = εi

jk ∂j Ak = ∇×Ag , (32)

that also implies
∇ · Bg = 0 . (33)

We then also find

∇ · Eg = ∂iEi = −∂i G00i
2

= −8πG
T00

2
= 4πG ρg , (34)

having used Equation (21) and defined the mass density as ρg ≡ −T00 .
We then consider the curl of Eg:

∇× Eg = εi
jk ∂jEk = −εi

jk ∂j
G00k

2
= −1

2
εi

jk ∂j∂[0h̄k]0

= −1
4

4 ∂0 εi
jk ∂j Ak = −∂0Bi = −∂Bg

∂t
.

(35)

Finally, for the curl of Bg, we find

∇× Bg = εi
jk ∂jBk =

1
4

εi
jk εk

`m ∂jG0`m =
1
4

(
δi
`δjm − δi

mδj`
)

∂jG0`m

=
1
2

∂jG0ij =
1
2
(
∂µG0iµ + ∂0G0i0

)
=

1
2
(
∂µG0iµ − ∂0G00i

)
=

1
2
(8πG T0i − ∂0G00i) = 4πG ji +

∂Ei
∂t

= 4πG jg +
∂Eg

∂t
,

(36)

having used again Equation (21) and defined the mass gravito-current density vector as
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jg ≡ ji ≡ T0i.
In summary, the fields (30) are defined, one can write the field equations [11,19,28,32,

63,67,68,76,78–91]:

∇ · Eg = 4πG ρg ,

∇ · Bg = 0 ,

∇× Eg = −∂Bg

∂t
,

∇× Bg =
4πG

c2 jg +
1
c2

∂Eg

∂t
,

(37)

having restored physical units. The above expressions are formally equivalent to Maxwell
equations, with Eg and Bg being the gravitoelectric and gravitomagnetic field, respectively
(For instance, on the Earth’s surface, Eg corresponds to the Newtonian gravitational accel-
eration, while Bg is related to angular momentum interactions [63,68,78,81]). The mass
current density vector jg can also be written as:

jg = ρg v , (38)

in terms of the mass density and velocity v.

2.1.3. Generalized Maxwell Equations

Inspired by the discussion of Section 1.2, it is now straightforward to extend the above
results and introduce generalized electric/magnetic fields, scalar and vector potentials. The
latter feature both electromagnetic and gravitational contributions and can be written as:

E = Ee +
m
e

Eg B = Be +
m
e

Bg V = Ve +
m
e

Vg A = Ae +
m
e

Ag (39)

where m and e are the electron mass and charge, respectively [51].
The generalized Maxwell equations then become:

∇ · E =

(
1
εg

+
1
ε0

)
ρ ,

∇ · B = 0 ,

∇× E = −∂B
∂t

,

∇× B =
(
µg + µ0

)
j +

1
c2

∂E
∂t

,

(40)

where ε0 and µ0 are the standard electric permittivity and magnetic permeability in the
vacuum, and where we have set

ρg =
m
e

ρ , jg =
m
e

j , (41)

ρ and j being the electric charge density and electric current density, respectively. The
introduced vacuum gravitational permittivity εg and vacuum gravitational permeability
µg are defined as

εg =
1

4πG
e2

m2 , µg =
4πG

c2
m2

e2 . (42)
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The obtained generalized Maxwell equations turn out to be a consistent approximation
to the complete tensorial theory, valid in the limit of the weak gravitational field (like the
static, weak Earth’s gravity). It is then possible to take advantage of the obtained results
and consider suitable situations and parameters regime where the gravitoelectric field
plays a fundamental role and/or where gravitomagnetic effects are not negligible.

2.2. Generalizing London Equations

The London equations for a superconductor in stationary state characterize an analo-
gous Ohm’s law (zero resistivity) and Meissner effect (expulsion of the magnetic field from
the interior sample) for the superfluid. They can be explicitly written as [92–94]:

Ee =
m

ns e2
∂j
∂t

; (43)

Be = − m
ns e2 ∇× j . (44)

where j = ns e vs is the supercurrent and ns is the superelectron density.
The Ampère’s law for a superconductor in stationary state (no displacement current)

has the form
∇× Be = µ0 j , (45)

so that taking the curl gives

∇×∇× Be = ∇(���XXX∇ · Be)−∇2Be = µ0∇× j = −µ0 ns e2

m
Be , (46)

that is,

∇2Be =
1

λ2
e

Be , (47)

having introduced the penetration depth

λe =

√
m

µ0 ns e2 . (48)

The above quantity gives an estimate of the mean distance the magnetic field Be can
penetrate the sample. Since the values of the λe parameter vary from 2 nm (low Tc su-
perconductors) to 200 nm (high Tc superconductors), the above Equations (47) and (48)
quantitatively characterize the Meissner effect.

The two London Equations eqs. (43) and (44) can be now rewritten in terms of the
vector potential Ae in the (not gauge-invariant) form:

j = − 1
µ0 λ2

e
Ae (49)

with Be = ∇×Ae and expressing the electric field as Ee = −∂Ae

∂t
.

Generalized London Equations

Let us now take into account gravitational contributions, and consider for the fields
and potentials the generalized form (39). In particular, we consider the generalized potential
A minimally coupled to the wave function

ψ = ψ0 exp(i ϕ) ψ2
0 ≡ |ψ|2 = ns . (50)
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The second London equation can be derived from the quantum mechanical current density

j = − i
2m
(
ψ∗∇̃ψ− ψ∇̃ψ∗

)
, (51)

where ∇̃ is the covariant derivative for the minimal coupling:

∇̃ = ∇− i g̃ A , (52)

with unknown coupling constant g̃. We then find for the current

j = − i
2m

(ψ∗∇ψ− ψ∇ψ∗)− g̃
m

A |ψ|2 =
1
m
|ψ|2(∇ϕ− g̃ A) . (53)

Now, taking the curl of the previous expression gives

B = − m

g̃ |ψ|2
∇× j = −1

ζ
∇× j , (54)

which is the generalized form of the second London Equation (44) [79].
We now want to fix the values of the ζ parameter and coupling constant g̃. To this

end, let us restrict to the case Bg = 0:

B = Be +
m
e ��@@

Bg = −1
ζ
∇× j , (55)

so that, using (44), (48) and (50), we find

g̃ = e2 1
ζ

= µ0 λ2
e . (56)

In order to define an analogue gravitational penetration depth, we now consider the case
Be = 0:

B = ��ZZBe +
m
e

Bg = −µ0 λ2
e ∇× j = −µ0 λ2

e
m
e
∇× jg , (57)

the gravito-Ampère’s law (37) in stationary state reading

∇× Bg = µg jg . (58)

Taking the curl of the above equation, we have

∇×∇× Bg = −∇2Bg = µg∇× jg = −µg
1

µ0 λ2
e

Bg = − 1
λ2

g
Bg , (59)

having introduced the gravitational penetration depth

λg =

√
µ0 λ2

e
µg

=

√
c2

4πG m ns
. (60)

Writing now the stationary generalized Ampère’s law (40) and using Equation (60), we obtain

∇× B =
(
µ0 + µg

)
j = µ0

(
1 +

λ2
e

λ2
g

)
j , (61)
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and, taking the curl, we find the general form

∇2B = −µ0

(
1 +

λ2
e

λ2
g

)
∇× j = µ0

1
µ0 λ2

e

(
1 +

λ2
e

λ2
g

)
B =

=

(
1

λ2
e
+

1
λ2

g

)
B =

1
λ2 B ,

(62)

where we have introduced the generalized penetration depth λ :

λ =
λg λe√
λ2

g + λ2
e

» λe , with
λg

λe
» 1021 . (63)

Finally, we can recast Equation (49) in the form

j = − ζ A , (64)

with B = ∇×A. Moreover, since charge-conservation requires the condition ∇ · j = 0, we
obtain for the vector potential

∇ ·A = 0 ,

that is, the so-called Coulomb gauge (or London gauge).
In the following sections, we are going to consider suitable frameworks where the

proposed gravity/superfluid interplay can in principle be detected, precisely characterizing
the physical system and optimizing the range of parameters in order to maximize the effect.
We will also exploit the described formalism and introduce generalized fields.

