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FireNN: Neural Networks Reliability 
Evaluation on Hybrid Platforms 

C. De Sio, Student Member, IEEE, S. Azimi, Member, IEEE, L. Sterpone, Member, IEEE 

Abstract— Modern neural network complexity has grown dramatically in recent years, leading to the adoption of hardware-

accelerated solutions to cope with the computational power required by the new network architectures. The possibility to adapt 

the network size and performance to different platforms enhanced the interests of safety-critical applications such as automotive 

and avionic. Today, the reliability evaluation of neural networks is still premature and requires platforms to measure the safety 

standards required by mission-critical applications. For this reason, the interest in studying the reliability of neural networks is 

growing. In this work, we propose a new approach for evaluating the resiliency of neural networks by using programmable 

hardware of hybrid platforms. The approach relies on the reconfigurable hardware for emulating the target hardware platform and 

performing the fault injection process. The main advantage of the proposed approach is to involve the on-hardware execution of 

the neural network in the reliability analysis without modifying the hardware implementation of the network under analysis, and 

addressing specific fault models. The implementation of FireNN, the platform based on the proposed approach is detailly 

described in the paper. Experimental analyses are performed using fault injection on the AlexNet Convolutional Neural Network. 

The analyses are carried out by means of the FireNN platform and the obtained results are compared with the outcome of 

traditional software-level evaluations. Results are commented taking into account the insight into the hardware level achieved by 

using the FireNN platform. 

Index Terms— Deep Neural Network, Fault injection, FPGA, Hardware Emulation, Reliability 

——————————   ◆   —————————— 

1 INTRODUCTION

EURAL networks have dramatically risen in im-
portance during recent years. Their outstanding per-

formance in solving complex prediction and classification 
problems made them a ubiquitous technology, adopted in 
many fields, such as healthcare, automotive, speech recog-
nition, natural language processing, aerospace, and many 
others [1]–[4]. The diffusion of this technology in such a 
wide range of applications led to the steady growth of re-
search interest around neural networks.  The excitement on 
this technology both on the research and industry sides is 
resulting in a succession of new architectures and solutions 
aiming to fulfill different requirements. In particular, the 
improvement of neural network accuracy and perfor-
mance has been the main topic on which the researchers 
focused. Convolutional Neural Networks (CNNs) have 
proven to be one of the most promising families of neural 
networks for visual tasks, with astonishing results in terms 
of accuracy and performance [5]. However, new challenges 
have come along with the progress introduced by CNNs. 
The huge amount of computational power and memory 
demanded by modern neural network architectures made 
the use of traditional platforms, as CPUs, used for the 
training and inferring phases unfeasible. Consequently, 
the use of hardware accelerators able to provide a huge 
computational power, in particular exploiting the parallel-
ism of a large number of computational logic units, has be-
come the conventional solution. The set of hardware used 
as neural network accelerators is composed of different 

solutions as well. Graphics Processing Units (GPUs), Field-
Programmable Gate Arrays (FPGAs), and Application-
Specific Integrated Circuits (ASICs) are widely used as 
hardware-accelerated platforms for running neural net-
works [6], [7]. The impressive results in terms of perfor-
mance showed by hardware-accelerated neural networks 
are very appealing for mission-critical applications too [8]–
[10]. In particular, the capabilities of decision making, in-
telligent control, and visual processing are of invaluable 
value for autonomous driving systems in the automotive 
and avionic sectors, as well as deep space exploration. Due 
to the criticality intrinsic to mission-critical applications, 
where a failure can jeopardize human lives or huge invest-
ments, the reliability of these systems is rising in im-
portance as a metric in their design. Even if the improve-
ment of performance is the leading path in neural network 
research, the new safety standards requirements, such as 
ISO-26262 and DO-254, are pushing efforts towards the 
study on the resilience of these systems [11], [12]. Moreo-
ver, the continuous evolution of state-of-the-art neural net-
work topologies and hardware platforms, along with the 
rising complexity of modern neural network architectures, 
makes the evaluation and analysis of the reliability and re-
silience of these systems against faults problematic.  

Neural network architecture and the hardware plat-
forms supporting their executions are heterogeneous. 
Therefore, to address the reliability evaluation of neural 
networks, it is necessary to adopt a flexible platform capa-
ble to address different types of fault models while evalu-
ating the overall network behavior during the inference ex-
ecution. In detail, the hardware is subjected to an ample set 
of phenomena, accentuated by the increase in the size 
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downscaling, that can produce faults that propagate to the 
application level, provoking errors, or failures in the whole 
system. The source of these faults comes both from the de-
vice itself, such as faults deriving from aging or manufac-
turing process variations, and external factors, such as 
transient and permanent errors generated by ionizing ra-
diation. Moreover, neural network reliability and resili-
ence are strongly influenced by the fault location, the de-
sign choices, such as data precisions, activation functions, 
and algorithms. Hence, they depend on network architec-
ture and topology but the implementation of the network 
on the specific hardware accelerator and the hardware it-
self also play central roles [13], [14]. With so many varia-
bles to consider, different methodologies for evaluating the 
resilience of neural network systems emerged from the re-
search community. A radiation test is a method that most 
closely resembles reality. However, these experiments re-
quire highly specialized beam radiation equipment that 
makes them particularly demanding in terms of money 
and availability. Due to these limitations, software-based 
fault injection approaches have been consolidated along-
side radiation testing as complementary methods to assess 
the reliability of neural network systems. These methods 
are based on the emulation of specific fault models in the 
application-level model of the network. The fault injection 
approach enables fully controlled experiment campaigns 
but abstracts from the actual hardware, which may lead to 
incorrect evaluations. The simulation-based approaches 
require high and often unaffordable costs in terms of exe-
cution time and computational power when dealing with 
modern and complex architectures. Moreover, they cannot 
always rely on the actual low-level description of the hard-
ware. Therefore, they are constrained to a higher level of 
abstraction, such as RTL.  

1.1 Main Contributions  

The main contribution of this work is to propose a meth-
odology for evaluating the resilience of neural network 
systems. The method is based on hybrid System-on-Chip 
(SoC) i.e., platforms combining processor systems and pro-
grammable hardware on the same chip. The proposed ap-
proach exploits the hybrid platform for emulating the tar-
get hardware accelerator and injecting faults in its micro-
architectural hardware elements. The reconfigurability 
feature offered by the platform is used for injecting faults 
in the hardware configured on the programmable logic by 
manipulation of the configuration memory data. Hence, 
the proposed approach involves hardware in the reliability 
analysis without the demands of a radiation-based ap-
proach but working at a lower level of abstraction than tra-
ditional software-based approaches. Moreover, it allows to 
fully control the models and locations of the faults injected 
in the hardware components, enabling comprehensive and 
controlled analysis.  

The second contribution of this work is the platform for 
performing the reliability analysis based on this approach. 
The proposed platform, named FireNN, is detailly pre-
sented. One of the key features of the platform is to provide 
the technique and the know-how for modifying the netlist 
implemented on the programmable hardware through an 

aware bitstream manipulation, enabling the injection of 
specific fault models. 

