
16 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Enhanced Multi-Strategy Particle Swarm Optimization for Constrained Problems with an Evolutionary-Strategies-Based
Unfeasible Local Search Operator / Rosso, M. M.; Cucuzza, R.; Aloisio, A.; Marano, G. C.. - In: APPLIED SCIENCES. -
ISSN 2076-3417. - 12:5(2022), p. 2285. [10.3390/app12052285]

Original

Enhanced Multi-Strategy Particle Swarm Optimization for Constrained Problems with an Evolutionary-
Strategies-Based Unfeasible Local Search Operator

Publisher:

Published
DOI:10.3390/app12052285

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2958122 since: 2022-03-11T12:11:17Z

MDPI

����������
�������

Citation: Rosso, M.M.; Cucuzza, R.;

Aloisio, A.; Marano, G.C. Enhanced

Multi-Strategy Particle Swarm

Optimization for Constrained

Problems with an Evolutionary-

Strategies-Based Unfeasible Local

Search Operator. Appl. Sci. 2022, 12,

2285. https://doi.org/10.3390/

app12052285

Academic Editors: Nikos D. Lagaros,

Vagelis Plevris and Jong Wan Hu

Received: 13 January 2022

Accepted: 15 February 2022

Published: 22 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Enhanced Multi-Strategy Particle Swarm Optimization for
Constrained Problems with an Evolutionary-Strategies-Based
Unfeasible Local Search Operator
Marco Martino Rosso 1 , Raffaele Cucuzza 1,* , Angelo Aloisio 2 and Giuseppe Carlo Marano 1

1 DISEG, Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi, 24, 10128 Turin, Italy; marco.rosso@polito.it (M.M.R.);
giuseppe.marano@polito.it (G.C.M.)

2 Civil Environmental and Architectural Engineering Department, Università degli Studi dell’Aquila,
Via Giovanni Gronchi n.18, 67100 L’Aquila, Italy; angelo.aloisio1@univaq.it

* Correspondence: raffaele.cucuzza@polito.it

Abstract: Nowadays, optimization problems are solved through meta-heuristic algorithms based
on stochastic search approaches borrowed from mimicking natural phenomena. Notwithstanding
their successful capability to handle complex problems, the No-Free Lunch Theorem by Wolpert and
Macready (1997) states that there is no ideal algorithm to deal with any kind of problem. This issue
arises because of the nature of these algorithms that are not properly mathematics-based, and the
convergence is not ensured. In the present study, a variant of the well-known swarm-based algorithm,
the Particle Swarm Optimization (PSO), is developed to solve constrained problems with a different
approach to the classical penalty function technique. State-of-art improvements and suggestions
are also adopted in the current implementation (inertia weight, neighbourhood). Furthermore, a
new local search operator has been implemented to help localize the feasible region in challenging
optimization problems. This operator is based on hybridization with another milestone meta-heuristic
algorithm, the Evolutionary Strategy (ES). The self-adaptive variant has been adopted because of its
advantage of not requiring any other arbitrary parameter to be tuned. This approach automatically
determines the parameters’ values that govern the Evolutionary Strategy simultaneously during the
optimization process. This enhanced multi-strategy PSO is eventually tested on some benchmark
constrained numerical problems from the literature. The obtained results are compared in terms of
the optimal solutions with two other PSO implementations, which rely on a classic penalty function
approach as a constraint-handling method.

Keywords: particle swarm optimization (PSO); multi-strategy PSO; self-adaptive evolutionary
strategies (ES); local search operator; constraints handling

1. Introduction

In optimization problems, the aim is optimizing certain mathematical functions, called
Objective Functions (OF) f (x). These problems can be divided into single-objective or
multi-objective problems, depending on the number of OFs, and a further subdivision for
single-objective problems is based on the presence of constraints. Unconstrained problems
are defined as:

min
x∈Ω
{ f (x)} (1)

meanwhile, constrained problems are defined as:

min
x∈Ω
{ f (x)}

s.t. gq(x) ≤ 0 ∀q = 1, . . . , nq

hr(x) = 0 ∀r = 1, . . . , nr

(2)

Appl. Sci. 2022, 12, 2285. https://doi.org/10.3390/app12052285 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052285
https://doi.org/10.3390/app12052285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9098-4132
https://orcid.org/0000-0002-9344-6006
https://orcid.org/0000-0002-6190-0139
https://orcid.org/0000-0001-8472-2956
https://doi.org/10.3390/app12052285
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052285?type=check_update&version=2

Appl. Sci. 2022, 12, 2285 2 of 26

where x = {x1, . . . , xj, . . . , xn}T is the design vector whose terms are the parameters to be
optimized. The search domain is a multidimensional space Ω based on the admissible
intervals of values for each j-th variable, which are defined by its lower and upper bounds
[xl

j, xu
j]. This detects a box-type hyper-rectangular search space Ω, which is typically defined

as the Cartesian product (denoted by the × symbol) among the admissible intervals:

Ω = [xl
1, xu

1]× . . .× [xl
j, xu

j]× . . .× [xl
n, xu

n] (3)

The constraints in (2) can belong to two different categories: inequality gq(x) and/or
equality hr(x) constraints. Each equality constraint can be easily converted into a couple of
inequality constraints; therefore, without any loss of generality, it is possible to consider
only inequality constraints in (2), i.e., gp(x) ≤ 0, where p = 1, . . . , nq, nq+1, . . . , np, being
np = nq + 2nr.

The adoption of evolutionary algorithms (EAs) has received much more attention
in recent years because of their successful capability to handle complex optimization
problems. This is addressed mainly to the fact that they do not require any first-order
(gradient) or second-order (Hessian) information coming from the problem to be solved,
which is conversely a prerogative of the traditional gradient-based mathematical search
approaches. Furthermore, the quite simple implementation of EAs has determined their
rapid spread, and they have immediately become an attractive tool among practitioners.
Among the many alternatives available nowadays, the genetic algorithm (GA) proposed
by J. Holland in the 1970s [1] still represents one of the most popular population-based
tools, which tries to simulate the biological evolutionary process of a set of candidates
solutions mimicking the biological Darwinian Theory. This is realized by adopting specific
pseudo-random-based operators such as crossover, mutation, and selection in order to
reproduce the long-term process of evolution in a population with the survival of the
fittest individuals [2]. In the last two decades, the adoption of metaheuristic algorithms in
many engineering applications highlighted their successful capabilities to deal with real-
world constrained problems [3–8], e.g., dealing with structural design [9–12] and structural
optimization tasks [13–16].

In the framework of EAs, a more recent but already well-known approach is the parti-
cle swarm optimization (PSO) algorithm. It was mentioned by Kennedy and Eberhart [17]
in 1995 for the first time, and then it rapidly became widespread during the following years.
Contributions from the Scientific Community have not ended yet, and still nowadays there
is active research about this topic to improve the search operators and the performances.
The PSO is also a population-based algorithm which takes inspiration from the study of
the behavioural models of birds flocking or fish schooling, whose individuals explore the
natural environment in order to find and reach some source of food. Similarly, the algorithm
tries to evolve a particle swarm of candidate solutions in the domain search space in order
to find the optimum. The PSO was originally developed to face unconstrained problems,
but it was later adapted to also solve constrained problems exploiting specific strategies.

The following section presents a brief review of the PSO mechanisms, and the main
adopted strategies to solve constrained problems are mentioned. After that, the description
of the proposed enhanced multi-strategy PSO method is illustrated. Finally, the authors
try to merge several state-of-the-art concepts to obtain an improved PSO algorithm to
successfully handle constrained problems with a non-penalty based approach. The novel
contributions of this article can be summarized as follows:

• PSO implementation with the main state-of-art improvements, adopting a multi-
strategy approach. In this way, the algorithm attempts to avoid wasting many itera-
tions when the algorithm stalls or is trapped in local minima, etc.;

• A non-penalty approach for constraint handling which instead exploits information of
swarm positions in terms of the objective function and the actual degree of constraint
violation to guide the swarm evolution;

Appl. Sci. 2022, 12, 2285 3 of 26

• A novel unfeasible local search operator is presented to help the PSO when it stalls in
an unfeasible region quite close to the actual feasible one. This local search operator
relies on the meta-heuristic, self-adaptive Evolutionary Strategy (ES) approach, which
does not require any other further arbitrary parameter.

In a different recent contribution of the authors [18], some further novel approaches
to deal with constraints have been presented, considering a hybridization of the PSO
with a machine learning support vector machine. However, the current paper presents
a completely different approach based on handling constraints directly based on infor-
mation which can be retrieved from the swarm positions in terms of objective function
and constraints violations. Finally, the enhanced multi-strategy PSO is successfully tested
on some benchmark constrained mathematical problems from the literature compared
with other PSO implementations that adopt more standard penalty-based constraint han-
dling techniques. In conclusion, the proposed multi-strategy PSO has been validated on
real-world case studies, considering some literature on three-dimensional truss design
structural optimization problems.