3. A Simple Application: Josephson Effect

The Josephson effect consists of the transmission of supercurrents through thin
insulating barriers by means of quantum-mechanical tunnelling [95]. The phenomenon can
be seen as a general property of coupled superconducting systems and could take place
in suitable tunnel junctions, where quantum interference appears. In particular, when the
states of two superconductors are assumed to be coherent (that is, coherent superpositions
of states with different numbers of particle pairs), there exists a phase-dependent coupling
energy between the two. The latter then implies the possibility of a supercurrent flowing
across the junction [96].

3.1. Josephson Junction

If two superconductors are put in contact and the critical current in the contact region
is well below those of the individual constituents, the configuration is defined as weak link.
Once the weak link is formed, coherence is established across the barrier, with a phase
difference ∆ϕ causing interference between the previously independent wavefunctions, so
that the system can be described with a single wavefunction as a whole.

When two superconducting samples are connected through a weak Josephson link,
the response of the supercondensate (through the corresponding coupling energy) keeps
the macroscopic internal coherence of the system, allowing direct observation of coherence–
interference phenomena. In particular, a simple manifestation of the Josephson effect can be
observed in a circuit closed on a superconductor–insulator–superconductor (SIS) junction,
to which a constant potential difference ∆V is applied. The voltage, in turn, produces a
sinusoidal superconductive current across the junction with pulsation [95–97]
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ω =
2 e ∆V

h̄
. (65)

Let us briefly discuss the phenomenon.

Josephson AC Current

Let us consider a weak link between two superconductors. The latter, when taken
separately, are described by wavefunctions of phases ϕ1, ϕ2 and amplitudes |ψ1|, |ψ2|. We
can explicitly write

ψ1 = |ψ1| exp(i ϕ1) =
√

ρ1 exp(i ϕ1) ,

ψ2 = |ψ2| exp(i ϕ2) =
√

ρ2 exp(i ϕ2) ,
(66)

where ρ1, ρ2 are the probability amplitudes of Cooper pair densities.
Once the weak link is formed, coherence is established across the barrier, and the

phase difference
∆ϕ = ϕ2 − ϕ1 = γ (67)

determines interference between the (previously independent wavefunctions), so that the
system can be described by means of a single wavefunction as a whole.

An SIS tunnel Josephson junction is a typical weak link consisting of two supercon-
ductors (that we take equal for simplicity) of thickness L and surface A, separated by a thin
oxide layer of thickness ` ! L, see Figure 1. The time dependent Schrodinger equation can
be used to characterize the system evolution as

ih̄
∂ψ

∂t
= E ψ . (68)

As we already discussed, in the weak link, a coherent overlap takes place between the two
wavefunctions, and an additional term must be added to take into account the interaction.
In particular, the rate of change of ψ1 is proportional to its coupling to ψ2, the same
happening for ψ2 on the other side. It is then possible to write the relations [98]

ih̄
∂ψ1

∂t
= E1 ψ1 + K ψ2 , (69)

ih̄
∂ψ2

∂t
= E2 ψ2 + K ψ1 . (70)

For the sake of simplicity, we will consider a superconductor of the same kind, so that the
probability amplitudes of Cooper pair densities are equal, ρ1 = ρ2 = ρ. The quantities E1
and E2 are the ground state energies of the unperturbed system (i.e. when K = 0) and we
choose the zero of energy to be halfway between E1 and E2, the evolution of the system
then depending on the difference ∆E = E2 − E1 .
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Figure 1. SIS junction with an axis directed along the z-direction, parallel to the local Earth’s
gravitational field.

Now, we put expressions (66) in the evolution relations Equations (69) and (70), assum-
ing each wavefunction having a well-defined Cooper pair density and space-independent
macroscopic phase. Separating the real and imaginary part, we find:

∂γ

∂t
=

∆E
h̄

= 0 , (71)

∂ρ

∂t
=

2 K
h̄

ρ sin(γ) , (72)

with γ = ϕ2 − ϕ1, the expression being valid in the absence of applied voltage of any
kind (electric or gravitational-like) (Equation (72) is written in the standard Josephson
formalism [99] with a little abuse of notation: the ρ-density involved in the time-derivative
on the l.h.s. refers to the superconducting current density across the interface, while the
density on the r.h.s. refers to the global density of Cooper pairs in the system; the latter
is a conserved (constant) quantity, being the system in the superconductive state). The
supercurrent across the contact then is written

Js = −2 e
∂ρ

∂t
= −4 e K

h̄
ρ sin(γ) = J0 sin(γ) , (73)

flowing through the thin layer separating the superconductors and depending on the phase
difference across the barrier.

If we apply a constant voltage ∆V across the junction, an oscillatory variation of
phase difference takes place. A corresponding AC supercurrent then appears in the weak
link, due to the existing finite potential difference in the junction. The phenomenon is a
manifestation of the Josephson–Gor’kov principle [96,100,101], which simply states that
the oscillation frequency of the coherent matter field is driven by the existing chemical
potential (corresponding to pairs of electrons in the case of superconductivity). Since the
supercurrent is a periodic function of ∆ϕ, AC supercurrents must be associated with any
applied voltage difference (general principle of gauge invariance dictates that all physical
properties must be periodic functions of the phase with period 2π). Equation (71) is then
modified in order to take into account the applied voltage, resulting in a time-dependent
relation of the form [95–97,101,102]:

∂γ

∂t
=

2 e ∆V
h̄

, (74)
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relating the phase difference variation on opposite sides to the existing potential difference
across the junction. After integration, the above (74) gives

γ(t) = γ0 +
2 e ∆V

h̄
t , (75)

γ0 being an integration constant. The supercurrent density turns out to be

Js = J0 sin
(

γ0 +
2 e ∆V

h̄
t
)

. (76)

and, below the critical temperature, the amplitude of the corresponding tunnelling super-
current I0 = J0 A is temperature-dependent and is expressed by the Ambegaokar–Baratoff
formula [103,104]:

I0 =
π ∆S(T)
2 e RN

tanh
(

∆S(T)
2 kB T

)
, (77)

where RN is the junction resistance in the normal state and ∆S(T) is the superconductive
gap. The described AC signal, coming from the applied DC voltage, may be understood as
the result of the energy conversion of electron pairs into photons [105].

In the following, we will examine the possibility of a Josephson-like effect induced
by the weak-static Earth’s gravitational field, also analysing suitable experimental settings
and parameter optimization.

3.2. Josephson Effect Induced by Gravity

We have discussed and motivated in the previous sections the introduction of gener-
alized electric field and potential of the form

E = Ee +
m
e

Eg V = Ve +
m
e

Vg . (78)

If we now restrict to a simple situation in which it is present only the Earth’s static gravita-
tional field (Ee = 0), we have that

E =
m
e

Eg =
m
e

g , (79)

while the corresponding potential difference reads

∆V =
m
e

∆Vg =
∫ `

0
dz

m
e

g =
m
e

g ` , (80)

having chosen the z-axis along the direction of the gravitational field, see Figure 1. The
resulting induced Josephson current [77] then has the form

Is(t) = I0 sin
(

2 e ∆V
h̄

t + ϕ

)
= I0 sin(ω t + ϕ) . (81)

We also expect the induced effect to disappear when the junction is rotated in a position
where the normal vector to the surface is perpendicular to the gravitational field direction.
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Experimental Settings

Let us first consider a junction involving high-Tc superconductors (HTSC). The latter
have a coherence length ξ of the order of 10−9 m that fixes the thickness ` of the insulating
layer to be ` À ξ. Then, if we consider the pulsation

ω =
2 e ∆V

h̄
=

2 m g `
h̄

, (82)

a junction with an insulating layer of thickness ` » 1 nm would result in ω » 1.7× 10−4 s−1,
determining a corresponding period for the Josephson current T = 2π/ω » 3.7× 104 s.
This implies that the distinctive oscillatory behaviour can be observed only in very stable
junctions, since a reasonable duration of the experiment turns out to be longer than one
day, see Figure 2.