Lastly, a reliability analysis of a layer of the AlexNet 
neural network is performed by using the proposed plat-
form and approach. The results obtained by the fault injec-
tion analysis are compared with the results obtained from 
a software-based fault injection campaign performed at the 
application level. The application-level fault injection cam-
paign is performed by the software fault injection module 
embedded in FireNN itself, which is independent of the 
programmable-hardware-based approach. 

The proposed approach is presented as a new method-
ology for reliability analysis to be added to the existing 
ones. The proposed methodology has advantages and 
characteristics that differentiate it from the state of the art. 
The involvement of a hardware platform in the reliability 
enables the study of the microarchitectural faults, not 
achievable using software-level simulation approaches 
that are totally unaware of the underlying hardware. Com-
pared to software simulation of the hardware-level of the 
hardware platform, this solution offers significant im-
provement in terms of time analysis, thanks to the use of 
an actual hardware platform instead of a simulation envi-
ronment. With respect to radiation tests, the approach pro-
vides a means for performing microarchitectural analysis 
when radiation test is not feasible or as a preliminary anal-
ysis in advance of a future radiation test. 

This work is organized as follows. Section 2 describes 
the relevant background for this work on neural networks, 
programmable hardware, reliability of these technologies, 
and testing methodologies. Section 3 provides an overview 
of the related works in the field of neural network reliabil-
ity, including results, methods, and testing platforms. The 
proposed approach and the developed platform are pre-
sented in sections 4 and 5, respectively. Section 6 is dedi-
cated to the experimental analysis and results. Finally, con-
clusions are drawn in Section 7. 

2 BACKGROUND 

2.1 Neural Networks 

Modern neural networks are computing systems made of 
various cascaded computational layers.  Neurons are com-
putational elements typically characterized by weights,  an 
activation function, and a bias. In Fig.1, conceptual sche-
mas of a three-layered neural network (a) and a neuron are 
illustrated.  However, Deep Neural Networks (i.e. net-
works composed of many layers), and particularly Convo-
lutional Neural Networks (CNNs), have proven to out-
stand in performance simplest neural networks in applica-
tions such as classification, prediction, and object detec-
tion. With the increasing of hidden layers (i.e., layers be-
tween the input and output layers), the numbers of 
weights, as well as the required memory and computa-
tional power, escalated quickly. The convolutional layers 
are the most important and computationally intensive 
among them. Pooling and ReLu are very common opera-
tions performed after convolution for downsampling con-
volution results and introducing non-linearity in the net-
work, respectively.  
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Modern neural network architectures have hundreds of 
layers and tens of millions of parameters. The training 
phase is a complex mathematical process based on algo-
rithms that modify the value of the parameters (e.g., 
weights and bias) to maximize the accuracy of the network. 
The huge memory and computational power required by 
modern architectures made hardware-acceleration essen-
tials during both neural networks training and inference 
phases. 

The choice of the neural network architecture to adopt 
for performing a specific task is a complex topic. State-of-
the-art neural network architectures change quickly, and 
the adopted design choices can strongly affect the perfor-
mance and accuracy of the adopted architecture. The high 
diffusion of neural networks made the born of frameworks 
necessary in order to easily allow the development and 
evaluation of neural network architectures, also for a de-
veloper with basic or no knowledge of machine learning 
[15].  

2.2 Approaches for Reliability Analyses of NNs 

The reliability analyses of neural networks focus primarily 
on the failures affecting the system during the inference 
phase since the training phase is performed only once and 
can be assumed to occur in a controlled environment. 
Faults can occur in hardware components due to several 
reasons, such as physical manufacturing defects or radia-
tion effects. When this happens, they can be masked by 
other components and operations or propagate to the sys-
tem's outputs, causing errors and eventual failure of the 
whole system. The state-of-the-art approaches for studying 
the reliability of neural networks are based on different 
levels of abstraction from the hardware.  

Radiation testing is the method closer to resembling the 
real case scenario. The actual hardware is exposed to a flux 
of particles for imitating harsh environments or long peri-
ods of execution. Hence, radiation testing requires highly 
specialized equipment and presents some limit of visibility 
and control (i.e., more components are usually irradiated 
during a single radiation test) that restrict its use, 

especially in the early development phase of a project, 
when the actual hardware architecture is not finalized yet. 
When radiation testing is not affordable, different method-
ologies are used for emulating the system and the faults in 
order to perform reliability analysis.  

Software-level simulation is the method having the 
highest level of abstraction from the hardware. It relies on 
an application-level analysis, unaware of the underlying 
hardware actually implementing the neural network, 
where faults are emulated in the software model or algo-
rithms of the network. This approach has huge benefits 
such as high controllability and inherent simplicity and 
flexibility due to the software level on which it operates. 
However, the complete abstraction from the actual hard-
ware is partially a limitation. Some faults, such as bit flips 
in memory cells, are easy to emulate in the software-level 
model. Differently, errors in hardware microarchitectural 
components (e.g. impacting the communication interfaces, 
interconnection lines, timing, specific computational units, 
and many other elements strictly related to the accelerator 
hardware architecture), are much more difficult to emu-
late. 

When a more accurate analysis is required, a hardware-
level simulation relying on a model of the hardware plat-
form must be performed. Faults are injected in the simu-
lated hardware architecture, usually RT- or Gate- level. 
The low-level simulation allows representing the behavior 
of the involved hardware providing a more representative 
analysis. The main disadvantage of this approach is the 
huge amount of time required for carrying out hardware 
simulations of complex systems, such as hardware acceler-
ators or microprocessors. 

2.3 Programmable Hardware  

Modern programmable hardware devices, such as hybrid 
systems (e.g., All Programmable SoC or AP-SoC) and Field 
Programmable Gate Arrays (FPGAs), are integrated cir-
cuits consisting of a large number of programmable logic 
blocks and configurable interconnections. FPGAs have 
been consolidated as hardware accelerators for neural net-
works thanks to the high performance and flexibility of 
these devices. AP-SoC extends the traditional FPGAs par-
adigm integrating one or more processor systems in the 
same chip. Due to the flexibility offered by the software, 
AP-SoCs have proven to be extremely suitable for imple-
menting complex applications, including neural networks. 
Two of the characteristics that have contributed to the suc-
cess of these technologies are hardware programmability 
and reconfigurability. The application layer of hardware-
programmable devices consists of various types of config-
urable elements, such as LUTs, DSPs, BRAMs, Flip-Flops, 
interconnections, and others. The content of the configura-
tion memory, which is the main part of the configuration 
layer of the device, defines the working functionality of the 
configurable resources and how they interconnect. For in-
stance, the configuration memory defines the truth table 
used by the LUTs, the way they are connected to build 
complex combinational netlists, the configuration of the 
BRAMs, the operation mode of DSPs, and so on. In partic-
ular, the interconnections among blocks are managed 

 

Fig. 1.  Conceptual schemas of a three-layer perceptron (a) and a 
neuron (b). 

(b)

(a)
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through interconnection matrices. Interconnection matri-
ces consist of Programmable Interconnection Points (PIPs). 
These interconnections, usually implemented by pass-
transistors, are enabled by the configuration data to con-
nect the resources of the application layer for implement-
ing the circuit on the programmable hardware. The config-
uration memory is written using the configuration data, 
usually referred to it as the bitstream. The configuration 
bitstream is generated using vendor tools for a specific de-
vice. Reconfigurable hardware can be reconfigured by 
writing new content in the configuration memory that 
modifies the implemented netlist.  