2. Review of PSO and Constraint Handling Approaches

The PSO algorithm was directly inspired by biological behavioral models of birds
flockings, school fishing or swarming of insects. In nature, these animals adopt a collective
behaviour to ensure their survival, even though each individual acts as an intelligent
independent entity making its own decisions. Mimicking this trend, Kennedy and Eberhart
in 1995 proposed a first model of the PSO algorithm [17]. The PSO algorithm encodes
a population of candidate solutions in the search space, which is composed of a certain
number N of intelligent agents. Although the latter can independently move inside the
domain, in order to ensure an emerging intelligent collective behaviour toward the op-
timum, the dynamic movement of each agent is affected by some information obtained
from the swarm. One of the first proposed methods is related to a Newtonian dynamics
perspective, in which each i-th particle (with i = 1, . . . , N, where N is the population size)
is completely defined by its position kxi and its velocity kvi at the k-th generation. The
velocity is thus updated taking into account two main kinds of information: First, the
self-cognitive memory of each particle, which is related to the so far best visited position
kxPb

i (cognitive term) and, second, the attraction toward the other particles’ best visited
positions kxGb (social term). Therefore, the position and the velocity of the i-th particle in
the next k + 1 iteration can be written as:

(k+1)vi =
kvi + c1

(k+1)r1i ∗
[

kxPb
i − kxi

]
+ c2

(k+1)r2i ∗
[

kxGb
i −

kxi

]
, (4)

(k+1)xi =
kxi + τ (k+1)vi (τ = 1), (5)

where the symbol ∗ denotes the term-by-term vector multiplication (Hadamard product, [19]),
and the positive scalar acceleration factors c1 and c2 are denoted as cognitive and social
parameters, respectively. The terms (k+1)r1i, (k+1)r2i = rand[0, 1] are two random weights
of the social and cognitive terms, respectively. These terms are fundamental for the purpose
to introduce some randomized behaviour inside this quite deterministic model with the
aim of enhancing the exploration capabilities of the model. The cognitive term is also
denoted as pbest, whereas the social term is denoted as gbest when it is referred to the best
global visited position so far among all the particles of the swarm. This explains why this
latter strategy is also known as the gbest PSO model [20]. Later studies revealed that a good
practise is to protect the cohesion of the swarm by restricting the velocity component to a
maximum value, typically assumed as vmax = γ(xu − xl)/τ, where τ = 1 is a time-related
parameter, whereas γ ∈ [0.1, 1] (generally set to 0.5) defines how far a particle can move
starting from its current position [21]. The typical stopping criterion of the PSO is generally
set as a maximum number of iterations kmax. However, a predetermined maximum number
of iterations for each problem is not usually known in advance, therefore, one can refer

Appl. Sci. 2022, 12, 2285 4 of 26

to the suggestions of [22] or conduct experimental trial and error tuning of the minimum
kmax, which allows one to achieve the optimum, reducing the overall computational cost.
Later on, for the sake of improving the exploration capacity of the swarm, [23] introduced
an inertia weight term kw multiplied to the current kth velocity in the update rule (4).
This parameter can be a constant or a variable with respect to the iterations flow, e.g.,
from an initial value 0w to a final one Lw with a linearly decreasing law, but there are also
many other variants in [20]. The performance of the algorithm is strongly affected by the
choice of the parameters such as the swarm size N, usually set in a range of [20, 100] with
n ≤ 30, or such as the acceleration factors, which are usually assumed statically fixed to
c1 = c2 = 2 [21]. In this study, it is assumed which of all of them are constant values equal
to c1 = c2 = 2, 0w = 0.90 and Lw = 0.40 [24].

One of the most important aspects to enhance the PSO performances is to improve
the way in which the information are exchanged among the particles. With efficient in-
formation sharing, the swarm can exhibit a better collective convergent behaviour. The
information exchange is related to the structure of the neighbourhood of each particle,
which is denoted as neighbourhood topology. This kind of implementation is also called a
local PSO model or simply lbest model to differentiate it from the classical so-called global
PSO model or simply gbest model [1,20,21]. The classical gbest model approach can also
be regarded as a neighbourhood strategy in which the neighbourhood is composed of
the entire population. In this sense, the swarm is denoted as fully informed or fully con-
nected. A schematic graphical representation of the swarm with the information flows
is depicted in Figure 1a. The main negative aspect of this latter strategy is the greater
inclination to premature convergence. If the global attractor gbest is entrapped in a local
minimum, the entire swarm may probably fall down in the same local minimum with-
out a sufficient exploration capability. The enhancement of the PSO was performed by a
counter-intuitive approach which relies on slowing down the rapid convergence attitude
of the PSO through channelling and limiting the information exchange, the neighbourhood
concept indeed [1,20,21]. In the lbest models, it is necessary to define, firstly, the structure
of the neighbourhood which controls the way in which the particles are interconnected
and, secondly, the size of the neighbourhood which affects the influence of the swarm on
each particle [1]. Considering the most popular time-invariant neighbourhood topologies,
the ring topology is one of the easiest to be implemented, and it has also been adopted
in the present study. As illustrated in Figure 1b,c, each particle in this topology forms a
neighbourhood considering the nearest particles (nearest indices in a vector of positions), re-
sulting in an ideal circular interconnection. The total number of the particles which belongs
to the neighbourhood is denoted as radius R, as depicted in Figure 1b, in which R = 2, and
(c), in which R = 4. These methods can be implemented considering that each particle
in the numerical vector has a unique index, therefore, each particle can unequivocally be
selected to enter in a neighbourhood through its index [25], as schematically depicted in
Figure 2. A very great number of different neighbourhood topologies were developed in
the last decades as showed in [25,26]. Some other implementations also involve a dynamic
update of the neighbourhood size, which identifies new types of lbest models which are
denoted as multi-populations or multi-swarm PSO, such as in [27].

State of the Art of Constraint Handling

In order to adapt EAs to deal with constrained problems, several strategies were
developed by the scientific community. As a matter of fact, constraint handling is a big
challenge because it is related to find the optimal point respecting all the constraints, and
therefore, the algorithms may be able to deal with unfeasible solutions in an efficient way.
Despite several studies (e.g., [28]) demonstrating that PSO has a good convergence rate, it
was originally proposed to solve unconstrained optimization problems, such as many other
Soft Computing techniques. The implementation of some effective constraint-handling
mechanisms is a crucial issue for all biologically inspired optimizers [29–32]. The several

Appl. Sci. 2022, 12, 2285 5 of 26

strategies developed have been classified by different authors into basically five main
categories (see, for instance, the state-of-the-art review by [30,33,34]):

• Penalty-functions-based methods;
• Methods based on special operators and representations;
• Methods based on repair algorithms;
• Methods based on the separation between OFs and constraints;
• Hybrid methods.

(a) Fully-connected

(b) Ring (R = 2) (c) Ring (R = 4)

Figure 1. Some examples of PSO Neighborhood Topologies.

Array of swarm individuals

Array of lbest (x
lb)

x1 x2 ... xN-1

xlb
1

xN

Neighbourhood definitions

(Ring topology R=2)
x1 x2 ... xN-1 xN

xlb
2

... xlb
m

x
lb

j = min{OF(xi) | ∀ xi in the neighbourhood}

x3

x3

Figure 2. Graphical schematization of the Ring topology implementation (R = 2).

Appl. Sci. 2022, 12, 2285 6 of 26

The most adopted method due to its simplicity is the exterior penalty approach
which allows to convert the problem in an unconstrained version [35,36]. Many different
approaches such as the death, static, dynamic, or adaptive penalty functions have been
proposed in time, e.g., one can refer to [35]. A proper choice of the constraint-handling
mechanism affects the performance of the algorithm, and one of the critical issues to take
into account is the preservation of the diversity of the population. The brutal elimination of
the unfeasible particles, such as in the death penalty rule, can jeopardize the exploration
performances due to a loss of information [30,37]. In general, the penalty approach rely on
the evaluation of a factor that applies a certain penalty to the OF, depending on the degree
of violation and the number of violated constraints. Therefore, the constrained OF f (x) is
transformed into an analogous unconstrained OF φ(x):

min
x∈Ω
{φ(x))} = min

x∈Ω
{ f (x) + H(x)} (6)

where H(x) is the penalty function, whose specific definition depends on the strategy
adopted. If the penalty is constant during the iterations, it is a static penalty function, while
if it is changing at each iteration, it is addressed as a dynamic penalty function. These two
techniques are the most popular tools in structural optimization, see, for instance, the
papers by Hasançebi et al. [38] and Dimopoulos [39].

In the case of static-penalty-based techniques, the equivalent unconstrained problem
is formulated with a static penalty factor Hs(x) that is generally expressed as follows
(see [40,41]):

Hs(x) = w1HNVC(x) + w2HSVC(x) (7)

where HNVC is the number of constraints that are violated by the particle x, HSVC is
the sum of all violated constraints, and w1 and w2 are static control parameters of the
penalty scheme:

HSVC(x) =
np

∑
p=1

max{0, gp(x)} (8)

The numerical values adopted by Parsopoulos and Vrahatis [40] are w1 = w2 = 100. In
the present research, some standard penalty PSO approaches are adopted for making
comparisons with the enhanced PSO version, which is presented in the following section.
For these PSOs with penalty approaches, w1 = 0 and 1000 < w2 < 10, 000 have been
assumed, depending on the analysed problem. Depending on the values of w1 and w2, it is
possible to set the level of severity of the constraint violations: In case of extremely high
control parameters, the penalty is called the death penalty, and it tries to completely avoid
any kind of research inside the unfeasible region, even if the number of violated constraints
is rather limited.

The popularity of the penalty function technique is due to its simple implementation,
and it strongly enhances the performance of an algorithm that is trying to solve constrained
optimization problems. To improve the effectiveness of the penalty factor, a penalty function
which changes the weight of the penalty during the iterations is also adopted in the current
study. Indeed, it is possible to better control the search space of the particles with this
latter dynamic approach, allowing a more relaxed constraint handling at the beginning
and an increasing penalty value approaching the end of the available iterations. Firstly
proposed by Parsopoulos and Vrahatis [42], it has recently been adopted by Barakat and
Altoubat [43] for the optimum design of RC water tanks. To this end, the (7) is readily
modified as follows:

min
x∈Ω
{ f (x) + khHd(x)} (9)

in which kh is a dynamic penalty whose numerical value was evaluated as ([42,43]):

Appl. Sci. 2022, 12, 2285 7 of 26

kh =
√

k (10)

and Hd(x) is the dynamic penalty factor:

Hd(x) =
np

∑
p=1

θp(x)[max{0, gp(x)}]γp(x) (11)

Typical assignments for the penalty parameters are (see, for instance, [42,43]):

θp(x) =

10 if max{0, gp(x)} ≤ 0.001
20 if 0.001 < max{0, gp(x)} ≤ 0.100
100 if 0.100 < max{0, gp(x)} ≤ 1.000
300 otherwise.