0 5 10 15 20 25 30
-1.0

-0.5

0.0

0.5

1.0

PSfrag replacements

I s

(t
)/
I 0

hours

Figure 2. Time dependence of the Josephson current for an insulating layer of thickness ` = 1 nm.

To reduce the time duration of the experiment, it is necessary to increase the voltage
Vg. Clearly, it is impossible to vary the intensity of the local gravitational field, so that the
only strategy left is to have larger `. This means that we need tunnelling junctions working
in the presence of a thicker insulating layer: this is possible using low-Tc superconductors
(LTSC), and the latter can feature a larger coherent length, of the order of 103 nm. In this
case, we can take an insulating layer of thickness ` » 300 nm and obtain for the voltage
Vg » 1.67× 10−17 Volt. The pulsation turns out to be ω » 0.05 s−1 and the corresponding
period T » 123 s, strongly reducing the experiment duration, see Figure 3.

From a practical point of view, it would be preferable to work with experimental
setups stable enough to allow accurate oscillations measurements, but that, at the same time,
give rise to a Josephson current of detectable intensity. If we increase the junction thickness
using low-Tc superconductors, the time duration for the experiment decreases and a stable
setting is then possible, but the associated Josephson current becomes very weak and
difficult to measure. Currently, the best choice to observe experimental evidence is to
realize the most stable setup possible with HTCS, and then make long-time measurements
of stronger Josephson currents.
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Figure 3. Time dependence of the Josephson current for an insulating layer of thickness ` = 300 nm.

We have seen how the proposed theoretical model provides the possibility to investi-
gate the discussed interplay between gravitation and a superconductive condensate. For
the simple case of the Josephson junction, the difficulties lie in the experimental setup that
has to be stable in time to allow for careful observations of the oscillatory behaviour, and
very sensitive to the induced voltage. In the following sections, we are going to analyse a
more detailed microscopic description of the superfluid, exploiting a mean–field theory for-
mulation for the system thermodynamics, including the effects of thermal fluctuations. In
particular, we will analyse how the local gravitational field can be affected by the presence
of a supercondensate exploiting the time-dependent Ginzburg–Landau equations in the
regime of fluctuations.

4. Affecting the Field Just Outside the Sample: Ginzburg–Landau Formulation

We now want to better characterize the interaction between the superfluid and the
local gravitational field. To this end, we need a microscopic quantum model describing
the supercondensate behaviour. However, the formalism that characterizes the material
superconductive state is in general very complicated, so that extracting quantitative pre-
dictions (or even just qualitative descriptions) for the interplay turns out to be an almost
impossible task.

A simpler framework for analysing the interaction mechanism is given by a super-
conducting sample in the vicinity of its critical temperature Tc. In particular, for T near
Tc, the system can be described by the Ginzburg–Landau equations, for which analytic
solutions could be found.

4.1. Thermodynamic Fluctuations vs. Mean–Field Theory

The physics of low-temperature condensed matter systems is based on two funda-
mental notions: the low-energy long-living excitations (quasiparticles) and the mean field
approximation. For instance, the BCS theory of superconductivity [106] is a paradigmatic
example of the exploitation of both approaches mentioned.

Physical situations which cannot be consistently described in terms of the quasi-
particle method or the mean field approximation are called fluctuations. The regime in
which the fluctuations come into play is, in general, a very narrow temperature range
around the critical temperature (On the contrary, for high temperature cuprate super-
conductors, organic superconductors, iron pnictides, low dimensional and amorphous
superconducting systems, the situation changes radically due to the very small value of
the coherence length, so that the temperature range of fluctuation is considerably larger).
In particular, many effects on the superconducting phase occur while the system is still in
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the normal phase (just above the critical temperature) and originate from the appearance
of the superconducting fluctuations themselves. In this regard, diamagnetic susceptibility,
conductivity, heat capacity and other physical quantities may increase considerably near
the transition temperature.

If we consider a range of temperature sufficiently far from the critical Tc, the fluc-
tuation regime ceases and the physics of the system is described in terms of a mean field
formulation. The latter approach approximates the physics by averaging over the degrees
of freedom of the system, that is, by approximating all the interactions acting on a single
component with a single averaged effect. The technique allows for map a multi-body
problem onto a one-body problem. In particular, the thermodynamic properties of the
system are obtained by treating the order parameter as spatially constant, the spatial fluctu-
ations being negligible. Many predictions can therefore be obtained by exploiting a much
simpler mathematical formulation: this is a great advantage when dealing with new and
unconventional systems, for which a complete description is not known.

GL Equations

As we have briefly discussed, the analysis of condensed matter systems in general
involves the study of complicated, many electron states. A certain number of phenomeno-
logical approaches, based on classical field theory, were then developed to address the
problem. A possibility is to consider a slowly-varying density of fields, carrying sufficient
quantum information to write down an energy function for the system to be minimized:
this corresponds to the celebrated Ginzburg–Landau (GL) formulation [107,108], based on
a mean field approach. Its most notable use is in the theory of superconductors, where a
complex scalar field ψ is used to characterize the density of the superconducting paired
electrons. Even if the GL approach is, in general, superseded by the more fundamental
BCS theory, it is a powerful tool in the vicinity of the critical temperature, where a more
fundamental theory is lacking or the formulation is too complicated.

4.2. Ginzburg–Landau Formulation

Let us consider a superconductive sample near its critical temperature. At the mi-
croscopic level, thermodynamic fluctuations of the order parameter ψ(x, t) describing
superconducting electrons occur, giving rise to localized regions of accelerated charge carri-
ers [109–113]. From a physical point of view, ψ can be thought as the pseudowavefunction
characterizing the motion of the center of mass of the Cooper pairs. The average size of
these regions is much greater than the mean free path for a certain range of temperature
above Tc, while it decreases for larger temperature [114]. Moreover, we are going to con-
sider sufficiently dirty materials, so that the effects of the fluctuations can be observed
over a sizable range of temperature [111] (In order to have a sufficiently large temperature
interval, the electronic mean free path characterizing the material in the normal state should
be less than 10 Å).

We now want to characterize in more detail the behaviour of the superconductive
sample, also analysing its possible interaction with the surrounding gravitational field. If
the sample is put at a temperature T slightly greater than Tc but sufficiently far from the
transition point (mean field regime), the system can be described in terms of linearized
time-dependent Ginzburg–Landau equations (The order parameter being very small in
the thermodynamic fluctuations regime, a linear order formulation can be exploited). The
latter can be expressed in the gauge-invariant form as [115–117]:

Γ(h̄ ∂t − 2 i e φ)ψ =
1

2m
(h̄∇φ− 2 i e A)2ψ + α ψ (T > Tc) . (83)
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where ψ(x, t) is the order parameter, φ(x, t) the electric potential and A(x, t) is the vector
potential. We also introduce the quantities:

Γ =
α

ε(T)
π

8 kB Tc
ε(T) =

√
T − Tc

Tc
ξ(T) =

ξ0√
ε(T)

α =
h̄2

2 m ξ(T) 2 (84)

ξ0 being the BCS intrinsic coherence length, roughly characterizing the smallest size of a
wave packet formed by superconducting charge carriers. It plays a role analogous to the
mean free path in the nonlocal electrodynamics of normal metals and is in general larger in
metal superconductors (In spite of the fact that the two electrons in a Cooper pair can be
far apart from each other, other electrons belonging to different Cooper pairs are usually
closer). The temperature-dependent Ginzburg–Landau coherence length ξ(T) provides a
measure of the distance over which the order parameter can vary without undue energy
increase, for a given temperature T. Alternatively, it can be thought of as a characterization
of the distance from the surface over which the order parameter is close to its bulk value.