One of the main limitations of programmable devices is 
the high hardware expertise required to develop a highly 
optimized design for this technology. However, modern 
High-Level Synthesis (HLS) tools are rapidly easing the de-
velopment for programmable logic, improving obtained 
performance, and time-to-design. Additionally, new AP-
SoC platforms are easing and increasing the use of pro-
grammable hardware in hardware-accelerated systems for 
neural networks.  In hybrid platforms (e.g., Zynq AP-SoC), 
the programmable logic integrated with a processor sys-
tem on the same chip allows limiting the use of the hard-
ware to the computationally demanding operations, leav-
ing more complex tasks to the processors, combining soft-
ware flexibility and hardware performance.  

3 RELATED WORKS 

The growing demand for highly reliable neural networks 
for mission-critical applications and the success of complex 
neural networks architectures, together with the shrinking 
of the device technology that makes their hardware-accel-
erators more brittle, have encouraged research works on 
reliability evaluation of neural network systems and con-
sequently, methodologies, approaches, and platform for 
reliability analysis.  

In [16], the authors propose a quantitative reliability 
analysis of three neural network architectures, such as 
fully connected, CNNs, and Gated Recurrent Units 
(GRUs). The paper introduces Ares, a lightweight frame-
work for empirical analysis based on a software-based ap-
proach working at the algorithmic level. The framework 
allows performing preliminary analyses to obtain insight 
into where to conduct more detailed fault analysis at the 
microarchitectural level. The available fault locations are 
limited to the memory domain and include weights, activ-
ities, and hidden states, while data paths are not supported 
yet. It can inject both static and transient faults. In [17], the 
authors perform a software-level fault injection, abstract-
ing by the actual hardware, using a fault injection environ-
ment based on the darknet framework. However, in [18], 
the authors report the limitations of a hardware-unaware 
approach compared to a comprehensive analysis involving 
the hardware level. In order to carry out fault injections 
taking into account the hardware platform, they proposed 
an environment to speed up RTL simulations of DNNs in-
ferences through a multilevel approach based on the pipe-
line paradigm. Another approach is presented in [19], 
where an application-level fault injection environment is 

built on the Tiny-CNN framework for evaluating hard-
ware-accelerated systems. The approach is able to inject in 
the data path and buffer without considering combina-
tional logic and control logic units. Since the unavailability 
of RTL implementation of the accelerators, the authors 
mapped each line of code in the software simulator to the 
respective hardware element to assess the contribution of 
each fault injection location in terms of hardware microar-
chitecture. Also in [20] and [21], the fault injectors rely on 
the application level but are built on top of a torch-based 
framework. Most of the works which are not based on ap-
plication-level rely on radiation testing. In particular, [22] 
analyzes the reliability of Kepler, Maxwell, and Pascal 
GPU architectures by NVIDIA. The analysis involves 
YOLO, Faster R-CNN, and ResNet and it is carried out 
both through architecture-level fault injection, using 
NVIDIA SASSIFI fault injector, and radiation testing.  

Several works are dedicated to the evaluation of the re-
liability of circuits implemented on programmable hard-
ware. Since the flexibility offered by programmable hard-
ware, different hardware applications, and cores have been 
evaluated such as soft processors [23], AXI modules [24], 
and communication modules [25]. Focusing on the neural 
network topic, many works are dedicated to the reliability 
evaluation of neural network applications implemented 
using a programmable-hardware-based accelerator. In 
[26], the authors provide a detailed reliability analysis of a 
neural network accelerator implemented on FPGA. The 
fault emulation is based on a fault injector module imple-
mented along with the same FPGA with the design under 
test. Hence, the approach required some minor hardware 
modifications in order to integrate the fault injection mech-
anism in the neural network circuit. In [28], the reliability 
of an AP-SoC platform running a CNN for traffic sign 
recognition has been tested both through radiation testing 
and emulating SEUs in the configuration memory of the 
programmable logic. In [24], a reliability analysis of an 
FPGA device implementing a CNN is executed. The injec-
tion methodology consists of flipping bits in the configura-
tion memory of the device. The work highlights how the 
network under the test is reliable against SEUs affecting 
storage bits while SEU affecting bits related to other re-
sources such as DSPs, LUTs, or interconnections are lead-
ing to wrong object classifications.  

Most of the listed works rely on application-level soft-
ware-based fault injection approaches, unaware of the un-
derlying hardware platform. Some of the works perform-
ing on-hardware evaluation rely on irradiation as a testing 
methodology. Programmable hardware is used only as the 
hardware accelerator to be tested, both through irradiation 
and fault injection. However, in these works, configuration 
memory manipulation is performed unaware of the re-
sources it will corrupt and the effects on the implemented 
netlist. In particular, there is no reference either to the pos-
sibility to exploit programmable hardware to perform de-
tailed analysis at the microarchitectural level, detect the ef-
fects caused by injecting specific fault models and identify 
the more critical elements of the hardware architecture, 
which is instead achievable using the methodology we 
propose. 
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4 A HYBRID APPROACH TO RELIABILITY ANALYSIS 

The proposed method is a general-purpose approach for 
the reliability evaluation of any kind of neural network 
system implemented on hardware devices. 

The core of the approach is the use of the all-program-
mable hybrid devices (i.e. system-on-chips combining soft-
ware and hardware programmability) to enable analysis 
involving the hardware level. The hardware programma-
bility of the hybrid platforms fulfills two roles: the first, it 
emulates the hardware architecture of the hardware accel-
erator running the neural network; the latter, it offers the 
mechanism for the injection of hardware faults exploiting 
the reconfigurability feature of the device.  

On one hand, the fault injection process is performed 
through configuration memory manipulation injecting 
faults directly at the hardware level. On the other hand, the 
software programmability is managing the fault injection 
process by applying the test set, performing the evaluation, 
and the analysis of the fault injection results.  

The flow of the approach is illustrated in Fig. 2. The de-
velopment of the design emulating the target hardware ac-
celerator is performed by using the traditional design flow 
for programmable hardware. In particular, both HDL and 
HLS descriptions can be used as a starting point. As an al-
ternative, also third parties developed IPs can be used. The 
experiment manager module is instrumented with the 
neural network architecture to be analyzed and data about 
the experimental analysis to be performed. Hence, the 
manager handles the integration of the emulated accelera-
tors in the network model and controls the fault injector for 
performing the experiments and the collection of the re-
sults.  

The use of the programmable logic of the hybrid devices 
allows evaluating the effects of faults directly on the hard-
ware. Moreover, it offers a high level of control and visibil-
ity due to the possibility to inject faults in specific 

hardware components and resources. An additional char-
acteristic is the possibility to perform emulation-based 
analysis of hardware not yet produced, providing im-
portant resiliency information even during the design pro-
cess of neural network architecture and hardware acceler-
ators (ASICs and FPGA mainly). In particular, when the 
selected solution for hardware acceleration is programma-
ble logic itself, the actual hardware accelerator is imple-
mented on the programmable hardware without the need 
to emulate the target accelerator.  