(12)

γp(x) =

{
1 if max{0, gp(x)} ≤ 1
2 otherwise.

(13)

It is evident that dynamic penalty methods require a larger number of control parame-
ters in comparison to the static one. Considering kh as defined in (10), in the present paper,
the dynamic penalty factor is assumed to have:

10 < Hd(x) < 1000 (14)

The evaluation of a proper penalty is a fundamental passage to achieve a good solution
of an optimization problem: Ideally, it should be set as low as possible to avoid high
computational efforts and problems arising when the global optimum is close to the
constraint. Indeed, if the optimum is at the boundary and the penalty is too high, the
element which is attracted by that area is immediately pushed back when the boarder is
crossed. This mechanism is avoided by adopting a low penalty that is not too severe in case
of small violations and also allows a good investigation in such critical areas. However,
if the penalty is too low and it does not contrast the constraint violation properly, a lot
of effort will be spent in the unfeasible region, providing no useful information for the
minimization purpose.

3. Enhanced PSO with a Multi-Strategy Implementation and Hybridisation with an
ES-Based Operator

In the present work, starting from the standard Newtonian-dynamics-based PSO ap-
proach proposed by Kennedy and Eberhart (1995) in [17], an enhanced PSO is implemented
adopting some of the most well-known available strategies in literature and adding a
special operator in order to increase the search performance of the standard version. The
various strategies are merged together, and the flowchart of the implemented algorithm is
illustrated in Figure 3.

At first, the initial population is generated randomly in the hyper-rectangle search
space, adopting the Latin Hypercube Sampling (LHS) to generate an initial population with
minimum correlation between samples [44]. Thereafter, for each particle, the OF and the
constraints are evaluated defining the level of violation of each constraint. Each particle
is addressed to a specific aim according to their violation value. If none of the constraints
are violated, this particle is labelled as feasible, and it will be addressed to minimize the
objective function. Otherwise, if it violates at least one constraint, it is labelled as unfeasible,
and it will try to find the right path to minimize the constraint violation. If more than one
constraint is violated, only the maximum violation is considered at that point. Therefore, it
is possible to assume that each particle is able to see only the envelope of the maximum
violations for all points in the solution space. For this reason, the current approach has
been named as a “multi-strategy” PSO. In this way, it is not necessary to define some

Appl. Sci. 2022, 12, 2285 8 of 26

arbitrary violation penalty factor because the code directly relies on the envelope of the
violation of the constraints in a particle position at a certain iteration number. After the
first population is randomly sampled and evaluated, the role and the aim of each particle
have been defined, and the swarm evolution cycle can start, as illustrated in Figure 3.
The evolutionary phase of the PSO involves the Velocity update according to the before
mentioned formulation (4) and the Position update according to Equation (5). After that,
the cognitive memory (pbest) of each particle is updated if a better feasible position is
reached with respect to the previous iterations, and the local best attractor (lbest) and the
best position for the current generation (gbest) are also updated. The termination criterion
is encountered when a predefined maximum number (kmax) of iterations is reached.

Start

Population Randomic
Generation (LHS)

OF and Constraints
evaluation

Definition of the role
of each particle

(Feasible or Unfeasible)

Initialize pbest, lbest
and gbest

Swarm evolution
cycle

All Unfeasible?k=kES operator?
kmax Feas.

stagnation?

kmax Unfeas.

stagnation?

ES local search
operator around gbest

Population Restart
(reset pbest and lbest)

Population Restart
(reset pbest and lbest)

Yes

No
Yes

No

Yes

No

k=kmax iter? Stop

Yes No

Velocity update

Position update

pbest, lbest and
gbest update

YesNo

Figure 3. Enhanced PSO multi-strategy flowchart.

It may happen that the feasible region is quite little and narrow with respect to the
entire search space; therefore, after some iterations, the swarm also may not have found
the feasible region yet. Since the swarm has so far minimized the constraint violation,
the swam has probably converged to an unfeasible point with the minimum value of
constraint violation, and the feasible region may be located relatively close to that point.
This fact suggests that by enhancing the local exploration around the so far unfeasible gbest
founded point, the algorithm could be able to identify the feasible search space. Therefore,
if the swarm has stalled to an unfeasible point for a number k = kES operator of iterations, a
local search operator based on the Evolutionary Strategy approach is thus performed. The
Evolutionary Strategy (ES) algorithm is another famous paradigm of the classical EAs based
on Darwinian Selection and it was developed by Ingo Rechenberg and Hans-Paul Schwefel
at the Technical University of Berlin around the 1960s [1,45]. Without entering deeper into
the details of this algorithm, it is necessary to recall that this is a population-based method
which relies on the survival of the fittest members. Starting from a parent population,

Appl. Sci. 2022, 12, 2285 9 of 26

the best individuals have a greater chance to be selected and evolve, forming a certain
number of offspring which are generated throughout a slight mutation in the genome of
the selected parents. The degree of mutation is governed by a mutation step, which is
usually drawn by a Gaussian normal distribution N(0, σ), in which σ is also known as the
mutation step size [45,46]. In formulae, it is possible to express that each gene of a selected
parent xi undergoes a mutation procedure which produces a new offspring’s gene equal
to xi + N(0, σ). Then, the parents and the offspring will compete for survival, and only
the best individuals will survive to the next generation. The main advantage of ES is that
it is based on a single parameter to be tuned, the mutation step σ. Many variants of ES
were developed in recent decades as mentioned in [45], but the self-adaptation strategy
(also denoted as σSA-ES or simply SA-ES [47–49]) is taken into account in the current study.
To perform an SA-ES, it is necessary to consider a new representation for the individuals.
From a practical point of view, when the parent genome is slightly mutated, if the generated
offspring is better in terms of OF evaluation, this offspring will probably survive to the next
generation, and it will probably spread its improved genome in the next iterations. Based
on this observation, the mutation step can also be added to the original genome of the
parent chromosome, giving a new individual representation such as (x1, . . . , xn, σ). In this
way, not only the genes but also the mutation step undergoes the mutation operator. Thus,
if a better offspring is obtained, it will survive and spread its chromosome information,
which now implicitly takes into account a new adaptive mutation step. Therefore, in an
indirect manner, good individuals will also generate good mutation steps which will be
adaptively tuned during the next generations. The above-mentioned approach is known
in the literature as SA-ES with uncorrelated mutation with one step size [46,48]. When a
number of different mutation steps are considered, one for each gene in the chromosome,
such as (x1, . . . , xn, σ1, . . . , σn), the adaptive ES strategy is called SA-ES with uncorrelated
mutation with n step size [46,48]. It is now clear that the main advantage to introduce the
ES local search operator to the current enhanced PSO implementation is due to the fact
that it can be implemented without manually tuning other parameters because they are
self-tuned by the algorithm itself. For example, in [50], a hybridization of the PSO with
ES was performed to enhance the classical velocity update with an adaptive update of the
inertia weight and the acceleration factors. For the sake of completeness, there are more
sophisticated self-adaptive approaches which take into account also the correlations among
the various step sizes associated with the various genes, which are named as SA-ES with
correlated mutation [46,48] or covariance matrix adaptation CMA-ES [47,48,51]. In the
current study, the SA-ES with uncorrelated mutation with n step size operator is integrated
with the PSO inside a local search operator in order to try to locate the feasible region if
the swarm stalls to an unfeasible point for kES operator = 10 iterations. From the unfeasible
gbest starting point xGb,unfea, a population of Np = 50 parent points is sampled from a
multivariate Gaussian mixture model in which each component has mean equal to the
gbest’s i-th component, xGb,unfea

i , and covariance equal to a first attempt mutation step σi.
Each i-th mutation step is defined by:

σi = |τ ·N(0, 1)| (15)

i.e., the absolute value of the product of a random number sampled from a normal standard
distribution N(0, 1) multiplied to a learning rate parameter τ, which is suggested in [47] to
be assumed as 1/

√
Np. Then, a first population of No = 100 mutated offspring is generated

by randomly selected parents adopting a mutation scheme in which the i-th new mutation
step size component is updated as:

σi,off = max(0, |σi + N(0, 1)|). (16)

Thereafter, a new offspring point is obtained by adding to the parent position the mutated
vector sampled by the multivariate Gaussian mixture model with a mean equal to a zero
array and covariance equal to the mutation step size vector updated as above. Subsequently,

Appl. Sci. 2022, 12, 2285 10 of 26

the mutated offspring are added to the parent population, and the best Np individuals
are selected to survive to the next iteration in terms of constraints violations (or in case
of feasible points in term of OF). In the ES jargon, this approach is called the µ + λ−ES
strategy because the µ (Np) parents will compete with both each other and also new λ
(No) offspring, but finally, only µ individuals will survive, whereas the others will be
discarded [47]. This mechanism resembles the steady-state approach of other EAs likewise
in the genetic algorithm GA [1]. The ES operator could theoretically perform a maximum
number of local iterations equal to kmax,Local = 50, but in the case that a feasible point is
found, the ES evolutionary cycle is interrupted. This new feasible point is thus set up as
the gbest of the previous PSO swarm, which remained in a sort of standby state while
the local ES operator was in action. In summary, the PSO cycle, which has entered in the
ES operator due to the fact that it stalled for kES operator = 10 iterations on an unfeasible
gbest point, can now restart again as usual with an improved knowledge provided by
a new feasible posed gbest point found by the local search ES operator. The numerical
example Problem g06, whose statement is in the Appendix A (Sickle Problem [52]), has
been depicted in Figures 4 and 5 to graphically show the enhanced multi-strategy PSO
procedure. Each swarm particle is able to see only the sub-figures (a), (c), and (e) of Figure 4
when its position is inside the feasible region (with the role to minimize the OF); otherwise,
it is able to see only the landscape produced by the constraint envelope, subfigures (b),
(d), and (f) of Figure 4. After 10 stagnations on the unfeasible gbest point (black cross in
sub-figures (a), (b), (c), and (d) of Figure 4), the ES operator was performed. It generated
a local population of points near the unfeasible gbest point, which are colored as purple
if they are unfeasible or green if they are feasible. Then, this population evolves with the
before explained SA-ES approach until at least one point falls inside the feasible region
(which is the space between the two blue parabolas) or the maximum number of local
iterations is reached. In that specific case, at the first local iteration, some feasible points
were already found. Therefore, the best individuals in term of OFs was selected among the
green points of Figure 4c,d, and then the PSO could continue its evolutionary cycles until
the maximum number of iterations were reached (kmax = 500). The history of the optimal
solution found during the PSO iterations is depicted in Figure 5.