We now consider the following ansatz for the solution:

ψ(x, t) = f (x, t) exp
(
i g(x, t)

)
, (85)

and obtain from (83) the relations

Γ h̄
∂ f
∂t

= α f − 1
2

m v2
s f +

h̄2

2m
∆ f , (86.i)

Γ h̄ f
∂g
∂t

= 2 e Γ φ f − h̄2

2m
f ∆g− 2 h̄ vs · ∇ f . (86.ii)

The superfluid speed vs has the form

vs =
1
m

(
h̄∇g + 2

e
c

A
)

, (87)

and the associated supercurrent density js reads

js = −2
e
m
|ψ|2

(
h∇g + 2

e
c

A
)

= −2 e f 2 vs . (88)

4.2.1. Thermodynamic Fluctuations

The presence of a thermal energy of the order of „ kB T implies that the system could
fluctuate in different low-lying states with a non-zero probability. Let us then use fk to
define the value of f for a fluctuation of the wave vector k. The above (86) can be recast in
the form

Γ h̄
∂ fk
∂t

= α fk −
h̄2

2m
k2 fk −

1
2

m v2
s fk , (89.i)

∂vs

∂t
= −2

e
m

E (89.ii)

having used Equations (87), (86.ii) and

∇φ = −E− ∂A
∂t

. (90)
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Equation (89.ii) can be easily integrated and the resulting expression for the superfluid
speed can be used in (89.i) giving

Γ h̄
∂ fk
∂t

=

(
α− h̄2

2m
k2 − 2

e2

m
E2 t2

)
fk . (91)

We then find for fk

fk(t) = fk(0) exp


(

α− h̄2

2m k2
)

t− 2
3

e2

m E2 t3

Γ h̄

 , (92)

with
f 2
k (0) =

kB T

2
(
|α|+ h̄2

2m k2
) , (93)

and the associated current density jsk(t) can be written as

jsk(t) =
4 e2

m
E t f 2

k (0) exp

2

(
α− h̄2

2m k2
)

t− 2
3

e2

m E2 t3

Γ h̄

 . (94)

Finally, the explicit expression for the physical supercurrent density js [76] can be found
integrating over k:

js(t) =
1

8π3

∫ +∞

0
dk 4π k2 jsk(k, t) , (95)

where we have considered a three-dimensional sample of dirty material, whose dimensions
are larger than the correlation length.

4.2.2. Generalized EM Fields

The above expression for the supercurrent density allows for extracting the explicit
form of the generalized electromagnetic fields and potentials characterizing the physical
evolution of the system. First of all, the vector potential A(x, y, z, t) is obtained from

A(x, y, z, t) =
µ0

4π

∫ js(t′) dx′ dy′ dz′√
(x− x′)2 + (y− y′)2 + (z− z′)2

, (96)

where t′ is the retarded time

t′ = t−
√
(x− x′)2 + (y− y′)2 + (z− z′)2

c
. (97)

The generalized electric field E(x, y, z, t) (39) is obtained from:

E(x, y, z, t) = −∂A(x, y, z, t)
∂t

+
m
e

g . (98)

As we can appreciate, the generalized gravito–Maxwell E(x, y, z, t) features two contri-
butions. In particular, the second term is the standard, constant weak Earth’s gravity
contribution. On the other hand, the unconventional first term originates from the pres-
ence of the (non-constant) supercurrent density and can determine a local, additional
contribution to the constant gravitational field g. The final result clearly depends on the
superconducting sample shape and dimensions, as well as on the space point (outside the
sample) where the gravitational fluctuation is measured.
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4.3. Expected Effects

Let us now study in detail a suitable experimental setting to evaluate the proposed
interplay. Here, we consider a superconductive disk at a temperature higher but very close
to Tc. The sample is kept in the normal state by a weak magnetic field that is then turned
off at the time t = 0, where the superconductive transition occurs. The axis of the disk is
aligned with the direction of the gravitational field, the bases being parallel to the ground.

The chosen temperature regime (T Á Tc) corresponds to the thermodynamic fluctua-
tions regime we discussed in the previous section, so that we can exploit the corresponding
results for the supercurrent and generalized EM fields expressions, see Equations (95), (96)
and (98). We are interested in the gravitational correction along the axis of the disk, just
above the upper base of cylindrical sample.

First, we consider the local alteration of the gravitational as a function of time. In
Figure 4, we show the computed effect for an In sample. The latter is a low-Tc metallic
superconductor, then featuring a large intrinsic coherence length ξ0. The same analysis is
then performed in Figure 5 for a Ba0.4K0.6Fe2As2 sample, an high-Tc superconductor with
small ξ0. In both cases, the variation is measured along the disk axis, at a fixed distance d
above the base surface. We can note that the local gravitational field is initially reduced
with respect to the unperturbed value; then, it increases up to a maximum g + ∆ for t = τ0

and it finally relaxes to the standard unperturbed value g (We can also note that, for a very
short time interval, the local field seems to change sign: this can be prevented by means of
appropriate physical cutoffs, excluding the arbitrary growth of instabilities which would
give rise to negative values [8]).

We then focus on the local alteration as a function of the distance from the sample
for fixed time. In particular, we choose to maximize the effect putting ourselves at t = τ0 .
In Figures 6 and 7, it is shown the variation, measured along the axis of the disk above
the base surface, for the same In and Ba0.4K0.6Fe2As2 samples. In both cases, the effect is
stronger in the vicinity of the sample, as it seems reasonable.

1.´ 10-9 6.´ 10-9 1.1´ 10-8 1.6´ 10-8 2.1´ 10-8

PSfrag replacements

(s)

g +∆

g

∆ = 1.24 · 10−8m/s2

Figure 4. Local gravitational field variation as a function of time for a In sample
(

ξ0 = 360 nm,
Tc = 3.410 K, ∆T = 10−3 K [118]

)
measured along the axis of a superconductive disk at fixed dis-

tance d = 0.1 cm above the base surface. The disk radius is R = 15 cm and the disk thickness is
h = 3 cm.
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Figure 5. Local gravitational field variation as a function of time for a Ba0.4K0.6Fe2As2 sample(
ξ0 = 1.20 nm, Tc = 37.0 K, ∆T = 0.1 K [119]

)
measured along the axis of a superconductive disk at

fixed distance d = 0.1 cm above the base surface. The disk radius is R = 15 cm and the disk thickness
is h = 3 cm.

From a preliminary qualitative analysis, it is possible to show that the maximum
perturbation value ∆ of the local field is proportional to inverse of the coherence length,

∆ ∝ ξ(T)−1 . (99)

This suggests that a stronger affection can be obtained by using high–Tc superconduc-
tors (the latter featuring smaller coherence length) and can be appreciated comparing
the strength of the perturbation for low and high–Tc superconducting samples in the
presented Figures.

On the other hand, it is easily demonstrated that the maximal effect occurs after a
time interval

τ0 ∝ (T − Tc)
−1 . (100)

This means that the time range in which the perturbation takes place can be extended
keeping the sample at a temperature close to the transition temperature. From this point of
view, if we want to be very close to the effective critical Tc, it could be easier to consider a
low–Tc sample, the temperature transition range being very narrow for the latter. However,
this in turns results in a reduced alteration of the local field, since, close to Tc, the Ginzburg–
Landau coherence length ξ(T) diverges, see Equation (84).

In light of the above discussion, an optimized experimental settings should involve
a large high–Tc superconducting sample at a temperature very close to Tc. The latter
condition could help in extending the time range in which the effect takes place, while
choosing a high–Tc superconductor would determine an enhanced local alteration due to
the short intrinsic coherence length. Finally, large dimensions for the sample give a larger
integration range and a resulting stronger contribution.