Furthermore, the developed platform allows manipu-
lating the configuration data of the programmable hard-
ware for forcing fault models in the resources and inter-
connections. Even if the tools provided by the vendors pre-
vent the generation of faulty configurations (e.g., open or 
conflicting nets), it is possible, by bitstream manipulation, 
to produce these effects in the netlist implemented on the 
hardware for emulating fault models such as stuck-ats, 
conflicts, couplings, and others. This concept is illustrated 
in Fig. 3. The injection of each specific fault model is per-
formed through the modification of particular bits pro-
gramming a resource. However, the particular role of each 
specific bit of the bitstream (i.e., which resource they pro-
gram and how) is not provided by the vendors. Therefore, 
several projects and research works proved to be able to 
manipulate the bitstream to modify the implemented 
netlist without recurring to the vendor tools [30]–[34]. 

The usability of this approach is highly dependent on 
the ease of customizing the neural network architecture as 
well as on the ease of emulating faults that usually require 
a high level of expertise and knowledge about the manip-
ulation of the configuration memory and architecture of 
programmable hardware.  

5 THE FIRENN PLATFORM  

FireNN is the first platform for enabling resiliency analysis 
of neural networks both at the application level and at the 
hardware level via emulation. We selected the Zynq family 
as the target hybrid platform. In particular, we chose the 
Zynq-7020 SoC but the implementation is easily extenda-
ble to other products of the same family. This AP-SoC is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.  The implemented netlist without faults (a) can be modified 
by manipulating the configuration memory to emulate fault models 
such as open (b) or conflicting (c) interconnections. 

 

Fig. 2.  The conceptual schema of the elements and processes con-
stituting the proposed approach. 



6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING,  MANUSCRIPT ID 

 

equipped with two ARM dual-core Cortex-A9 processors 
and a programmable logic implemented with a 28 nm 
manufacturing process [29]. The characteristics of the pro-
grammable hardware are summarized in Table I. 

The platform is based on a two-environment architec-
ture and supports analyses at layer granularity. The sup-
port to bottom-end hardware enables to perform parallel 
analysis exploiting a cluster of testing platforms for reduc-
ing the evaluation time with affordable cost and increasing 
dissemination of the proposed approach. Please note that 
the first version of FireNN has been presented in [30]. A 
detailed description of the extended version of FireNN, im-
plementing more features as well as a rearranged structure 
is presented in this section.  

5.1 FireNN Architecture Overview 

The FireNN platform consists of two environments: the 
FireNN Machine and the FireNN Engine. Fig. 4 shows a con-
ceptual view of the modules and frameworks involved in 
the FireNN platform. The Machine provides the means for 
defining and modifying the neural network model by ex-
tending the PyTorch framework [34]. It runs on the host 
computer and is the controller of the experimental flow. 
The Machine can communicate with the FireNN Engine run-
ning on the Zynq platform for triggering the deployment 
of the emulated accelerator, as well as the fault injection 
process.  

The main purpose of running the Machine on the host 
computer is to offload the computations demand of the 
whole network from the Zynq in favor of a higher-perfor-
mance system. Nevertheless, the Machine and the Engine 
can also run as two processes on the same hybrid device if 
its performance is high enough. The FireNN Machine pro-
vides the APIs for moving the computation performed by 
a PyTorch module (i.e., one or more software layers) to the 
programmable logic. The relocation APIs offered by the 
Machine mimics the interface offered by PyTorch to move 
the computation from the CPU to the GPUs. Practically, 
this is achieved by instantiating an appropriate hardware-
implemented layer on the programmable logic for per-
forming the same mathematical operation that should be 
performed by the software layer. The hardware layer em-
ulates or implements the target hardware to evaluate. The 
flow for developing the layer is the same as for traditional 
hardware accelerators implementable on programmable 
hardware. This allows using also HDL descriptions for 
ASICs as a starting point, as well as modern HLS ap-
proaches. In particular, when the target is an FPGA-based 
hardware accelerator, the emulating layer can match al-
most completely (depending on the specific devices 

involved) to the target implementation. The Engine runs on 
the processor system of the Zynq and manages all the op-
erations involving the programmable hardware relying on 
the Pynq open-source project for managing the program-
mable hardware from the processor system [35].  The com-
plex process of modifying the configuration memory for 
inducing specific fault models targeting precise resources 
is managed by the Engine and implemented relying on the 
PyXEL framework [31].  

5.2 Communication Mechanism 

The communication between Machine and Engine is man-
aged by the FireNN Comm module. The module enables in-
ter-process communication across the network between 
the Machine and the Engines exploiting the python TCP 
sockets mechanism. Communication is based on messages. 
The message structure is shown in Fig. 5. In detail, the mes-
sages consist of three fields, a header, a JSON header, and 
a payload. The two headers are mandatory, while the pay-
load is optional. The header is the only field with a fixed 
length (4 bytes). The JSON header field has a variable 
length defined in the 4-bytes header. It consists of a serial-
ized JSON dictionary with three mandatory entries. The 
first entry provides information on the type of message. 
The second entry is a dictionary with the options and prop-
erties related to the specific message type. The third entry 
contains a second dictionary providing additional infor-
mation and property for the message processing task of the 
Engine. If the defined protocol allows it for the specific 
message type, a fourth entry is present to report the pres-
ence of the optional payload and its length. This payload is 
used for transferring weights during the instantiation of 
the emulated accelerator, as well as input and output data. 
The communication mechanism has been developed to be 

 

Fig. 4.  An architectural view of the FireNN platform.  

 

Fig. 5.  Structure of the messages used by the communication 
mechanism.  
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TABLE I 

CHARACTERISTICS OF ZYNQ 7020 PROGRAMMABLE LOGIC 
 

Resources Quantity 

Look-Up Tables (LUTs) 53,200 

Flip-Flops 106,400  

Block RAM 4.9 Mb (140 Blocks) 

DSP Slices 220 

Configuration Memory 10,008 frames of 3232 bits 
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as transparent as possible to the user. In this way, it is not 
required for the user to be concerned about the communi-
cation protocol between the Machine and the Engine mod-
ules.  

5.3 The FireNN Machine and Shells 

The FireNN Machine manages the neural network architec-
ture and experimental execution. For the description and 
implementation of the neural network models, the Machine 
relies on the PyTorch framework [34]. The Machine extends 
the PyTorch model of the network providing the mecha-
nism for replacing a PyTorch module with an analogous 
hardware module running on the programmable hard-
ware.  

The instantiation and the management of a specific 
hardware module on the programmable hardware side are 
managed by the Engine. On the Machine side, the relocation 
is achieved through the encapsulation of one or more neu-
ral network layers in a container, named Shell, deriving 
from the module class of PyTorch. A conceptual schema 
showing how the Shell is integrated into the neural net-
work model is illustrated in Fig.6. The relocation API scans 
the structure of the neural network model and inserts the 
Shell in the place of the original module directly in the to-
pology of the neural network software model. The Shell en-
capsulates the original layer and implements the mecha-
nism for switching the execution from the original module 
to the hardware module and back. Hence, the Shell can in-
teract with the Engine to request the computation to be ex-
ecuted by the hardware module. When a Shell is instanti-
ated on the Machine side, an associated object is instanti-
ated by the Engine in its domain. This object is referred to 
as a Gear. The Gear is a hardware implementable module 
emulating the hardware accelerator to analyze. Gears and 
their characteristics are addressed in the next subsection, 
dedicated to the Engine and Gears.  