For some very hard problems, it may also happen that after the action of the ES
local search operator, the feasible region is not found. In that case, the PSO starts the
evolution cycle again with the same unfeasible gbest point for some other iterations until the
feasible region is found. Otherwise, when the iterations reach a total number of unfeasible
stagnations kmax Unfeas Stagn = 15, the complete reset of the population is performed. In
practise, the algorithm completely restarts again from the first point of the flowchart, as
shown in Figure 3. Therefore, the hope is that a completely new random sampling of the
initial swarm will generate a new initial configuration which may find this time the right
path to the optimal solution of the optimization problem.

On the contrary, when the PSO normally finds the feasible region and it optimizes
the solution until it reaches a gbest which stagnates for a certain number of iterations
kmax Feas Stagn = 50, the population is restarted as well. This is due to the fact that the
so far found optimal solution could be a local minimum. If there is a certain number
of iterations left before reaching the maximum PSO available iterations, k < kmax, the
swarm is thus restarted again from the first step of the PSO flowchart. In that case, all
the memories of the population are reset (pbests and lbests), but the so far found optimal
solution (gbest) remains unchanged, unless a better solution in terms of OF is found from
the new restarted-swarm exploration phase.

In the following section, the enhanced multi-strategy PSO has been tested on some
constrained numerical benchmark literature problems, and the results are compared with
two PSO implementations, which adopt a typical penalty approach.

Appl. Sci. 2022, 12, 2285 11 of 26

Generation :12

-7
0
0
0

-7
0
0
0

-6
0
0
0

-6
0
0
0

-5
0
0
0

-5
0
0
0

-4
0
0
0

-4
0
0
0

-3
0
0
0

-3
0
0
0

-2
0
0
0

-2
0
0
0

-1
0
0
0

-1
0
0
0

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

OF

Feasible reg

(a) OF—Generation 12

Generation :12

55
5

5

10

10

15

15

20

20

20

25

25

25

30

30

30

35

35

35

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

Constraint env.

Feasible reg

(b) Constraints—Generation 12

Local Generation :1

-7
0
0
0

-7
0
0
0

-6
0
0
0

-6
0
0
0

-5
0
0
0

-5
0
0
0

-4
0
0
0

-4
0
0
0

-3
0
0
0

-3
0
0
0

-2
0
0
0

-2
0
0
0

-1
0
0
0

-1
0
0
0

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

OF

Feasible reg

(c) OF—ES operator Generation 1

Local Generation :1

55
5

5

10

10

15

15

20

20

20

25

25

25

30
30

30

35

35

35

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

Constraint env.

Feasible reg

(d) Constraints—ES operator Generation 1

Generation :500

-7
0
0
0

-7
0
0
0

-6
0
0
0

-6
0
0
0

-5
0
0
0

-5
0
0
0

-4
0
0
0

-4
0
0
0

-3
0
0
0

-3
0
0
0

-2
0
0
0

-2
0
0
0

-1
0
0
0

-1
0
0
0

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

OF

Feasible reg

(e) Generation 500

Generation :500

55
5

5

10

10

15

15

20

20

20

25

25

25

30

30

30

35

35

35

0 1 2 3 4 5 6 7 8 9 10

x
1

13

13.5

14

14.5

15

15.5

16

x
2

Constraint env.

Feasible reg

(f) Generation 500

Figure 4. Example Problem g06, see the Appendix A (Sickle Problem [52]); (a,b) the OF and constraints
envelope contour representations, respectively at generation 12. The black cross marker is the
unfeasible gbest, the red dots are the swarm points. (c,d) After 10 unfeasible stagnations, the ES
local search operator generate a local search population (purple dots) to find the feasible region
(green dots). (e,f) the OF and constraints envelope contour representations, respectively, at the final
generation 500. The black cross marker is the feasible gbest point, the red ones are the particles in a
unfeasible region, and the green ones are the particle inside the feasible region.

Appl. Sci. 2022, 12, 2285 12 of 26

0 50 100 150 200 250 300 350 400 450 500

Iteration

-8000

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

-3500

-3000

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

Unfeasible gbest

Feasible gbest

Figure 5. Example Problem g06, see Appendix A (Sickle Problem [52]); Objective function history of
the gbest (optimal solution).

4. Numerical Test and Comparisons

The new enhanced multi-strategy PSO illustrated in the previous section was imple-
mented in a Matlab environment and some numerical constrained benchmark tests from
the literature were analysed. In particular, the statements of the mathematical constrained
problems were taken from [53], in which a total of 13 constrained problems are illustrated.
In the current study, only some problems were considered, in particular, the problems with
inequalities constraints only were analysed. As stated before, the PSO does not perform
very well with equality constraints despite some strategies being proposed in literature to
convert each equality constraint into a couple of equivalent inequality constraints. For the
sake of completeness, the selected problem statements are also reported in the Appendix
A of the present paper. In order to make some comparisons with the other more classical
constraint handling approaches, the current enhanced multi-strategy PSO is compared
with a more classic penalty approach. For this purpose, the PSO code proposed by [54]
was adopted and modified in order to take into consideration both a static penalty ap-
proach as previously mentioned in (6) and also with a dynamic penalty as in (9). The
penalty factors were properly tuned problem by problem in order to obtain the optimal
results. The swarm size was set to N = 100, and the maximum allowable iterations were
fixed to kmax = 500 for all the PSOs considered. The comparisons shown in Table 1 are
developed from the results obtained by 50 independent runs and making comparisons
among best and worst results and the mean and standard deviation of the OF from the
dataset of the 50 final results for the 3 different PSOs. The results in Table 1 produced
by the enhanced multi-strategy PSO are satisfactory for the selected numerical problems,
and they are generally consistent if compared with the theoretical results and with the
other penalty-based PSO implementations. This proves the effectiveness of the current
enhanced PSO implementation to deal with constrained optimization problems without
the tedious calibration of too many arbitrary parameters. Because of these initial promising
results, future works should therefore include some other numerical applications and some
engineering practical optimization problems.

Appl. Sci. 2022, 12, 2285 13 of 26

Table 1. Selected numerical benchmark examples taken from [53] and comparisons of the final results
for 50 runs among the enhanced multi-strategy PSO (PSO_MS), the PSO with static penalty (PSO_ST),
and the PSO with dynamic penalty (PSO_DYN).

Problem g01 PSO_MS PSO_ST PSO_DYN

optimum −15.000

best OF −15.000 −15.000 −15.0
worst OF −12.002 −12.000 −12.000

mean −14.443 −13.938 −13.920
std 0.89478 1.4333 1.4546

Problem g02 PSO_MS PSO_ST PSO_DYN

optimum 0.803619

best OF 0.80357 0.80146 0.79358
worst OF 0.60963 0.52013 0.38285

mean 0.75896 0.70105 0.66597
std 0.063604 0.07356 0.087006

Problem g04 PSO_MS PSO_ST PSO_DYN

optimum −30,665.539

best OF −30,666.0 −30,666.0 −31,207.0
worst OF −30,666.0 −30,665.0 −30,137.0

mean −30,666.0 −30,665.0 −31,138.2
std 2.20e-05 0.86587 252.2036

Problem g06 PSO_MS PSO_ST PSO_DYN

optimum −6961.81388

best OF −6961.8 −6973.0 −6963.0
worst OF −6958.4 −6973.0 −6963.0

mean −6960.7 −6973.0 −6963.0
std 0.97521 0.0000 0.0000

Problem g07 PSO_MS PSO_ST PSO_DYN

optimum 24.3062091

best OF 24.426 25.034 24.477
worst OF 27.636 30.203 30.112

mean 25.4129 28.508 27.043
std 1.1209 1.4351 1.8821

Problem g08 PSO_MS PSO_ST PSO_DYN

optimum 0.095825

best OF 0.095825 0.095825 0.095825
worst OF 0.095825 0.095825 0.095825

mean 0.095825 0.095825 0.095825
std 6.96e-17 6.77e-17 7.10e-17

Problem g09 PSO_MS PSO_ST PSO_DYN

optimum 680.6300573

best OF 680.64 680.63 680.63
worst OF 680.98 680.72 680.73

mean 680.73 680.66 680.66
std 0.079365 0.017526 0.018915

Appl. Sci. 2022, 12, 2285 14 of 26

Table 1. Cont.