The above considerations show how a careful arrangement of the experimental setup
is very important, since the material parameters and the sample geometry, dimensions
and temperature directly affect the magnitude of the interaction and the related time
scales. In this regard, the very short time intervals in which the effect occurs complicate
direct measurements.
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Figure 6. Local gravitational field variation as a function of distance for the same In sample, measured
along the disk axis above the base surface, at fixed time t = τ0 = 1.64 ns. The disk radius is R = 15 cm
and the disk thickness is h = 3 cm.
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Figure 7. Local gravitational field variation as a function of distance for the same Ba0.4K0.6Fe2As2

sample, measured along the disk axis above the base surface at fixed time t = τ0 = 7.50× 10−3 ns.
The disk radius is R = 15 cm and the disk thickness is h = 3 cm.

In the following chapter, we will consider the possible affection of the local gravita-
tional field in the sample interior exploiting again the effective framework of the gravito–
Maxwell formulation combined with the Ginzburg–Landau formalism. The analysis will
suggest that, in the superfluid region, a slight affection of the local field could take place, as
we have discussed in Section 1 considering the formal quantum gravity point of view. A
possibility to enhance the effect comes from the presence of suitable electric and magnetic
fields, determining the formation of moving vortices and giving rise to a further interaction
with the local gravitational field.

5. Affecting the Field Inside the Sample: Vortex Lattice

Now, we want to consider the possible alteration of the local static gravitational
field in the region inside the superfluid. To this end, we will exploit the time-dependent
Ginzburg–Landau equations for the supercondensate order parameter, looking for analytic
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solutions in the weak field condition. First, we will restrict to the simpler case of an isolated
isotropic superconductor immersed in the Earth’s gravity in the absence of external EM
fields. Then, we will analyse a more complicated setup, switching on suitable electric and
magnetic fields: this will give rise to the formation of a vortex lattice inside the superfluid,
possibly determining stronger effects for the proposed interplay.

5.1. Time-Dependent Ginzburg–Landau Formulation

Let us consider the case of a superconducting sample on the Earth surface. We already
pointed out that the situation leads to the appearance of effective, generalized Maxwell
fields. In particular, the local static weak gravitational field is treated as the gravitational
component of the generalized gravitoelectric field, exploiting the formal analogy discussed
in the previous Section 2.

The chosen physical system can be characterized in terms of time-dependent
Ginzburg–Landau equations (TDGL). The latter are derived minimizing the total Gibbs
free energy of the system [92–94], and can be written in a general explicit form as [120–126]:

h̄2

2 m

(
i∇+

2 e
h̄

A
)2

ψ − a ψ + b |ψ|2ψ = − h̄2

2 mD

(
∂

∂t
+

2 i e
h̄

φ

)
ψ , (101.i)

∇×∇×A − ∇× B = µ0
(
jn + js

)
(101.ii)

where jn and js are expressed as

jn = − σ

(
∂A
∂t

+∇φ

)
,

js = − i h̄
e
m
(ψ∗∇ψ− ψ∇ψ∗)− 4 e2

m
|ψ|2A .

(102)

and correspond to the contributions of the normal current and supercurrent densities,
respectively. In the above expressions, σ is the conductivity in the normal phase, D is the
diffusion coefficient, B is the applied field, and the vector potential A is minimally coupled
to ψ. The coefficients a and b in (101.i) can be written as:

a = a(T) = a0 (T − Tc) b = b(Tc) (103)

where is Tc the critical temperature of the superconductor, while a0 and b are positive con-
stant quantities. We can write consistent boundary and initial conditions for the system as

(
i∇ψ +

2 e
h̄

A ψ

)
· n = 0

∇×A · n = B · n

A · n = 0

 on ∂Ω× (0, t) ,
ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on Ω , (104)

where ∂Ω is the boundary of a smooth and simply connected domain in RN.
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Dimensionless TDGL
The above Equations (101) can be recast in a useful dimensionless form. To this end,

we define the following quantities:

Ψ2(T) =
|a(T)|

b
ξ(T) =

h̄√
2 m |a(T)|

λ(T) =

√
b m

4 µ0 |a(T)| e2 κ =
λ(T)
ξ(T)

τ(T) =
λ2(T)
D

η = µ0 σD BC(T) =

√
µ0 |a(T)|2

b
=

h̄
2
√

2 e λ(T) ξ(T)

(105)

where λ(T), ξ(T) and BC(T) are the penetration depth, coherence length and thermody-
namic critical field, respectively. We also introduce the dimensionless quantities

t′ =
t
τ

x′ =
x
λ

y′ =
y
λ

ψ′ =
ψ

Ψ
(106)

and the new dimensionless fields and currents

A′ =
A κ√
2 BC λ

φ′ =
φ κ√

2 BC D
E′ =

E λ κ√
2 BC D

B′ =
B κ√
2 BC

j′ =
j µ0 λ κ√

2 BC

. (107)

We then insert the above Equations (106) and (107) in Equations (101) (we also drop the
primes for the sake of notational simplicity) and get the dimensionless TDGL equations in
a bounded, smooth and simply connected domain in RN [121,123]:

∂ψ

∂t
+ i φ ψ + κ2

(
|ψ|2 − 1

)
ψ + (i∇+ A)2ψ = 0 , (108.i)

∇×∇×A − ∇× B = jn + js = − η

(
∂A
∂t

+∇φ

)
− i

2
(ψ∗∇ψ− ψ∇ψ∗)− |ψ|2A , (108.ii)

while the boundary and initial conditions (104) in the dimensionless form read

(i∇ψ + A ψ) · n = 0

∇×A · n = B · n
A · n = 0

 on ∂Ω× (0, t) ;
ψ(x, 0) = ψ0(x)

A(x, 0) = A0(x)

}
on Ω . (109)

5.2. Isolated Superconductor in the Weak Gravitational Field

Let us now now try to solve the above equations for a superconductor immersed in
the Earth’s static gravity in the absence of external electromagnetic fields (39):

Ee = 0 Be = 0 =⇒ E =
m
e

Eg B = 0 (110)

having also set to zero the Bg contribution that is negligible in the Solar system [28,127].

5.2.1. Solving TDGL Equations

A convenient gauge choice for subsequent calculations turns out to be φ = 0, i.e.,
the vanishing of the scalar potential (Clearly, any alternative gauge shall not influence
any physical results, the equations being gauge-invariant). From a physical point of
view, this choice also reflects the absence of localized charges inside the superfluid, while
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contributions to the total gravitational field originating from the sample mass are clearly
totally irrelevant. The dimensionless TDGL then explicitly read [128]:

∂ψ

∂t
= −(i∇+ A)2ψ − κ2

(
|ψ|2 − 1

)
ψ , (111.i)

η
∂A
∂t

= −∇×∇×A + ∇× B − |ψ|2(A−∇θ) (111.ii)

where ψ ≡ ψ(x, t) is a complex function that we can write as

ψ = |ψ| exp(i θ) = Re ψ + i Im ψ = ψ1 + i ψ2 , (112)

so that (111.i) splits into two distinct equations for the real and imaginary parts ψ1 and ψ2.
Let us now restrict to a one-dimensional field configuration, so that one has

∇! ∂/∂x A ! Ax ≡ A . (113)

In this simplified framework, (111) reads:

∂ψ1

∂t
=

∂2ψ1

∂x2 + A
∂ψ2

∂x
+ ψ2

∂A
∂x
− ψ1 A2 − κ2

(
|ψ1|2 + |ψ2|2 − 1

)
ψ1 ,

∂ψ2

∂t
=

∂2ψ2

∂x2 − A
∂ψ1

∂x
− ψ1

∂A
∂x
− ψ2 A2 − κ2

(
|ψ1|2 + |ψ2|2 − 1

)
ψ2 ,

η
∂A
∂t

= −
(

ψ2
∂ψ1

∂x
− ψ1

∂ψ2

∂x

)
−
(

ψ2
1 + ψ2

2

)
A ,

(114)

since, in one dimension, ∇2 A = ∂
∂x (∇ ·A) and then

∇×∇×A = ∇ (∇ ·A)−∇2 A 1d
= 0 . (115)

Then, let us consider an ideal, half-infinite superconductive region, see Figure 8. The ~ux

direction is orthogonal to the superconducting separation surface, corresponding to the
yz plane and parallel to the ground, so that, for x > 0, we find an empty space, while the
superfluid region is located at x ≤ 0. The whole setting is immersed in the Earth’s uniform
and static gravitational field that is captured by the gravitoelectric component

EEXT
g = −g~ux , (116)

g being the standard gravity acceleration.
The dimensional form of the gravitoelectric field inside the superfluid region

Eg = −∂Ag(t)
∂t

, (117)

while (116) suggests for the external (outside) gravitational vector potential the form

AEXT
g (t) = g(C + t)~ux , (118)

C being a constant.
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~ux Empty space

Superconducting region

Figure 8. Half-infinite superconductor approximation. The Earth’s gravitational field is parallel to
the ~ux direction.