The Shell is equipped with a routine for automatically 
inferring the dimensions of input and output data. Indeed, 
some PyTorch modules are agnostic of I/O data dimen-
sions (i.e, they can receive tensor of any size as input) but 
their I/O data dimensions are defined univocally by the 

architecture of the network (e.g., by modules working on 
fixed tensor sizes such as fully-connected). Hence, the in-
formation on input and output dimensionality is needed 
for the creation of the analogous hardware module.  

The Shell has methods to easily switch between the orig-
inal data path using the PyTorch original layer and the new 
data path using the hardware module implemented on the 
Zynq. This feature allows the execution of the inference us-
ing the original network or the relocated version, i.e. with 
a part implemented hardware.  

The deployment and execution of an emulated hard-
ware accelerator on the programmable hardware, as well 
as the emulation of the faults, are all performed on the En-
gine side. However, they are triggered by the Machine 
through the Shell since the Gear is not directly accessible by 
the user. Differently, the Machine locally implements the 
methods for executing the injection of different kinds of 
fault models at the software level since that is performed 
without involving the hardware emulation.  

The Shell is also equipped with a tracking mechanism 
capable of storing input and output data of the Shell itself 
to enable post hoc analysis.  

5.4 The FireNN Engine and Gears 

The Engine runs on the processor system of the Zynq and 
manages the programmable hardware and the fault injec-
tion process. For controlling the programmable hardware, 
the Engine relies on the PYNQ project for Zynq. PYNQ is 
an open-source project, supported by Xilinx to ease the ex-
ploit of the programmable hardware through a python 
framework [35]. It provides the APIs for configuring the 
programmable hardware of the Zynq, as well as the APIs 
for managing I/O and communication between the pro-
grammable hardware and processor system. The Engine's 
main tasks are the deployment, execution, and fault injec-
tion of the Gears. When a Shell is instantiated on the Ma-
chine side, an associated Gear is instantiated by the Engine.  

A Gear represents a computational module that can be 
implemented on the programmable hardware. It emulates 
a target hardware accelerator. A Gear consists of three ele-
ments: an interface, a driver, and an implementation file 
(i.e., a bitstream). A conceptual schema summarizing the 
element composing the Gears is reported in Fig.7. The in-
terface is common to all the Gear. It allows the Engine to 
manage the Gear independently of their particular hard-
ware implementation. The driver provides the APIs for us-
ing the specific hardware module through the interface. 
The implementation file is the bitstream containing the 
configuration data for programming the programmable 
hardware with the hardware module. If necessary, when a 
Gear object is created, the characterizing parameters of the 
original neural network layer it is replacing (e.g. weights, 
bias, etc.) need to be transmitted by the Shell during the re-
location process.  

 

Fig. 6.  Conceptual Schema of the integration of the Shell in the orig-
inal model of the network. 
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When on the Machine side a Shell requires the execution 
of a computation on a specific Gear, the Engine configures 
the programmable hardware with the specific Gear imple-
mentation, receives the input data, triggers the computa-
tion on the hardware, and transmits back the results. 
Hence, each Gear is associated with a specific computa-
tional layer on the software model of the network and em-
ulates a particular hardware accelerator. The development 
of a Gear is performed using the traditional development 
flow for programmable hardware (e.g., starting by HDL or 
HLS description), or it can be based on IPs by third parties. 

The fault injection is a complex process performed by 
the Engine relying on the PyXEL framework for perform-
ing the bitstream manipulation [31]. It can modify the bits 
of the configuration bitstream for changing the configura-
tion of specific resources of the programmable hardware. 
In particular, PyXEL makes it possible to manipulate those 
bits for injecting a specific fault model, such as soft error 
affecting the truth table of a LUT, or the open-interconnec-
tion fault model (by disabling a programmable intercon-
nection as already shown in Fig. 3). The Gear common in-
terface is provided with a tunable timeout mechanism to 
avoid endless waits as a result of faults injected during the 
injection operation. When the injection of a specific fault 
model is requested by the Shell a faulty version of the Gear 
is created and used for the computation. The Engine can be 
instructed to inject faults in a specific entity (e.g., the AXI 
Interface), in specific resources (e.g., BRAMs interconnec-
tions, LUTs truth tables), or induce specific faults (e.g., 
open interconnections).  

6 EXPERIMENTAL SETUP, ANALYSIS, AND RESULTS  

The experimental evaluation of the FireNN platform has 
been applied to the reliability analysis of the AlexNet neu-
ral network. AlexNet has been implemented considering 
the PyTorch model provided by torchvision [36]. The 2D-
convolution computation within the fifth convolutional 
layer of AlexNet has been implemented as a hardware ac-
celerator using Vivado HLS [37]. We performed different 
fault injection campaigns on the specific convolutional 
layer of the same neural network model. Performed anal-
yses include both traditional software-level analysis and 
analyses based on the proposed approach relying on the 
emulation of accelerators and fault models using hybrid 

devices. FireNN allows to measure several parameters in-
cluding error rates, failure rates, ratios between failures 
and errors, timeout events, and distribution of degrada-
tions and misclassifications for the evaluation set. 

6.1 Neural Network Model  

The architecture of the network used in the experimental 
analysis is presented in Fig. 8. The network model is the 
version of the AlexNet network provided by torchvision. 
AlexNet is a CNN for object classification [38]. The model 
is provided trained using the ImageNet dataset as the 
training set [39]. The trained model of the network is able 
to classify 1,000 different classes. The architecture of 
AlexNet consists of several layers implementing convolu-
tion, pooling, and ReLu operations.  

The input is a tensor of dimensions 3×224×224 repre-
senting an RGB picture. When a specific implementation 
for the hardware-accelerated version of a layer is provided, 
the platform can carry out reliability analysis of a neural 
network model with a layer granularity. The layer selected 
for the reliability analysis is the last convolutional layer of 
the network since in [19] it has been identified as the most 
sensitive one of the convolutional layers. The layer is char-
acterized by 590,080 parameters (also referred to as 
weights) consisting of 256 bias and 256 kernels, each one 
has dimensions of 256×3×3. 

The output of the last fully connected layer of the neural 
network is an array of values, each one associated with a 
class. This value assesses the probability of the input be-
longing to the specific class. Using a normalized exponen-
tial function (usually referred to as softmax), these values 
are normalized and reduced to a probabilistic distribution 
over all the labels. Hence, the final output of the neural net-
work is a rank of labels with an associated percentage of 
confidence to each item. The item with the higher confi-
dence represents the classification output. 

6.2 Evaluation Set and Error Classification 

The inputs of the neural network are images representing 
objects belonging to the set of the 1,000 labels used in the 
training phase. The images need to be preprocessed (e.g., 
cropped and normalized) in order to be suitable as inputs 

 

Fig. 7.  Architectural Schema of the elements composing a Gear. 