Problem g12 PSO_MS PSO_ST PSO_DYN

optimum 1.0

best OF 1.0 1.0 1.0
worst OF 1.0 1.0 1.0

mean 1.0 1.0 1.0
std 0.0000 2.12e-15 0.0000

5. Structural Optimization on Literature Benchmarks

In this final part, some well-acknowledged structural engineering optimization prob-
lems from the literature have been adopted for evaluating the performances of the proposed
multi-strategy PSO algorithm with the unfeasible local search operator. In the analysed
benchmarks, the multi-strategy PSO has been compared with other optimization strategies,
i.e., the PSO with static and dynamic penalty inspired by the code of [54] and with the GA
from Matlab’s built-in code functions. Structural optimization problems can be mainly
grouped into three main categories [55]: the size optimization, where the aim is to find the
optimal size of the structural elements; the shape optimization, in which the design variables
govern the structural shape; the topology optimization, which is the more complex because
it involves the modification of the structural typology and morphology. These problems
could be tackled separately or even combined. Mainly focusing on the contribution of [56],
in the current study, three different truss design constrained size optimization problems
have been analysed. The main goal of truss design problems is to minimize the total weight
w of the structure, which is indirectly connected to the material consumption volume
amount and thus to the cost of the structure [55]. Indeed, adopting a certain material with
unit weight ρi, the main goal results in seeking for the optimal cross-sectional areas Ai to be
devoted to every structural element in the design domain. A first constraint is represented
by the box-constraint related to the admissible range of cross section area values to be
adopted Ai ∈ [ALB

i , AUB
i]. Thereafter, at least two other inequality constraints have to be

considered. The first one is related to the respectfulness of the maximum allowable stress
σadm in each truss member (resistance-side constraint) and the second one is referred to the
respectfulness of a maximum displacement threshold δadm (deformation-side constraint).
The general formulation of the truss design problem can be stated as follows:

min
x∈Ω

f (x) =
Ne l

∑
i=1

ρiLi Ai

s.t. ALB
i ≤ Ai ≤ AUB

i

σi ≤ σadm

δ ≤ δadm

(17)

where Nel is the total number of elements in the truss design domain and Li is the actual
length of each member. The material adopted in the current study is structural steel with
unit weight of ρi = ρ = 0.1 lb/in3 (1 lb/in3 is equal to 0.0276799 kg/cm3) and Young’s
modulus of 107 psi (1 psi is equal to 0.00689476 MPa).

5.1. Ten-Bar Truss Design Optimization

The first problem analysed is referred to as a 10 bar truss cantilever structure, as
depicted in Figure 6. In the cantilever structure, each member has been labelled with
a number from 1 to 10. The cantilever span is in total 720 inches (1 inch is equal to
25.4 mm), and the depth is 360 in. The truss structure is loaded by 2 downward forces
of 100 kips each (1 kips is equal to 4.4482 kN). The design vector considers cross-section
areas as continuous variables belonging to the a close interval [0.1, 35] in2. The maximum
allowable deflection both in horizontal and vertical direction for every node has been set to

Appl. Sci. 2022, 12, 2285 15 of 26

δadm = ±2 in, whereas the maximum allowable stress is equal to σadm = ±25 ksi. In total,
100 independent executions have been performed, and the mean and standard deviation of
the OFs have been calculated. A population size of 50 particles and a maximum iterations
number of 500 have been set both for the multi-strategy PSO and the GA. For the PSO
with penalty approaches, 500 particles have been set as the swarm size because of their
very poor results when only 50 particles have been considered. The optimization results
obtained are reported in Table 2, which compares the multi-strategy PSO with the PSO
with static penalty (PSO-Static), with dynamic penalty (PSO-Dynamic), and with GA. It is
worth noting that the penalty approaches fail dreadfully, in this case, to deal with real-life
structural design problems, whereas the proposed multi-strategy PSO algorithm produces
good results which are comparable with the GA and quite close to the actual unknown
optimum solution.

21

360 in 360 in

3
6
0
 i
n

100 kips 100 kips

3 4

5 6

78 910

Figure 6. Graphical representation of the 10 bar truss design optimization problem.

5.2. Twenty-Five-Bar Truss Design Optimization with Multi-Load Cases Conditions

The second structural optimization problem analysed is referred to as the 25 bar
three-dimensional truss tower structure, as depicted in Figure 7. In plan view, the tower
footprint is a square of side 200 in, which tapers to 75 in at an elevation of 100 in, and finally
reaches the maximum elevation at 200 in from the ground. The structural nodes have been
labelled with a number from 1 to 10. The design vector considers the cross section areas of
each member as continuous variables belonging to the close interval [0.01, 3.40] in2. The
cross-sectional areas have been gathered into eight groups, as depicted in Figure 8, in order
to reduce the dimensionality of the design vector. The maximum allowable displacement
has been set to δadm = ±0.35 in in every direction, whereas the maximum allowable stress
of each member has been to σadm = ±40 ksi. Furthermore, the current structural problem
takes into account two different load cases during the optimization process, as shown in
Figure 7. In total, 100 independent executions have been performed, and the mean and
standard deviation of the OFs have been calculated. A population size of 50 particles
and a maximum iterations number of 500 have been set both for the multi-strategy PSO
and the GA. For the PSO with penalty approaches, 500 particles have been set as the
swarm size because of their very poor results when only 50 particles have been considered.
The optimization results obtained are reported in Table 3, which compares the multi-
strategy PSO with the PSO with the static penalty (PSO-Static), with the dynamic penalty
(PSO-Dynamic), and with the GA. It is worth noting that, even in this case, the penalty

Appl. Sci. 2022, 12, 2285 16 of 26

approaches dreadfully fail to deal with real-life structural design problems, whereas the
proposed multi-strategy PSO algorithm produces good results which are comparable with
the GA and quite close to the actual optimum solution.

Table 2. Ten-bar truss design example: results comparisons for 100 runs among the enhanced multi-
strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the PSO with dynamic penalty
(PSO-Dynamic) and GA.

Cross-Section [in2]

Element Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 28.920 29.6888 30.3092 30.145 30.372
2 0.100 18.3211 14.7464 0.100 0.110
3 24.070 19.9891 16.5717 22.466 23.644
4 13.960 18.2381 25.1945 15.112 15.391
5 0.100 2.3404 4.5489 0.101 0.101
6 0.560 20.8674 26.1207 0.543 0.496
7 21.950 21.1805 32.2698 21.667 20.984
8 7.690 16.0851 0.2168 7.577 7.410
9 0.100 6.0845 7.5871 0.100 0.103
10 22.090 25.5632 23.524 21.695 21.378

best OF [lb] 5076.310 6141.986 6333.035068 5063.250 5063.328

worse OF [lb] - 8415.134 8675.749551 5144.148 5229.108

mean [lb] - 7294.455 7501.394582 5079.744 5076.473

std. dev. [lb] - 516.7823 475.3885728 14.1194 24.8666

2 1

3

4

5

6

7

8

9

10

25 bars

divided in

8 sectional

groups

200 in

75 in

200 in
75 in

1
0
0
 i
n

1
0
0
 i
n

(Px1,Py1,Pz1)(Px2,Py2,Pz2)

(Px3)
(Px6)

x y

z

Pxi Pyi Pzi Node

1

2

3

6

1.0

Load case 1 [kips]

10.0 -5.0

0 10.0 -5.0

0.5 0 0

0.5 0 0

Load case 2 [kips]

Pxi Pyi Pzi Node

1

2

0 20.0 -5.0

0 -20.0 -5.0

Figure 7. Graphical representation of the 25 bar truss design optimization problem.

Appl. Sci. 2022, 12, 2285 17 of 26

2 1

3

4

5

6

7

8

9

10

25 bars

divided in

8 sectional

groups

Bar Groups:

 1

 2

 3

 4

 5

 6

 7

 8

x y

z

Figure 8. Graphical representation of the 8 bar groups in which are collected all the members of the
25 bar truss design optimization problem.

Table 3. Twenty-five bar truss design example: results comparisons for 100 runs among the enhanced
multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static), and the PSO with dynamic
penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 0.100 2.054 1.116 0.010 0.011
2 1.800 2.675 2.670 2.023 1.976
3 2.300 1.402 1.942 2.941 2.989
4 0.200 3.388 0.166 0.010 0.010
5 0.100 0.204 0.342 0.010 0.011
6 0.800 0.453 1.985 0.671 0.690
7 1.800 1.274 1.976 1.673 1.689
8 3.000 0.048 2.345 2.694 2.654

best OF [lb] 546.010 568.186 596.058 545.236 545.249

worse OF [lb] - 100,583.118 22,954.297 557.755 552.378

mean [lb] - 1673.393 1122.518 547.828 546.003

std. dev. [lb] - 9991.0201 3129.3192 2.0743 0.7879

5.3. Seventy-Two-Bar Truss Design Optimization with Multi-Load Cases Conditions

The last structural optimization problem analysed in the current study is referred to as
a 72 bar three-dimensional truss tower structure, as depicted in Figure 9. In plan view, the
tower footprint is a square of side 120 in, with 4 modular floors, each of them with a height
of 60 in. The structural nodes have been labelled with a number from 1 to 20. The design
vector considers the cross-sectional areas of each member as continuous variables belonging
to the close interval [0.1, 3.0] in2. There are 18 bars inside each modular floor which can

Appl. Sci. 2022, 12, 2285 18 of 26

be grouped in 4 groups, as depicted in Figure 10. Therefore, since there are 4 floors, the
cross-sectional areas have been parametrized into 16 groups in total in order to reduce
the dimensionality of the design vector. The maximum allowable displacement has been
set to δadm = ±0.25 in in every direction, whereas the maximum allowable stress of each
member has been set to σadm = ±25 ksi. Furthermore, the current structural problem takes
into account two different load cases during the optimization process, as shown in Figure 9.
In total, 100 independent executions have been performed, and the mean and standard
deviation of the OFs have been calculated. A population size of 50 particles and a maximum
iterations number of 500 have been set both for the multi-strategy PSO and the GA. For
the PSO with penalty approaches, 500 particles have been set as the swarm size because
of their very poor results when only 50 particles have been considered. The optimization
results obtained are reported in Table 4, which compares the multi-strategy PSO with the
PSO with the static penalty (PSO-Static), with the dynamic penalty (PSO-Dynamic), and
with the GA. Similarly to the previous cases, it is worth noting that the penalty approaches
dreadfully fail to deal with real-life truss design structural optimization problems, whereas
the proposed multi-strategy PSO algorithm produces good results which are comparable
with the GA and quite close to the actual optimum solution. It is worth noting that the
mean value and the best one are very close to the reference optimal solution from [56]. The
final solution is even characterized by a low standard deviation among the 100 algorithm
runs, demonstrating that the multi-strategy PSO is able to reach the optimal results in a
more reliable way, reducing the uncertainties and scattering of the final results.