In the 1D setup, the generalized external potential in the dimensionless form reads

AEXT =
m
e

AEXT
g

κ√
2 BC λ

= g?(c1 + t) , (119)

where we have dropped the primes for notational simplicity. Using (105), we can also
explicitly write

c1 =
C
τ

, g? =
m κ λ(T) g√
2 eD BC(T)

! 1 . (120)

Next, we express ψ1, ψ2 and A as:

ψ1(x, t) = ψ10(x) + g? γ1(x, t) , (121.i)

ψ2(x, t) = ψ20(x) + g? γ2(x, t) , (121.ii)

A(x, t) = g? β(x, t) , (121.iii)

where ψ10 and ψ20 characterize the unperturbed system and satisfy

0 =
1
κ2

∂2ψ10

∂x2 + ψ10 − ψ10

(
ψ2

10 + ψ2
20

)
, (122.i)

0 =
1
κ2

∂2ψ20

∂x2 + ψ20 − ψ20

(
ψ2

10 + ψ2
20

)
. (122.ii)

the ψ10 and ψ20 behaviour therefore being described by equations of the same type.
We now choose to set

ψ20 = 0 ⇒ ψ0 = ψ10 + i ψ20 = ψ10 ∈ R , (123)

so that (122.i) reads

0 =
1
κ2

∂2ψ10

∂x2 + ψ10 − ψ3
10 , (124)

and is solved by [94]

ψ10 = tanh
(

κx√
2

)
. (125)
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We are therefore left with the following set of equations:

∂γ1

∂t
=

∂2γ1

∂x2 + κ2
(

1− 3 ψ2
10

)
γ1 , (126.i)

∂γ2

∂t
=

∂2γ2

∂x2 + κ2
(

1− 3 ψ2
10

)
γ2 − β

∂ψ10

∂x
− ψ10

∂β

∂x
, (126.ii)

η
∂β

∂t
= −

(
γ2

∂ψ10

∂x
− ψ10

∂γ2

∂x

)
− ψ2

10 β , (126.iii)

the last (126.iii) implying that β(x, t) does not depend on γ1(x, t).
If we now decide to put ourselves away from borders, we can set ψ10 » 1 in (126),

resulting in

∂γ1

∂t
»

∂2γ1

∂x2 − 2 κ2γ1 , (127.i)

∂γ2

∂t
»

∂2γ2

∂x2 − 2 κ2γ2 −
∂β

∂x
, (127.ii)

η
∂β

∂t
»

∂γ2

∂x
− β . (127.iii)

We then find for β the solution

β(x, t) = e
− t

η

(
b1(x) +

1
η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
. (128)

where b1(x) = c1, as it is implied by Equation (121.iii) for t ! 0.
Let us imagine that the sample transition to the superconducting state occurs at

t = 0. We also make the natural assumption that, before the transition, no alteration of
the gravitational field takes place (material in the normal state), the gravitational field
assuming the same value inside and outside the sample region for t < 0. This results in the
following boundary and initial conditions:

ψ(0, t) = 0 ψ(x, 0) = ψ10(x)
∂ψ1

∂x
(x, 0) = 0

γ1(0, t) = 0 γ1(x, 0) = 0
∂γ1

∂x
(x, 0) = 0

γ2(0, t) = 0 γ2(x, 0) = 0
∂γ2

∂x
(x, 0) = 0

(129)

together with the condition for β

lim
t!0

g?
∂β

∂t
(x, t) = g? . (130)

implying that the interplay occurs only in the presence of a superconducting phase.
In order to fix the dimensionless constant c1, we use Equations (117), (121.iii) and

(126.iii) to write the relation between Eg and β as

Eg

g?
= −∂β

∂t
=

1
η

(
γ2

∂ψ10

∂x
− ψ10

∂γ2

∂x

)
+

ψ2
10
η

β . (131)
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To satisfy the hypothesis that any affection of the gravitational field occurs only after the
appearance of a superconducting phase (t > 0), we assume

lim
t!0−

Eg

g?
= 1 , (132)

while, from the initial conditions in (129), we also have

lim
t!0

γ2(x, t) = 0 lim
t!0

∂γ2

∂x
(x, t) = 0 . (133)

We then obtain

t ! 0 : 1 =
ψ2

10
η

β(x, 0) =
ψ2

10
η

AEXT(0)
g?

=
ψ2

10
η

c1 =⇒ c1 =
η

ψ2
10

. (134)

This c1 constant is ineffective in empty space, while it is responsible for the desired, uncon-
ventional effects in the presence of the superconductor.

Finally, we can write the final form for β(x, t) away from borders (ψ10 » 1, c1 » η):

β(x, t) = e
− t

η

(
η +

1
η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
, (135)

from which we obtain the ratio

Eg

g?
= −∂β(x, t)

∂t
=

1
η

e
− t

η

(
η +

1
η

∫ t

0
dt e

t
η ∂γ2(x, t)

∂x

)
− 1

η

∂γ2(x, t)
∂x

. (136)

The discussed formulation characterizes more explicitly the proposed interplay between
gravity and supercondensates in the presented, simplified setup. First, we see that the
external gravitational vector potential seems to play a role in the superconducting transition:
in particular, the external constant c1 tends to assume fixed values depending on the specific
properties of the sample undergoing the superconducting transition. On the other hand,
we expect the back-reaction on the local gravitational to take place only after the transition
itself, when the vector potential begins to “perceive” the presence of a superfluid phase.

5.2.2. Expected Effects

The above (136) for the ratio Eg/g? can be used to estimate the value of gravitational
field inside the superconductor just after the superconducting phase transition:

t » 0+ :
Eg

g?
» 1− t

η
− 1

η

∂γ2(x, 0+)
∂x

. (137)

In the superconducting state, the alteration of the local field depends on physical character-
istic of the involved sample. In particular, (137) shows that the relevant quantities are η,
and the spatial derivative of γ2.

In order to enhance the interaction, we should maximize the variation ∂γ2
∂x , an effect

than can be achieved by introducing suitable disorder in the material sample (This can be
obtained, for instance, by means of chemical doping or proton irradiation). A maximized
effect would also require small values for η. The latter is proportional to the product of the
diffusion coefficientD times the conductivity just above Tc, see (105). This would suggest to
consider materials that are bad conductors in the normal state and have low Fermi energies
(for example, cuprates).
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Finally, we have to take into account the (usually very small) time scales in which the
effect occurs, expressed by the τ coefficient

τ(T) =
λ2(T)
D with λ(T) »

λ0√
Tc−T

Tc

. (138)

The latter can be maximized with a reduced diffusion coefficient and large penetration
length, as occurs in superconducting cuprates with internal disorder.

Performing measurements at a temperature close to Tc would give rise to enhanced
effects: for example, in the case of Bi2Sr2CaCu2O8

(
Tc » 109 K, λ0 » 500 nm, σ−1 »

3.6× 10−6 Ω m, D » 10−3 m2/s, ξ0 » 1.4 nm [118]
)

for T » 105 K, we find

T » 105 K : τ » 6.8× 10−9 η » 3.5× 10−4 . (139)

This would determine a reduction of the local gravitational field of the order of 2× 10−5,
see Equation (137) neglecting the last term (Non-irradiated high–Tc superconductors (like
BSCCO) usually feature low disorder, resulting in reduced values for the spatial derivative
of γ2).