 

Fig. 8. Schema of the AlexNet model used in the experiments. 
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of the network. Since our goal is to assess the reliability in-
stead of the accuracy of the network, we are interested in 
the deviation from the unfaulty behavior independently of 
the original accuracy of the network.  Therefore, since not 
strategic for our purpose, we picked 50 pictures from the 
ImageNet collection on fauna [39] as evluation set. The 
main objective of the reliability analysis is to identify if an 
injected fault will produce a modification in the confidence 
associated with each label, possibly causing a change with 
respect to the original classification. Hence, the original 
model is initially used for obtaining the results of an un-
faulty run. Then, the golden results are used for detecting 
errors through comparison with the output obtained by a 
fault-injected model of the network. The errors detected by 
this procedure are classified into three groups.  

1. Misclassification: the label with higher confidence 
has changed due to the injected fault. 

2. Degradation: the confidences of one or more labels 
have changed due to the injected fault. 

3. Timeout: the injected fault prevents the network 
from completing the classification. 

Since the misclassification is usually caused by a severe 
degradation of the confidence values and it totally changes 
the expected results, we considered it as a critical failure 
instead of an error only potentially affecting the classifica-
tion. The failure rate is computed as the number of injec-
tions that caused misclassification out of the total while the 
error rate is computed as the number of injections that 
caused at least one degradation (independently if they do 
or do not lead to misclassification) out of the total.  

Since the evaluation set is composed of different images 
with heterogeneous characteristics (e.g., producing classi-
fication with different confidence values), it could be pos-
sible to have a mixed outcome as a result of fault injection 
(i.e., a mix of misclassifications, errors, and correct results 
assigned to different inputs of the evaluation set). If at least 
one input has been misclassified the error is categorized as 
misclassification. Degradations follow the same rule. Ad-
ditionally, we considered a deviation minor than 1·10-4 in 
the confidence percentage as negligible since they can be 
caused by the use of the IEEE-754 standard for data repre-
sentation and computation. Hence, a deviation of less than 
1·10-4 percentage points is not classified as an error. 

6.3 Fault Models 

In the reliability analyses carried out in this section, we 
evaluated three different fault models. Single Event Upset 
is a well-known phenomenon caused by the interaction be-
tween the hardware and ionizing particles and affecting 
memory cells during the execution of the application. SEUs 
are very common in space but they can affect also systems 
working at sea level.  

Subsection 6.5 report a reliability evaluation against 
SEUs affecting the weights and the inputs (i.e., the memory 
cells storing the values) of the software-level simulation of 
the analyzed neural network. Errors are emulated directly 
modifying the value of the variables at the bit-level. Errors 
are injected in the value of weights and layer inputs during 
runtime.  

Even if caused by the same phenomenon, SEUs 

affecting the configuration memory of programmable 
hardware have to be considered differently. Due to the 
characteristics of programmable hardware, SEUs affecting 
the configuration memory will result in a permanent fault 
affecting the hardware architecture of the circuit imple-
mented on the programmable hardware (until the hard-
ware is not programmed with a new circuit). In subsection 
6.6, the reliability analysis of a circuit implementing a con-
volutional layer of the AlexNet network is performed. 
SEUs in configuration memory have been modeled as bit 
flips affecting the content of the memory. The fault has 
been emulated in the configuration memory of the pro-
grammable hardware programming the board with a 
faulty bitstream and the implemented circuit is used for 
executing the convolutional layer under test. These SEUs 
in configuration memory can cause various actual faults in 
the circuit implemented in the hardware according to 
which bit (randomly selected) has been corrupted. For ex-
ample, if a memory cell programming a LUT is affected, it 
may cause a logical fault while if the memory cell is related 
to a programmable interconnection it may cause an open 
fault or an antenna 

Finally, section 6.7 has been dedicated to evaluating the 
effects of open faults exclusively. Open faults can be 
caused by several causes, such as fabrication defects, aging 
effects. In programmable hardware, they can also derive 
by undesired modification of the configuration memory 
caused by SEUs. The open fault model has been emulated 
in the architecture of the hardware accelerator imple-
mented on the programmable hardware by an aware ma-
nipulation of the configuration memory bits programming 
the nets of the implemented circuit. The fault model has 
been emulated in the hardware programming the device 
with a faulty bitstream. 

6.4 Hardware Accelerator  

As a hardware accelerator, we developed a hardware mod-
ule implementing the fifth convolutional layer of the 
AlexNet network. The hardware accelerator has been de-
veloped using Vivado HLS. It computes 2-D multichannel 
convolution between inputs with dimension 13×13 and a 
3×3 kernel and it has 256 input channels and 256 output 
channels. Data are represented with a 32-bits floating-
point representation, accordingly with the data type used 
by the PyTorch model of the overall network. Data transfer 
between the processor system and programmable hard-
ware is performed by the FPGA direct memory access to 
transfer streams of data from the DDR memory to the pro-
grammable logic and vice versa. The IP Core is pipelined 
and performs convolution using an algorithm based on 

TABLE II 

RESOURCES UTILIZATION OF HARDWARE CONVOLUTIONAL IP 

Resources AXI Modules Core Total 

Slice LUTs 4,452 31,746 36,198 

Slice Registers 5,795 25,476 31,271 

Block RAMs 16 67 83 

DSP Slices 0 48 48 

Muxes 25 87 102 
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two buffers and a shifting window. The interface of the 
core is implemented with an AXI4-Lite control register in-
terface. The resources used by the convolutional core and 
the communication modules (i.e., AXI modules) are re-
ported in Table II.  

6.5 Software-based Reliability Analysis 

We used software-based fault injection campaigns to 
achieve two reliability analyses considering faults affecting 
weight and bias of the layer, and faults affecting input and 
output data of the layer. 

In the first fault injection campaign, we used a tradi-
tional approach based on software fault injection in order 
to perform further results comparison. We emulated SEUs 
(i.e., a single bit flip) in the 32-bits floating-point represen-
tations of the parameters (weights and bias) of the fifth 
convolutional layer of the AlexNet model. Therefore, each 
faulty network presents a single bit flip in its parameters 
with respect to the unfaulty version.  The fault injection 
campaigns have been executed using the software-level 
fault injector embedded in the FireNN platform. 

We performed 10,000 experiments and we run the clas-
sification task on the whole evaluation set under the same 
faulty bit in each experiment. The fault locations (i.e., pa-
rameter and bit to inject) have been randomly generated 
for each experiment. As a result, we obtained an error rate 
of 40.57% and a failure rate of 2.10%, while 5.18% of the 
detected degradations led to misclassification. We have not 
observed any timeout errors.  

As we explained in subsection 6.2, misclassification of a 
single input image of the evaluation set is enough to cate-
gorize a fault as causing misclassification. The impact of a 
fault considering the overall evaluation set can be different 
since a fault may affect from 1 to all the images of the eval-
uation set. Therefore, we analyzed the distribution of the 

faults leading to misclassification over the number of out-
puts for which the misclassification has been observed and 
we reported the data in Fig. 9.a. Fig. 9.b reports the data for 
degradations. This result suggests that it is common for 
faulty networks presenting misclassifications to have two 
possible behaviors. The first one is to have misclassifica-
tion on very few outputs. This could happen due to specific 
elements of the evaluation set being hard to classify. There-
fore, they are more sensitive than others to variations in-
duced by faults and they will cause a misclassification also 
with small deviations from the unfaulty behavior. The sec-
ond one is to affect a very high percentage of the evaluation 
set. This effect could be caused by the stimulation of highly 
critical bits of the parameters of the neural network layer.   