72 bars divided in 16 sectional groups

1 2

12

5 6

9 10

13 14

17 18

6
0
 i
n

6
0
 i
n

6
0
 i
n

6
0
 i
n

120 in

(Pz18)(Pz17)
Pxi Pyi Pzi Node

17

18

19

20

0

Load case 1 [kips]

0 -5.0

0 0 -5.0

0 0 -5.0

0 0 -5.0

x y

z

Load case 2 [kips]

Pxi Pyi Pzi Node

17 5.0 5.0 -5.0

Figure 9. Graphical representation of the seventy-two bars truss design optimization problem.

Appl. Sci. 2022, 12, 2285 19 of 26

In total 72 bars divided

in 16 sectional groups

(4 groups for each floor)

12

x y

z

Bar Groups:

 1

 2

 3

 4

Figure 10. Graphical representation of the four bar groups in which are collected the members inside
one module of the seventy-two bars truss design optimization problem.

Table 4. Seventy-two bars truss design example: results comparisons for 100 runs among the
enhanced multi-strategy PSO (PSO-MS), the PSO with static penalty (PSO-Static) and the PSO with
dynamic penalty (PSO-Dynamic) and GA.

Cross-Section [in2]

Bar Group Ref. Sol. from [56] PSO-Static PSO-Dynamic GA PSO-MS

1 2.026 2.176 0.746 1.801 1.856
2 0.533 0.661 0.539 0.545 0.523
3 0.100 2.686 0.523 0.100 0.100
4 0.100 1.771 2.660 0.100 0.100
5 1.157 1.662 2.316 1.311 1.301
6 0.569 0.276 1.051 0.511 0.519
7 0.100 0.158 0.642 0.100 0.100
8 0.100 0.986 2.370 0.100 0.100
9 0.514 0.271 0.757 0.531 0.539

10 0.479 1.240 0.793 0.520 0.507
11 0.100 0.517 0.453 0.100 0.100
12 0.100 0.378 1.754 0.107 0.101
13 0.158 0.119 2.236 0.157 0.157
14 0.550 0.794 1.677 0.534 0.540
15 0.345 1.363 0.824 0.386 0.403
16 0.498 1.190 0.830 0.561 0.564

best OF [lb] 379.310 629.108 662.148 380.150 379.753

worse OF [lb] - 1054.764 1110.795 400.147 381.541

mean [lb] - 874.024 854.233 383.377 380.150

std. dev. [lb] - 88.8254 82.1187 3.7299 0.2766

6. Discussion

In the previous sections, it has been demonstrated that the proposed multi-strategy
PSO algorithm provided quite interesting results. Foremost, focusing on numerical bench-
mark problems, the multi-strategy PSO technique has been compared with two other
traditional PSO implementations which adopt the penalty function approaches to deal
with constraints. The three algorithms have been executed 50 independent times for each
numerical problem stated in the Appendix A, and the final results have been collected in
Table 1. The optimization results have been presented in terms of the best solution, the
worst solution, the mean of the OF values, and the standard deviation of the final results.

Appl. Sci. 2022, 12, 2285 20 of 26

These parameters evidence the scattering in the found solutions by the various algorithms.
Specifically, the standard deviation parameter gives a direct insight into the degree of
failure of the meta-heuristic algorithm to find the known benchmark solutions among the
independent executions. In particular, the multi-strategy PSO presents in general lower
values of a standard deviation compared with PSO-penalty methods, or at least the same
order of magnitude. Furthermore, the multi-strategy PSO appears to be a more reliable
algorithm because, focusing, e.g., on the problem g06, despite the standard deviation of
the PSO-penalty being zero, they fail to reach the optimum solution. This fact highlights
that, notwithstanding that the penalty functions method is very simple and easy to im-
plemented, in general, it does not always represent the best approach to successfully deal
with every kind of problem. Indeed, e.g., in problem g06, the nil value of the standard
deviation actually points out how the penalty method provides a quite deterministic PSO
algorithm which is trivially entrapped in the same local optimum among the independent
runs, jeopardizing the potentialities of the stochastic search.

On the other hand, focusing on real-world engineering structural optimization prob-
lems, the multi-strategy PSO algorithm has revealed its powerful capabilities to deal with
complex, combinatorially demanding, and highly non-linear optimization problems. For
the sake of completeness, in these problems, a further comparison has been provided by the
GA algorithm from the Matlab environment. This latter comparison is extremely relevant
because it allows for performing a more objective evaluation which relies on a completely
different implementation with respect to the PSO framework only. The optimization re-
sults of the 10 bar truss, 25 bar truss, and 72 bar truss problems have been reported in
Tables 2–4, respectively. In all the analysed cases, the multi-strategy PSO provided very
interesting results, which are really close or even better to the reference solution obtained
from [56]. The penalty method revealed their weakness when dealing with these kinds
of highly non-linear problems because they provided mean solutions quite far from the
reference one and even more scattered when considering the standard deviation values. In
conclusion, the proposed multi-strategy PSO algorithm provides an enhanced and more
reliable implementation because it results in lower standard deviation values than the GA
ones, at least in the last two problems hereby analysed, which are the most complex and
computationally demanding.

7. Conclusions

The research and developments in the EAs field to solve optimization problems are
continuously increasing because of their lack of mathematical proofs and also because the
perfect algorithm to solve any kind of problem does not exist. Therefore, in the present
study, a new variant of the PSO has been implemented for the purpose of studying a
different way to deal with constrained optimization problems. In fact, the standard version
of the PSO [17] lacked a proper mechanism to deal with constrained problems, and in
literature [30,33,34], there are at least five main kinds of constraint-handling approaches.
The so far most extensively used method in many different practical applications is the
penalty function method. The main disadvantage of this technique is that it requires the
user to tediously tune some arbitrary penalty factors, which is not always an easy task. In
the current study, for the purpose of enhancing the performance of the standard version
of the algorithm, the most important state-of-the-art improvements are also implemented,
such as the inertia weight [23] and the neighbourhood topology [25]. Furthermore, in
order to avoid a penalty-based approach, the violation degree of the constraints is directly
exploited to define the aim of a particle which has to minimize this violation if it lies in
the unfeasible region. Otherwise, if a particle lies in the feasible region, this particle is
dedicated to minimize the OF. Another improvement is given by a local search self-adaptive
ES operator, which takes action if the feasible region is not found by the PSO for a certain
number of iterations. This allows the algorithm to spread the exploration around the so far
unfeasible best solution found, which may be very close to the feasible region, if it is located
in near this point. If the ES operator successfully finds the feasible region, this allows it

Appl. Sci. 2022, 12, 2285 21 of 26

to boost the PSO, giving it an important hint on where the feasible region is located, as
demonstrated in Figure 4. If the local operator fails to identify the feasible region, the
swarm has probably been entrapped in a local unfeasible minimum quite far from the
feasible region. Consequently, only a new randomly resampled swarm may probably find
the right path to the feasible region and thus to the real optimum. This new enhanced
PSO appears to be noticeably effective compared to other PSO algorithms which adopt a
more traditional penalty-function-based method, as shown in Table 1. Outstanding results
have been pointed out in the structural optimization benchmark analysed in the current
study, which involves three truss design problems from the literature. The proposed PSO
effectively dealt with real-life optimization problems, much better than traditional penalty
approaches, and reached results comparable and competitive with other state-of-the-art
implementations such as the GA.

Although the PSO algorithm already possesses two kinds of memories (cognitive
and social), most of the information about the swarm visited positions is discarded, and a
better exploitation of the past particles positions remains to be fully determined. In another
recent work [18], a first promising step in that direction has been already made. In [18], the
PSO has been hybridized with a machine learning algorithm, the support vector machine
(SVM). The SVM has been trained on the dataset composed by all the visited swarm
positions in order to build a predictive model which is able to learn where the feasible
and the unfeasible regions are located in the search domain. The improvement in the
managing information provided by the swarm positions during all the iterations allowed
the algorithm to reduce the search space extension and considerably improve the PSO’s
performance. In future studies, another promising direction can be a hybridization with
the estimation distribution algorithm (EDA) [57], which relies on building and updating
a complex probability distribution model of the search space domain, and therefore, it is
potentially able to give considerably much more information about the fitness landscape
with respect to a simple blind sampling inside the search space.

Author Contributions: Conceptualization, M.M.R. and G.C.M.; methodology, M.M.R. and G.C.M.;
software, M.M.R. and R.C.; validation, R.C. and A.A.; formal analysis, A.A.; investigation, M.M.R.;
resources, M.M.R. and G.C.M.; data curation, R.C. and A.A.; writing—original draft preparation,
M.M.R.; writing—review and editing, R.C. and A.A.; visualization, R.C. and A.A.; supervision,
G.C.M.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by project MSCA-RISE-2020 Marie Skłodowska-Curie Re-
search and Innovation Staff Exchange (RISE)—ADDOPTML (ntua.gr).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon reasonable request.