The above analysis shows how a perceptible affection of the local field inside the
sample is possible even in a simplified setup (zero EM fields). Experimental difficulties may
still arise from the short time intervals in which the effect manifests itself (see the previous
Section 4.3). In addition, in this case, an appropriate choice of the material parameters is
essential, in order to enhance the interaction and extend the time ranges to workable scales.

In the following section, we will analyse a more complicated setup involving external
electric and magnetic fields, which in turn determine the presence of moving vortices. The
new configuration will not only result in an additional affection of the local gravitational
field, but also in the appearance of a new component of the generalized electric field inside
the sample, parallel to the superconductor surface.

5.3. Switching on EM Fields: Vortex Lattice

We now consider a superconducting sample with finite thickness L and very large
dimensions along ~uz and ~uy directions. The sample is immersed in an external magnetic
field B0 and has a square lattice of vortices, whose axes are directed along B0. We choose
the latter as

B0 = B0 ~uz , (140)

together with a vector potential A of the form

A = B0 x~uy . (141)

Here, we decide to work in the Coulomb gauge ∇ ·A = 0, where

∇2A = −µ0(jn + js) . (142)

We also allow for the presence of a constant external (standard) electric field E
(e)
0 along the

~ux direction. Given the simultaneous presence of the Earth’s static gravity, the situation
gives rise to a generalized static field E0 of the form

E0 = E
(e)
0 + E

(g)
0 =

(
E

(e)
0 − E

(g)
0

)
~ux =

(
E

(e)
0 −

m
e

g
)
~ux = E0 ~ux , (143)

and a related scalar potential
φ0 = − E0 x . (144)
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As in the previous case, the transition takes place at t = 0. In particular, for t < 0, we also
have T < Tc and B > BC2 , while, at t = 0, we still have T < Tc but B » BC2 . The external
vector potential (outside the superfluid) is denoted by A0, and coincides with the inside
value for t < 0 (sample in the normal state and very weakly diamagnetic material).

5.3.1. Linearized TDGL

In the new setup with non-zero external EM fields, it is possible to write an analytic
approximate solution of the TDGL (101) for the order parameter as

ψ(x, y, t) =
∞

∑
n=−∞

cn exp
(

i q n
(

y +
E0

B0
t
))

exp

(
− 1

2 ξ(T)

(
x− h̄ q n

2 e B0

)2
+ i

e E0 ξ2(T)
h̄D

(
x− h̄ q n

2 e B0

))
. (145)

The expression is valid for an external magnetic field B0 À BC2 and is then a solution of
linearized TDGL equations [129,130] describing the behaviour of an ordered vortex lattice,
moving under the influence of the external E0.

The above solution does not necessarily hold for different values of the magnetic field
(for instance, B0 „ BC1), where the order parameter values are bigger and the linearized
approximation does not hold. Moreover, close to BC2 , the vortices are densely packed and
the distance between them can be estimated to be of the order the coherence length ξ(T).
This can be then used to precisely characterize the vortex lattice, while this is not possible
for generic values of B0 [94]. (The presence of the external electric fields causes vortices
motion and determines dissipative phenomena even in the superconducting state; it is
possible to prevent it and anchor the vortices (vortex pinning) by introducing defects in the
sample, thus reducing or eliminating energy dissipation [129]).

From an experimental point of view, in high-Tc superconductors, the formation of a
square lattice seems to be energetically favourable, and, in the following, we will restrict to
this possibility (This is not the case for low-Tc superconductors, where a triangular lattice
formation usually occurs). We denote by q the distance between adjacent vortices that, for
a square lattice, reads [131]

q »
2π

ξ(T)
, (146)

and the general cn coefficients could be replaced by the correspondent c2 expression for
the square lattice:

cn ! c2 =
2
√

2π

ξ2(T)
, (147)

the c2 coefficients being then independent of n.

5.3.2. Dimensionless Framework
Let us now consider the useful introduced dimensionless formulation. Working in

the dimensionless version of the chosen Coulomb gauge ∇′ ·A′ = 0 it is possible to write
a first-order expression for the dimensionless order parameter satisfying a linearized form
for adimensional TDGL Equation (108) as [132]:

ψ(x, y, t) =
∞

∑
n=−∞

|cn| exp
(

i q n
(

y +
E0

B0
t
))

exp
(
− κ2

2
(x− n x0)

2 + i
E0

κ
(x− n x0)

)
, (148)

with

|ψ|2 =
∞

∑
n=−∞

|cn|2 exp
(
−κ2(x− n x0)

2
)

. (149)
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The equations for the vector potential components read

∂2 Ax(x, t)
∂x2 = η

(
∂Ax(x, t)

∂t
− E0

)
+

(
Ax(x, t)− E0

κ

) ∞

∑
n=−∞

|cn|2 exp
(
− κ2(x− n x0)

2
)

,

∂2 Ay(x, t)
∂x2 = η

∂Ay(x, t)
∂t

+
∞

∑
n=−∞

(
Ay(x, t)− 2 π κ n

)
|cn|2 exp

(
− κ2(x− n x0)

2
)

,

∂2 Az(x, t)
∂x2 = η

∂Az(x, t)
∂t

+
∞

∑
n=−∞

|cn|2 exp
(
− κ2(x− n x0)

2
)

.

(150)

Let us now consider an expansion to linear order in E0. In order to obtain a more explicit
solution for the order parameter (148), we have to estimate the summations

∞

∑
n=−∞

|cn|2 exp
(
−κ2(x− n x0)

2
)

∞

∑
n=−∞

n |cn|2 exp
(
−κ2(x− n x0)

2
)

.

(151)

Since we are interested in high-Tc superconductors featuring a square vortex lattice, we
replace the general coefficients cn with the correspondent c2 that, in the considered frame-
work, reads [131]

c2
2

= 2
√

2π κ2 . (152)

being then a constant function of κ = λ/ξ .
For high-Tc superconductors, the κ parameter is usually large, κ2

Á 104: this in turn
implies for the above (151):

∞

∑
n=−∞

|cn|2 exp
(
−κ2(x− n x0)

2
)

= c2
2

e−κ2x2
∞

∑
n=−∞

e−κ2n2x2
0 e2 x x0 n κ2

» c2
2

e−κ2x2
,

∞

∑
n=−∞

n |cn|2 exp
(
−κ2(x− n x0)

2
)
» 0 ,

(153)

where the summation on the first line receives a non-negligible contribution only from the
n = 0 term.

The Equation (150) for the vector potential can be now recast as

∂2 Ax(x, t)
∂x2 = η

(
∂Ax(x, t)

∂t
− E0

)
+

(
Ax(x, t)− E0

κ

)
c2
2

e−κ2x2
,

∂2 Ay(x, t)
∂x2 = η

∂Ay(x, t)
∂t

+ Ay(x, t) c2
2

e−κ2x2
,

∂2 Az(x, t)
∂x2 = η

∂Az(x, t)
∂t

+ c2
2

e−κ2x2
.

(154)

Since we are considering high-Tc superconductors (κ2
Á 104), it is also possible

to approximate

e−κ2x2
»

√
π

κ
δ(x) , (155)
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so that the above expressions read

∂Ax(x, t)
∂t

»
1
η

∂2 Ax(x, t)
∂x2 −

(
Ax(x, t)− E0

κ

)
c2
2

√
π

η κ
δ(x) + E0 , (156.i)

∂Ay(x, t)
∂t

»
1
η

∂2 Ay(x, t)
∂x2 − Ay(x, t) c2

2

√
π

η κ
δ(x) , (156.ii)

∂Az(x, t)
∂t

»
1
η

∂2 Az(x, t)
∂x2 − c2

2

√
π

η κ
δ(x) . (156.iii)

The initial conditions for the vector potential components are:

Ax(x, 0) = 0 Ay(x, 0) = B0 x Az(x, 0) = 0 (157)

and the generalized electric field E inside the superfluid is given by

E = −∂A
∂t
−∇φ . (158)

5.3.3. Averaged Solutions

We now consider the spatial averaged effects, determined by the presence of gen-
eralized field and poptentials, inside the supercondensate region. This can be obtained
integrating the vector potential components (156) over the x-variable [133].