A second fault injection campaign has been performed 
using the same fault model but affecting the inputs or out-
puts of the module instead of the parameters. The fault is 
injected in the same location for all the inputs of the mod-
ule (i.e, on the same data of the input or output tensor and 
the same bit of the data) for each experiment.  

We performed 10,000 experiments and evaluated the ef-
fect of each single bit flip singularly on the whole evalua-
tion set consisting of 50 pictures. We obtained an error rate 
of 46.16% and a failure rate of 15.48% with a ratio of fail-
ures to errors of 33.53%. We have not observed any timeout 
errors. The distribution of the faults is illustrated in Figure 
10.a for the misclassification and Figure 10.b in the case of 
degradation. The result shows how the probability to de-
tect multiple errors and failures decreases both for misclas-
sifications and degradations with the increasing of multi-
plicity. This is a reasonable behavior if we consider that a 
specific feature extracted by the current and previous lay-
ers can play a critical role in the classification of a specific 
input or class but to be less important for others.    

 

Fig. 9. Distribution of the misclassification (a) and degradation (b) 
categories (resulting from fault injection in the parameters) over the 
number of outputs experiencing the effect.  

 

Fig. 10. Distribution of the misclassification (a) and degradation (b) 
categories (resulting from fault injection in the data) over the number 
of outputs experiencing the effect.  
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6.6 Hybrid-based Reliability Analysis against SEUs 

The hybrid fault injection campaign allows the analysis of 
the behavior of the platform and addresses the reliability 
of the hardware accelerator when it is physically imple-
mented on programmable hardware. In detail, we emulate 
SEUs in the configuration memory of a Zynq device in or-
der to mimic hardware faults affecting the structure of the 
neural network implemented on the programmable logic. 
In the considered case, the hardware design implemented 
on the programmable logic is the convolutional module al-
ready presented in subsection 6.4. The hardware core is 
used as the fifth convolutional layer of the AlexNet model 
(presented in subsection 6.1).  The current fault injection 
campaign targets a hardware-accelerated version of the 
software convolutional layer analyzed by the previous 
software-based reliability analysis.  

SEUs affecting configuration memory are a well-known 
source of errors for hardware accelerators implemented on 
SRAM-based programmable hardware.   

We would like to emphasize that the injection of faults 
in the configuration memory of the hardware-programma-
ble devices can cause undesired modification in the struc-
ture of the implemented circuit, affecting not only data but 
also data path, computational elements, interconnections, 
etc. Hence, due to the relation between configuration 
memory and circuit configuration, soft errors in the config-
uration memory produce a modification in the hardware 
of the circuit until the device will be reconfigured [40]–[42]. 

We injected 10,000 single bitflips in the configuration 
memory of the device implementing the hardware acceler-
ator. We run the classification of the whole evaluation set 
consisting of 50 pictures for each faulty configuration of 
the hardware-accelerated network. Please notice that, due 
to the intrinsic characteristics of programmable devices, 

not all the bitflips in configuration memory will generate 
faults in the implemented netlist. To elaborate more, since 
only a subset of resources is used by the implemented 
netlist, injections could target unused resources.  

As a result, we obtained an error rate of 11.05%, a failure 
rate of 5.12%, and a ratio between failures and errors of 
46.33%. Besides, we experienced a timeout in 0.40% of the 
injections. Fig. 11 reports the detailed distribution for mis-
classification and degradation as done in the previous fault 
injection analyses. 

We obtained insight into the location randomly selected 
for the injection and the error and failure rates regarding 
them applying the PyXEL framework embedded in 
FireNN. The achieved results are reported in Table III, 
where the column Hits reports how many injections hit one 
of the resources (used or unused) listed in the resource col-
umn, while the Hits (Used)  column reports the number of 
injections that hit a used resource. The third and fourth col-
umns list the error rate and the failure rate generated by 
injection of a used resource among the listed ones, respec-
tively. The row of the table referred to as empty collects the 
injections which targeted particular sections of the Zynq 
configuration memory not configuring any resource. 

The error and failure rate associated with a specific re-
source is valuable information provided by the use of 
FireNN, concerning the hardware domain. Therefore, it 
cannot be inferred using traditional software-based fault 
injection approaches. From the analysis, we have been able 
to identify that the routing interconnections are both the 
most used resource and the ones with the higher sensitiv-
ity to SEUs.  

6.7 Hybrid-based Reliability Analysis against 
Open-Routing Model 

In the current subsection, we present a resiliency analysis 
carried out using the FireNN platform. In the analysis, we 
emulate the open fault model in the interconnections of a 
design implemented on programmable hardware, also 
named the open-routing fault model. Open faults are the 
most frequent error event happening in programmable 
logic devices [43]. As a result of the reliability analysis re-
ported in subsection 6.6, we detected interconnections as a 
critical resource for the accelerator introduced in subsec-
tion 6.4. In order to investigate more in detail the issues re-
lated to interconnections faults, we randomly injected 
open-routing faults in the routing of the implemented 
hardware accelerator. In particular, the platform modified 
the bits related to a specific interconnection to create an 

 

Fig. 11. Distribution of the misclassification (a) and degradation (b) 
categories (resulting from SEU fault model injection) over the num-
ber of outputs experiencing the effect.  

TABLE III 

RESUME OF THE FAULT INJECTION CAMPAIGN OF SEUS IN CONF.MEMORY   

Resources 
Hits  

(Any) 

Hits 

(Used) 

Err. Rate 

(of Used) 

Fail. Rate 

(of Used) 

Routing 4,577 3,584 23.94% 11.43% 

LUTs 1,370 1,058 10.49% 3.11% 

Block RAMs 493 384 13.54% 7.55% 

DSP 431 324 14.81% 7.10% 

Flip-Flops 365 286 10.38% 4.89% 

Empty 2337 - - - 

Others 427 288 9.85% 9.09% 
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open fault in the netlist, similarly to the example reported 
in Fig. 3.b.  This specific analysis is a prove of how FireNN 
can be used for injecting various and specific fault models 
in the hardware structure of hardware accelerators either 
emulated or implemented on programmable hardware.  

The fault injection campaign consists of 10,000 injec-
tions. Interconnections, where to inject the open routing 
fault model, have been randomly selected among the pro-
grammable routing segments used by the design imple-
mented on the hybrid device. This means that, differently 
from the previous reliability analysis, we are not hitting 
unused resources. The analysis showed an error rate of 
59.62% and a failure rate of 40.07%. The ratio of failures to 
errors for the current fault injection campaign is  67.21%. 
2.78% of the fault injections led to timeout events. Fig.12 
shows in detail the distribution of detected events for mis-
classifications and degradations. From Fig.12.a, it results 
that errors induced by open-interconnection fault models 
are very likely to affect all the outputs of the evaluation set. 
Additionally, the ratio of failures and errors shows how a 
very high percentage of them led to misclassification. Sim-
ilarly, Fig. 12.b shows how a very large part of misclassifi-
cations induced by open-interconnection faults will affect 
a very large portion of the outputs. 