Acknowledgments: The authors would like to thank anonymous reviewers for their valuable com-
ments and suggestions in revising the paper. The authors would like to thank G.C. Marano and the
project ADDOPTML for funding supporting this research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Test Functions Constrained Problems

In the following, the statements of the selected benchmark numerical problems, taken
by [53], which were tested in the present work are exposed.

1. Problem g01
Minimize:

f (x) = 5
4

∑
i=1

xi − 5
4

∑
i=1

x2
i −

13

∑
i=5

xi

http://addoptml.ntua.gr/

Appl. Sci. 2022, 12, 2285 22 of 26

Subject to:

g1(x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(x) = −8x1 + x10 ≤ 0

g5(x) = −8x2 + x11 ≤ 0

g6(x) = −8x3 + x12 ≤ 0

g7(x) = −2x4 − x5 + x10 ≤ 0

g8(x) = −2x6 − x7 + x11 ≤ 0

g9(x) = −2x8 − x9 + x12 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100
(i = 10, 11, 12), 0 ≤ x13 ≤ 1. The optimum is located at x∗ = [1; 1; 1; 1; 1; 1; 1; 1; 1; 3; 3; 3; 1],
where f (x) = −15.

2. Problem g02
Maximize:

f (x) =

∣∣∣∣∣∣∑
n
i=4 cos4(xi)− 2 ∏n

i=1 cos2(xi)√
∑n

i=1 ix2
i

∣∣∣∣∣∣
Subject to:

g1(x) = 0.75−
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi − 7.5n ≤ 0

where n = 20 and the search space is defined as 0 ≤ xi ≤ 10 (i = 1, . . . , n). The
optimum OF is f (x) = 0.803619.

3. Problem g04
Minimize:

f (x) =5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

Subject to:

g1(x) =85.334407 + 0.0056858x2x5 + 0.0006262x1x4 + 0.0022053x3x6 ≤ 92,

g2(x) =− 85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x6 ≤ 0,

g3(x) =80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0,

g4(x) =− 80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0,

g5(x) =9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0,

g6(x) =− 9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0,

where the search space is defined as 78 ≤ x1 ≤ 102 and 33 ≤ x2 ≤ 45 and
27 ≤ x3, x4, x5 ≤ 45. The optimum is located at x∗ = [78, 33, 29.995256025682, 45,
36.775812905788], where f (x) = −30, 665.539.

4. Problem g06
Minimize:

f (x) = (x1 − 10)3 + (x2 − 20)3

Appl. Sci. 2022, 12, 2285 23 of 26

Subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 − (x2 − 5)2 − 82.81 ≤ 0

where the search space is defined as 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum
is located at x∗ = [14.095; 0.84296], where f (x∗) = −6961.81388.

5. Problem g07
Minimize:

f (x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

Subject to:

g1(x) =− 105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(x) =10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) =− 8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) =3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5(x) =5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g6(x) =x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) =0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30 ≤ 0

g8(x) =− 3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where the search space is defined as −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The optimum OF
is f (x∗) = 24.3062091.

6. Problem g08
Maximize:

f (x) =
sin3(2πx1) sin 2πx2

x3
1(x1 + x2)

Subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1− x1 + (x2 − 4)2 ≤ 0

where the search space is defined as 0 ≤ x1, x2 ≤ 10. The optimum is located at
x∗ = [1.2279713; 4.2453733], where f (x∗) = −0.0958250414.

7. Problem g09
Minimize:

f (x) =(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

Subject to:

g1(x) = −127 + 2x2
1 + 3x4

2 ++x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

Appl. Sci. 2022, 12, 2285 24 of 26

where the search space is defined as −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The optimum OF is
f (x∗) = 680.6300573.

8. Problem g12
Maximize:

f (x) =
100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2

100

Subject to:

g(x) =(x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0

where the search space is defined as 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r = 1, 2, . . . , 7.
The optimum OF is f (x∗) = −1.

References
1. Martí, R.; Pardalos, P.M.; Resende, M.G.C. Handbook of Heuristics, 1st ed.; Springer Publishing Company, Incorporated:

Berlin/Heidelberg, Germany, 2018. [CrossRef]
2. Lagaros, N.D.; Papadrakakis, M.; Kokossalakis, G. Structural optimization using evolutionary algorithms. Comput. Struct. 2002,

80, 571–589. [CrossRef]
3. Marano, G.; Trentadue, F.; Greco, R. Stochastic optimum design criterion of added viscous dampers for buildings seismic

protection. Struct. Eng. Mech. 2007, 25, 21–37. [CrossRef]
4. Pelliciari, M.; Marano, G.; Cuoghi, T.; Briseghella, B.; Lavorato, D.; Tarantino, A. Parameter identification of degrading and

pinched hysteretic systems using a modified Bouc–Wen model. Struct. Infrastruct. Eng. 2018, 14, 1573–1585. [CrossRef]
5. Xue, J.; Lavorato, D.; Bergami, A.; Nuti, C.; Briseghella, B.; Marano, G.; Ji, T.; Vanzi, I.; Tarantino, A.; Santini, S. Severely damaged

reinforced concrete circular columns repaired by turned steel rebar and high-performance concrete jacketing with steel or polymer
fibers. Appl. Sci. 2018, 8, 1671. [CrossRef]

6. Greco, R.; Marano, G. Identification of parameters of Maxwell and Kelvin-Voigt generalized models for fluid viscous dampers.
JVC/J. Vib. Control 2015, 21, 260–274. [CrossRef]

7. Di Trapani, F.; Tomaselli, G.; Sberna, A.P.; Rosso, M.M.; Marano, G.C.; Cavaleri, L.; Bertagnoli, G. Dynamic Response of Infilled
Frames Subject to Accidental Column Losses. In Proceedings of the 1st Conference of the European Association on Quality
Control of Bridges and Structures, Padua, Italy, 29 August–1 September 2021; Pellegrino, C., Faleschini, F., Zanini, M.A., Matos,
J.C., Casas, J.R., Strauss, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1100–1107.

8. Asso, R.; Cucuzza, R.; Rosso, M.M.; Masera, D.; Marano, G.C. Bridges Monitoring: An Application of AI with Gaussian Processes.
In Proceedings of the 14th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and
Control; Institute of Structural Analysis and Antiseismic Research National Technical University of Athens, Athens, Greece, 28–30
June 2021. [CrossRef]

9. De Domenico, D.; Qiao, H.; Wang, Q.; Zhu, Z.; Marano, G. Optimal design and seismic performance of Multi-Tuned Mass
Damper Inerter (MTMDI) applied to adjacent high-rise buildings. Struct. Des. Tall Spec. Build. 2020, 29, e1781. [CrossRef]

10. De Tommasi, D.; Marano, G.; Puglisi, G.; Trentadue, F. Morphological optimization of tensegrity-type metamaterials. Compos.
Part B Eng. 2017, 115, 182–187. [CrossRef]

11. Sardone, L.; Rosso, M.M.; Cucuzza, R.; Greco, R.; Marano, G.C. Computational Design of Comparative Models and Geometrically
Constrained Optimization of A Multi Domain Variable Section Beam Based on Timoshenko Model. In Proceedings of the 14th
International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, Athens, Greece,
28–30 June 2021; Institute of Structural Analysis and Antiseismic Research National Technical University of Athens: Athens,
Greece, 2021. [CrossRef]

12. Cucuzza, R.; Rosso, M.M.; Marano, G. Optimal preliminary design of variable section beams criterion. SN Appl. Sci. 2021, 3, 745.
[CrossRef]

13. Cucuzza, R.; Costi, C.; Rosso, M.M.; Domaneschi, M.; Marano, G.C.; Masera, D. Optimal strengthening by steel truss arches in
prestressed girder bridges. In Proceedings of the Institution of Civil Engineers—Bridge Engineering; Thomas Telford Ltd.: London,
UK, 2021; pp. 1–21. [CrossRef]

14. Fiore, A.; Marano, G.; Greco, R.; Mastromarino, E. Structural optimization of hollow-section steel trusses by differential evolution
algorithm. Int. J. Steel Struct. 2016, 16, 411–423. [CrossRef]

15. Aloisio, A.; Pasca, D.P.; Battista, L.; Rosso, M.M.; Cucuzza, R.; Marano, G.; Alaggio, R. Indirect assessment of concrete resistance
from FE model updating and Young’s modulus estimation of a multi-span PSC viaduct: Experimental tests and validation.
Elsevier Struct. 2022, 37, 686–697. [CrossRef]

16. Marano, G.; Trentadue, F.; Petrone, F. Optimal arch shape solution under static vertical loads. Acta Mech. 2014, 225, 679–686.
[CrossRef]

http://doi.org/10.1007/978-3-319-07124-4
http://dx.doi.org/10.1016/S0045-7949(02)00027-5
http://dx.doi.org/10.12989/sem.2007.25.1.021
http://dx.doi.org/10.1080/15732479.2018.1469652
http://dx.doi.org/10.3390/app8091671
http://dx.doi.org/10.1177/1077546313487937
http://dx.doi.org/10.7712/140121.7964.18426
http://dx.doi.org/10.1002/tal.1781
http://dx.doi.org/10.1016/j.compositesb.2016.10.017
http://dx.doi.org/10.7712/140121.7961.18535
http://dx.doi.org/10.1007/s42452-021-04702-5
http://dx.doi.org/10.1680/jbren.21.00056
http://dx.doi.org/10.1007/s13296-016-6013-1
http://dx.doi.org/10.1016/j.istruc.2022.01.045
http://dx.doi.org/10.1007/s00707-013-0985-0