First, we integrate Equation (156.iii) over x in the interval x ∈ [−L/2, L/2], obtaining

∂Āz(t)
∂t

= −c2
2

√
π

η κ L
, (159)

having introduced the averaged component

Āz(t) =
1
L

L/2∫
−L/2

dx Az(x, t) , (160)

and taking advantage of symmetric conditions for the first derivatives with respect to x. Let
us also keep in mind that we are dealing with the dimensionless quantities, having dropped
the primes for the sake of notational simplicity (In particular, the x coordinate corresponds
to the dimensionless x′ of (106), while one would explicitly have for the dimensionless
thickness L′ = L/λ, L being the physical thickness and λ the penetration depth). The
above (160) is solved by

Āz(t) = −c2
2

√
π

η κ L
t + Āz(0) = −c2

2

√
π

η κ L
t , (161)

where initial conditions (157) implies Āz(0) = 0. The averaged, generalized electric field
Ēz component is then given by

Ēz = c2
2

√
π

η κ L
=

2
√

2 π κ

η L
. (162)

having used (158) and (144).
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The averaged differential equation for the Āy(t) component, defined in the same way
as (160), is obtained from (156.ii) and reads

∂Āy(t)
∂t

= −Āy(t) c2
2

√
π

η κ L
, (163)

having used the approximation Ay(0, t) » Āy(t). The resulting averaged component reads

Āy(t) = Āy(0) exp
(
−c2

2

√
π

η κ L
t
)

= 0 , (164)

having again used initial condition (157). This also implies that the electric field Ēy(t)
component is vanishing,

Ēy(t) = 0 . (165)

The equation for the vertical component comes from the (156.i) expression and reads

∂Āx(t)
∂t

= −
(

Āx(t)
L
− E0

κ

)
c2
2

√
π

η κ
+ E0 , (166)

Using again the approximation Ax(0, t) » Āx(t) and the initial conditions (157), we find
for the Āx(t) solution

Āx(t) = Āx(0) exp
(
−c2

2

√
π

η κ L
t
)
+ E0

(
L
κ
+

η κ L
c2
2

√
π

)(
1− exp

(
−c2

2

√
π

η κ L
t
))

=

= E0

(
L
κ
+

η κ L
c2
2

√
π

)(
1− exp

(
−c2

2

√
π

η κ L
t
))

(167)

Finally, the averaged Ex(t) component along the vertical direction for the generalized
electric field comes from Formulas (158) and (144) and reads

Ēx(t) = E0 − E0

(
L
κ
+

η κ L
c2
2

√
π

)
c2
2

√
π

η κ L
exp

(
−c2

2

√
π

η κ L
t
)

=

= E0 − E0

(
2
√

2 π

η
+ 1

)
exp

(
−2
√

2 π κ

η L
t

)
.

(168)

5.3.4. Expected Effects

The analysis of the averaged effect inside the supercondensate region shows some
interesting predictions.

The first effect is the emergence of a new component of the (generalized) electric field,
parallel to the superconductor surface and directed along the external applied magnetic
field. The value of this new contribution is found using the (dimensionless) result (162)
together with Formula (107), and in dimensional units reads

Ez =
4π BC(T)D

η L
. (169)

If we consider a Bi2Sr2Ca3Cu3O10 sample
(

Tc » 107 K, λ0 » 2.4× 10−7 m, ξ0 » 1 nm,
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σ−1 » 3.6× 10−6 Ω m, D » 10−3 m2/s [134,135]
)

of thickness L = 15 cm at a temperature
T = 102 K; this would correspond to a resulting field

T » 102 K : Ez =
4π BC(T)D

η L
=

4π BC(T)
µ0 σ L

» 77
V
m

, (170)

with BC(T) » 0.32 Tesla.
The second expected effect is affection of the local gravitational field along the x

direction in the supercondensate region. The averaged effect is expressed by Equation (168),
from which it is possible to appreciate the predicted, temporary alteration of the local field.

In Figure 9, we plot the field variation inside the superfluid region for two samples
of different dimensions. Analogous with the results of Section 4 about the local alteration
outside the material, we can see that, for very short time scales, the gravitational field has a
non-negligible reduction. Clearly, sample dimensions and chemical composition play a key
role in maximizing the effect.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.2

0.2

0.6

1.

PSfrag replacements

Eg/g

t (units of τ )

Figure 9. Local field variation as a function of time for a Bi2Sr2Ca3Cu3O10 sample
(

Tc » 107 K,
λ0 » 2.4× 10−7 m, σ−1 » 3.6× 10−6 Ω m, D » 10−3 m2/s, ξ0 » 1 nm [134,135]

)
at a temperature

T = 102 K. The red solid line refers to a sample of thickness L = 15 cm, while the blue dashed line
shows the result for L = 5 cm.

First, we can appreciate that larger samples (i.e., larger values of L) would determine
an increase of the time scales in which the effect manifests itself. In the same way, (168)
suggests that large values of the η parameter, sample characteristics, determine an analo-
gous increase of time ranges. The analysis then shows that L and η parameters determine
similar effects: choosing a sample of reduced dimension (small L) of disordered material
(small η, bad conductors in the normal state) would result in very short time scales, with
a slight enhancement of the effect. Again, appropriate physical cutoffs should come into
play, preventing non-physical growth of instabilities within the supercondensate, which
would in turn lead to local field alterations of arbitrary intensity.

Since experimental issues would reside in the very short observation times, it is useful
to take advantage of effects determined by the internal disorder. The effects of the latter can
be easily understand, since material disorder causes an increase of the λ penetration depth.
This, in turn, dictates an extension of the typical time scale τ of duration being τ ∝ λ2, see
definitions (105) and (138).

Finally, if the system is put at temperatures very close to Tc; this is again an increase
of the λ parameter and related larger time scales. In the latter case, however, the effects of
thermal fluctuations should also be taken into account [136]. The described effects occur
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analogous with what we found in Section 4 for the affection of the local field just outside
the sample.

6. Conclusions

A deeper intertwining of different scientific areas has always proved to be a pow-
erful tool for improving our understanding of many fascinating physical aspects of our
world, see e.g., [137–159]. The intriguing existence of an interplay between gravity and
superconductivity has been investigated by many researchers in the last decades, due
to the enormous conceptual implications and many possible applications. In particular,
the interaction has been theoretically predicted by numerous authors, with very different
approaches and techniques. The phenomenon was then successfully tested in relation to
the effects of gravitational perturbation on supercurrents and supercondensates, having
used the latter as “gravitational antennas” for the detection of gravitational waves.

In this review, we mainly focused on the possible back-reaction exerted by the super-
fluid on the surrounding gravitational field, trying to provide qualitative and quantitative
predictions about the extent of the proposed effect. Inspired by theoretical and experimental
studies on gravity-induced generalized fields in superconductors, we studied the possible
alterations exploiting a gravito–Maxwell formalism, integrated with the Ginzburg–Landau
theory of phase transitions for superconducting systems. The latter formalism is a phe-
nomenological theory, the superconducting materials being characterizing by parameters
which, in principle, can be optimized to enhance specific effects.

Clearly, there is still a lot of work to be done in order to better define the ranges and
magnitude of the effect, as well as to determine optimal situations from an experimental
point of view. In this regard, a crucial role would be played by suitable samples geometry,
external electromagnetic fields of adequate frequency and appropriate characteristics of the
material. In the future, 2D materials with variable number of layers should also be taken
into consideration, in order to exploit their peculiar properties [160,161].
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