6.8 Results of the Reliability Analyses 

The performed reliability analyses have highlighted 
the variety of information that is possible to obtain using 
the proposed method and using the FireNN platform. In 
Table IV, the obtained measures are resumed. The hybrid-
based approach allowed us to obtain insight into the resil-
iency of the hardware implementation and its microarchi-
tectural elements that cannot be provided using a soft-
ware-based approach. For the analyzed hardware acceler-
ator, we found how the open-routing fault model led to a 

high degradation of confidence that often produces mis-
classification, especially compared to SEUs in weights and 
data or random SEUs in the configuration memory. These 
analyses have been enabled by the proposed platform, 
providing the mean for emulating the fault models and in-
tegrating the implementation of specific hardware acceler-
ators in the model describing the neural network architec-
ture. 

In order to provide additional analysis exploiting the 
proposed platform, we also evaluated a layer of the Res-
Net-18 neural network. The evaluation analyzed a hard-
ware implementation of the last convolutional layer of the 
network architecture. ResNet-18 contains many more lay-
ers with respect to the AlexNet network. However, using 
the hybrid platform the layers preceding the layer under 
test can be run in software, focusing the analysis on the 
layer of interest. Since the similarity of the convolutional 
layers used in the traditional convolutional networks, the 
convolutional core under analysis is similar to the one ex-
posed in detail for the AlexNet layer. The main difference 
is the use of 512 channels instead of 256. The results of the 
evaluations against SEUs in the configuration memory and 
the Open Routing fault model (analogous to the ones per-
formed in subsections 6.7 and 6.8) are resumed in Table V. 

6.9 Comparison with state-of-the-art Techniques 

The proposed methodology has shown to be a valid alter-
native to the traditional techniques typically adopted for 
analyzing the reliability of neural network systems. The 
methodology provides a solution for performing reliability 
analyses aware of the hardware architecture in a short time 
and without requiring highly specialized equipment.  

The software-level simulation analysis is still the fast-
est method for performing reliability analysis. For in-
stance, the campaigns injecting faults during software-
level simulation carried out in this section required less 
than 10 hours.  However,  the abstraction from the hard-
ware level prevents the analysis to be comprehensive. The 

 

Fig. 12. Distribution of the misclassification (a) and degradation (b) 
categories (resulting from open-interconnection fault model injec-
tion) over the number of outputs experiencing the effect.  

TABLE IV 
RESUME OF THE ALEXNET RELIABILITY ANALYSES   

Method 
Software Fault      

Injection 

Hybrid-based Fault  

Emulation (FireNN) 

Fault Model 
 SEU in  

Weights 

SEU in 

Data 

SEU in Conf. 

Memory 

 Open 

Routing 

Error Rate 40.57% 46.16% 11.05% 59.62% 

Failure Rate 2.10% 15.48% 5.12% 40.07% 

Fail./Err.  5.18% 33.53% 46.33% 67.21% 

Timeouts 0% 0% 0.40% 2.86% 

 

TABLE V 

RESUME OF THE  RESNET-18  RELIABILITY ANALYSES   

Method 
Hybrid-based Fault  

Emulation (FireNN) 

Fault Model 
SEU in Conf. 

Memory 

 Open 

Routing 

Error Rate 12.93% 60.38% 

Failure Rate 5.81% 42.17% 

Fail./Err.  44.93% 69.84% 

Timeouts 0.51% 2.86% 
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dependency of the application reliability on the specific 
hardware platform adopted is well known and the main 
reason why more demanding techniques, such as hard-
ware-level simulation and radiation testing, are needed 
[13][14][18][28]. This dissimilarity was also found in the 
comparison between software-level simulation and hard-
ware-based fault injection reported in the experimental 
analysis section.  

With respect to hardware-level simulations, the main 
advantage offered by the approach is the speedup of the 
time needed for the analyses. The hardware-based simula-
tion approach is known to be extremely demanding in 
terms of computational power and execution time. For in-
stance, the authors of [18] propose a method for speeding 
up hardware-based simulation. In the work, they report a 
time of 25 minutes for performing inference of a single in-
put image using a 7 layer CNN simulated at RTL-level us-
ing a server equipped with a dual Intel Xeon CPU E5-2680 
v3 and 256 GB. The FireNN platform runs on a Zynq-7020 
board and required an average time of 28 seconds for eval-
uating 50 input images, including the time for generating 
the fault and communicating with the host computer. For 
performing a campaign of 10,000 fault injections with an 
evaluation set of 50 images the average required time was 
about 80 hours. Compared with the about 208,333 hours 
taken by traditional RTL simulation, or with the about 
45,833 hours using the method proposed in [18], the use of 
hardware emulation can guarantee a significant speedup 
of several orders of magnitude.  

Additionally, when larger neural networks or hardware 
platforms need to be emulated the simulation complexity 
grows quickly along with execution time and computa-
tional demands. The hybrid methodology we are propos-
ing addresses the scalability issue in two different ways. 
Firstly, the possibility to evaluate on the hardware plat-
form only an architectural layer at once (as we showed in 
our experimental analysis) enables a layer-level study. 
Hence, the implementation of only a single or a subset of 
layers is present on the hardware while the rest of the net-
work can be simulated at the software level. This allows 
using also small devices for preliminary analysis on large 
neural networks on the condition that the chosen hardware 
platform can contain at least one of the layers of the chosen 
neural network architecture. Secondly, such an analysis 
scales along with the feasibility of the project. Similar to 
what happens in a radiation test, scalability is limited by 
the implementability of the design on the programmable 
hardware and by the number of faults to analyze. 

As already stated, radiation testing is still necessary 
when a deeply accurate analysis is required. However, the 
hybrid methodology provides a good tradeoff for perform-
ing preliminary microarchitectural analysis involving spe-
cific resources or fault models without the need and the 
costs for highly specialized equipment. This also makes it 
possible to use it in the early stages of the development 
process,  when the hardware platform has not been firmly 
chosen, allowing the eventual hardware platform to be 
modified according to the results obtained. 

7 CONCLUSIONS  

Hardware accelerators are crucial for neural network ap-
plications.  Hence, the resiliency of these applications is 
strictly dependent on the hardware architecture and neural 
network model. In this work, we proposed a new approach 
based on the emulation of the hardware accelerators and 
fault models through hybrid devices. The feasibility of the 
approach has been proven by introducing the first plat-
form for enabling an analysis comprehensives of the hard-
ware level without recurring to radiation testing. We ana-
lyzed the resiliency of a convolutional hardware core inte-
grated into a software model of the AlexNet neural net-
work. Using the FireNN platform, we could compare the 
results obtained by software-based and hybrid-based ap-
proaches. FireNN allowed us to emulate particular fault 
models typical of programmable hardware devices (i.e., 
SEUs)  and ASICs (i.e., open-routing) domains and evalu-
ate the sensitivity of specific resources, providing valuable 
insight on the resiliency and the critical elements of the sys-
tem. 
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