Appl. Sci. 2022, 12, 2285 25 of 26

17. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

18. Rosso, M.M.; Cucuzza, R.; Di Trapani, F.; Marano, G.C. Nonpenalty Machine Learning Constraint Handling Using PSO-SVM for
Structural Optimization. Adv. Civ. Eng. 2021, 2021, 6617750. [CrossRef]

19. Plevris, V. Innovative Computational Techniques for the Optimum Structural Design Considering Uncertainties. Ph.D. Thesis,
Institute of Structural Analysis and Seismic Research, School of Civil Engineering, National Technical University of Athens
(NTUA), Athens, Greece, 2009. [CrossRef]

20. Sengupta, S.; Basak, S.; Peters, R.A. Particle Swarm Optimization: A Survey of Historical and Recent Developments with
Hybridization Perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 157–191. [CrossRef]

21. Quaranta, G.; Lacarbonara, W.; Masri, S. A review on computational intelligence for identification of nonlinear dynamical
systems. Nonlinear Dyn. 2020, 99, 1709–1761. [CrossRef]

22. Li, B.; Xiao, R. The Particle Swarm Optimization Algorithm: How to Select the Number of Iteration. In Proceedings of the
Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007), Kaohsiung,
Taiwan, 26–28 November 2007; pp. 191–196. [CrossRef]

23. Shi, Y.; Obaiahnahatti, B. A Modified Particle Swarm Optimizer. In Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation, IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), Anchorage, AK, USA, 4–9
May 1998; Volume 6, pp. 69–73. [CrossRef]

24. Perez, R.; Behdinan, K. Particle swarm approach for structural design optimization. Comput. Struct. 2007, 85, 1579–1588.
[CrossRef]

25. Medina, A.; Toscano Pulido, G.; Ramírez-Torres, J. A Comparative Study of Neighborhood Topologies for Particle Swarm Optimizers;
IJCCI: Pasadena, CA, USA, 2009; pp. 152–159.

26. Schmitt, B.I. Convergence Analysis for Particle Swarm Optimization. Ph.D. Thesis, FAU University Press, Erlangen, Nürnberg,
Germany, 2015.

27. Liang, J.; Suganthan, P. Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism. In
Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006;
pp. 9–16. [CrossRef]

28. Kennedy, J.; Eberhart, R.C. Swarm Intelligence; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001.
29. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Method Appl. Mech. Eng. 2000, 186, 311–338.

[CrossRef]
30. Coello Coello, C.A. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of

the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]
31. Wang, Y.; Cai, Z.; Zhou, Y.; Fan, Z. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-

handling technique. Struct. Multidiscip. Optim. 2008, 37, 395–413. [CrossRef]
32. Mezura-Montes, E. Constraint-Handling in Evolutionary Optimization; Springer: Berlin/Heidelberg, Germany, 2009; Volume 198.

[CrossRef]
33. Koziel, S.; Michalewicz, Z. Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization.

Evol. Comput. 1999, 7, 19–44. [CrossRef]
34. Michalewicz, Z.; Fogel, D. How to Solve It: Modern Heuristics; Springer: Berlin/Heidelberg, Germany, 2008.[CrossRef]
35. Rezaee Jordehi, A. A review on constraint handling strategies in particle swarm optimisation. Neural Comput. Appl. 2015, 26,

1265–1275. [CrossRef]
36. Kohler, M.; Vellasco, M.M.; Tanscheit, R. PSO+: A new particle swarm optimization algorithm for constrained problems. Appl.

Soft Comput. 2019, 85, 105865. [CrossRef]
37. Mezura-Montes, E.; Coello, C. A simple multimembered evolution strategy to solve constrained optimization problems. IEEE

Trans. Evol. Comput. 2005, 9, 1–17. [CrossRef]
38. Hasançebi, O.; Çarbaş, S.; Doğan, E.; Erdal, F.; Saka, M. Performance evaluation of metaheuristic search techniques in the

optimum design of real size pin jointed structures. Comput. Struct. 2009, 87, 284–302. [CrossRef]
39. Dimopoulos, G.G. Mixed-variable engineering optimization based on evolutionary and social metaphors. Comput. Methods Appl.

Mech. Eng. 2007, 196, 803–817. [CrossRef]
40. Parsopoulos, K.; Vrahatis, M. Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Prob-

lems. In International Conference on Natural Computation; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3612, pp.
582–591.[CrossRef]

41. Coello, C. Self-adaptive penalties for GA-based optimization. In Proceedings of the 1999 Congress on Evolutionary Computation-
CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 1, pp. 573–580. [CrossRef]

42. Parsopoulos, K.; Vrahatis, M. Particle Swarm Optimization Method for Constrained Optimization Problem. Intell. Technol.-Theory
Appl. New Trends Intell. Technol. 2002, 76, 214–220.

43. Barakat, S.A.; Altoubat, S. Application of evolutionary global optimization techniques in the design of RC water tanks. Eng.
Struct. 2009, 31, 332–344. [CrossRef]

44. Monti, G.; Quaranta, G.; Marano, G. Genetic-Algorithm-Based Strategies for Dynamic Identification of Nonlinear Systems with
Noise-Corrupted Response. J. Comput. Civ. Eng. 2010, 24, 173–187. [CrossRef]

http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1155/2021/6617750
http://dx.doi.org/10.12681/eadd/17936
http://dx.doi.org/10.3390/make1010010
http://dx.doi.org/10.1007/s11071-019-05430-7
http://dx.doi.org/10.1109/IIH-MSP.2007.298
http://dx.doi.org/10.1109/ICEC.1998.699146
http://dx.doi.org/10.1016/j.compstruc.2006.10.013
http://dx.doi.org/10.1109/CEC.2006.1688284
http://dx.doi.org/10.1016/S0045-7825(99)00389-8
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1007/s00158-008-0238-3
http://dx.doi.org/10.1007/978-3-642-00619-7
http://dx.doi.org/10.1162/evco.1999.7.1.19
http://dx.doi.org/10.1007/ 978-3-662-04131-4
http://dx.doi.org/10.1007/s00521-014-1808-5
http://dx.doi.org/10.1016/j.asoc.2019.105865
http://dx.doi.org/10.1109/TEVC.2004.836819
http://dx.doi.org/10.1016/j.compstruc.2009.01.002
http://dx.doi.org/10.1016/j.cma.2006.06.010
http://dx.doi.org/10.1007/11539902_71
http://dx.doi.org/10.1109/CEC.1999.781984
http://dx.doi.org/10.1016/j.engstruct.2008.09.006
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000024

Appl. Sci. 2022, 12, 2285 26 of 26

45. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
46. Eiben, A.; Smith, J. Introduction To Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2003; Volume 45. [CrossRef]
47. Beyer, H.G. Toward a Theory of Evolution Strategies: Self-Adaptation. Evol. Comput. 1995, 3, 311–347. [CrossRef]
48. Fister, I., Jr.; Fister, I. On the Mutation Operators in Evolution Strategies; Springer: Cham, Switzerland, 2015; Volume 18, pp. 69–89.

[CrossRef]
49. Hansen, N. An analysis of mutative σ-self-adaptation on linear fitness functions. Evol. Comput. 2006, 14, 255–275. [CrossRef]
50. Miranda, V.; Fonseca, N. EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems.

In Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 6–10 October 2002;
Volume 2, pp. 745–750.

51. Kramer, O. Evolutionary self-adaptation: A survey of operators and strategy parameters. Evol. Intell. 2010, 3, 51–65. [CrossRef]
52. Simionescu, P.A.; Beale, D.; Dozier, G.V. Constrained optimization problem solving using estimation of distribution algorithms.

In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June
2004; Volume 1, pp. 296–302.

53. Long, W.; Liang, X.; Huang, Y.; Chen, Y. A hybrid differential evolution augmented Lagrangian method for constrained numerical
and engineering optimization. Comput.-Aided Des. 2013, 45, 1562–1574. [CrossRef]

54. Alam, M. Codes in MATLAB for Particle Swarm Optimization; Research Gate Indian, Institute of Technology Roorkee: Roorkee,
India, 2016. [CrossRef]

55. Christensen, P.; Klarbring, A. An Introduction to Structural Optimization; Springer: Berlin/Heidelberg, Germany, 2008; Volume 153.
[CrossRef]

56. Camp, C.; Farshchin, M. Design of space trusses using modified teaching–learning based optimization. Eng. Struct. 2014,
62–63, 87–97. [CrossRef]

57. Pelikan, M.; Hauschild, M.W.; Lobo, F.G. Estimation of Distribution Algorithms; Springer: Berlin/Heidelberg, Germany, 2015;
pp. 899–928. [CrossRef]

http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1007/978-3-662-05094-1
http://dx.doi.org/10.1162/evco.1995.3.3.311
http://dx.doi.org/10.1007/978-3-319-14400-9_3
http://dx.doi.org/10.1162/evco.2006.14.3.255
http://dx.doi.org/10.1007/s12065-010-0035-y
http://dx.doi.org/10.1016/j.cad.2013.07.007
http://dx.doi.org/10.13140/RG.2.1.1078.7608
http://dx.doi.org/10.1007/978-1-4020-8666-3
http://dx.doi.org/10.1016/j.engstruct.2014.01.020
http://dx.doi.org/10.1007/978-3-662-43505-2_45

	Introduction
	Review of PSO and Constraint Handling Approaches
	Enhanced PSO with a Multi-Strategy Implementation and Hybridisation with an ES-Based Operator
	Numerical Test and Comparisons
	Structural Optimization on Literature Benchmarks
	Ten-Bar Truss Design Optimization
	Twenty-Five-Bar Truss Design Optimization with Multi-Load Cases Conditions
	Seventy-Two-Bar Truss Design Optimization with Multi-Load Cases Conditions

	Discussion
	Conclusions
	Appendix A. Test Functions Constrained Problems
	References

