
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

FireNN: Neural Networks Reliability Evaluation on Hybrid Platforms / De Sio, C.; Azimi, S.; Sterpone, L.. - In: IEEE
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING. - ISSN 2168-6750. - ELETTRONICO. - 10:2(2022), pp.
549-563. [10.1109/TETC.2022.3152668]

Original

FireNN: Neural Networks Reliability Evaluation on Hybrid Platforms

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TETC.2022.3152668

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2958120 since: 2022-03-11T12:09:06Z

IEEE Computer Society

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID 1

FireNN: Neural Networks Reliability
Evaluation on Hybrid Platforms

C. De Sio, Student Member, IEEE, S. Azimi, Member, IEEE, L. Sterpone, Member, IEEE

Abstract— Modern neural network complexity has grown dramatically in recent years, leading to the adoption of hardware-

accelerated solutions to cope with the computational power required by the new network architectures. The possibility to adapt

the network size and performance to different platforms enhanced the interests of safety-critical applications such as automotive

and avionic. Today, the reliability evaluation of neural networks is still premature and requires platforms to measure the safety

standards required by mission-critical applications. For this reason, the interest in studying the reliability of neural networks is

growing. In this work, we propose a new approach for evaluating the resiliency of neural networks by using programmable

hardware of hybrid platforms. The approach relies on the reconfigurable hardware for emulating the target hardware platform and

performing the fault injection process. The main advantage of the proposed approach is to involve the on-hardware execution of

the neural network in the reliability analysis without modifying the hardware implementation of the network under analysis, and

addressing specific fault models. The implementation of FireNN, the platform based on the proposed approach is detailly

described in the paper. Experimental analyses are performed using fault injection on the AlexNet Convolutional Neural Network.

The analyses are carried out by means of the FireNN platform and the obtained results are compared with the outcome of

traditional software-level evaluations. Results are commented taking into account the insight into the hardware level achieved by

using the FireNN platform.

Index Terms— Deep Neural Network, Fault injection, FPGA, Hardware Emulation, Reliability

—————————— ◆ ——————————

1 INTRODUCTION

EURAL networks have dramatically risen in im-
portance during recent years. Their outstanding per-

formance in solving complex prediction and classification
problems made them a ubiquitous technology, adopted in
many fields, such as healthcare, automotive, speech recog-
nition, natural language processing, aerospace, and many
others [1]–[4]. The diffusion of this technology in such a
wide range of applications led to the steady growth of re-
search interest around neural networks. The excitement on
this technology both on the research and industry sides is
resulting in a succession of new architectures and solutions
aiming to fulfill different requirements. In particular, the
improvement of neural network accuracy and perfor-
mance has been the main topic on which the researchers
focused. Convolutional Neural Networks (CNNs) have
proven to be one of the most promising families of neural
networks for visual tasks, with astonishing results in terms
of accuracy and performance [5]. However, new challenges
have come along with the progress introduced by CNNs.
The huge amount of computational power and memory
demanded by modern neural network architectures made
the use of traditional platforms, as CPUs, used for the
training and inferring phases unfeasible. Consequently,
the use of hardware accelerators able to provide a huge
computational power, in particular exploiting the parallel-
ism of a large number of computational logic units, has be-
come the conventional solution. The set of hardware used
as neural network accelerators is composed of different

solutions as well. Graphics Processing Units (GPUs), Field-
Programmable Gate Arrays (FPGAs), and Application-
Specific Integrated Circuits (ASICs) are widely used as
hardware-accelerated platforms for running neural net-
works [6], [7]. The impressive results in terms of perfor-
mance showed by hardware-accelerated neural networks
are very appealing for mission-critical applications too [8]–
[10]. In particular, the capabilities of decision making, in-
telligent control, and visual processing are of invaluable
value for autonomous driving systems in the automotive
and avionic sectors, as well as deep space exploration. Due
to the criticality intrinsic to mission-critical applications,
where a failure can jeopardize human lives or huge invest-
ments, the reliability of these systems is rising in im-
portance as a metric in their design. Even if the improve-
ment of performance is the leading path in neural network
research, the new safety standards requirements, such as
ISO-26262 and DO-254, are pushing efforts towards the
study on the resilience of these systems [11], [12]. Moreo-
ver, the continuous evolution of state-of-the-art neural net-
work topologies and hardware platforms, along with the
rising complexity of modern neural network architectures,
makes the evaluation and analysis of the reliability and re-
silience of these systems against faults problematic.

Neural network architecture and the hardware plat-
forms supporting their executions are heterogeneous.
Therefore, to address the reliability evaluation of neural
networks, it is necessary to adopt a flexible platform capa-
ble to address different types of fault models while evalu-
ating the overall network behavior during the inference ex-
ecution. In detail, the hardware is subjected to an ample set
of phenomena, accentuated by the increase in the size

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

C. De Sio, S. Azimi and L. Sterpone are with the Dipartimento di Auto-
matica e Informatica, Politecnico di Torino, Torino, Italy, 10138.
E-mail:
corrado.desio@polito.it, sarah.azimi@polito.it, luca.sterpone@polito.it

N

mailto:corrado.desio@polito.it
mailto:sarah.azimi@polito.it
mailto:luca.sterpone@polito.it

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

downscaling, that can produce faults that propagate to the
application level, provoking errors, or failures in the whole
system. The source of these faults comes both from the de-
vice itself, such as faults deriving from aging or manufac-
turing process variations, and external factors, such as
transient and permanent errors generated by ionizing ra-
diation. Moreover, neural network reliability and resili-
ence are strongly influenced by the fault location, the de-
sign choices, such as data precisions, activation functions,
and algorithms. Hence, they depend on network architec-
ture and topology but the implementation of the network
on the specific hardware accelerator and the hardware it-
self also play central roles [13], [14]. With so many varia-
bles to consider, different methodologies for evaluating the
resilience of neural network systems emerged from the re-
search community. A radiation test is a method that most
closely resembles reality. However, these experiments re-
quire highly specialized beam radiation equipment that
makes them particularly demanding in terms of money
and availability. Due to these limitations, software-based
fault injection approaches have been consolidated along-
side radiation testing as complementary methods to assess
the reliability of neural network systems. These methods
are based on the emulation of specific fault models in the
application-level model of the network. The fault injection
approach enables fully controlled experiment campaigns
but abstracts from the actual hardware, which may lead to
incorrect evaluations. The simulation-based approaches
require high and often unaffordable costs in terms of exe-
cution time and computational power when dealing with
modern and complex architectures. Moreover, they cannot
always rely on the actual low-level description of the hard-
ware. Therefore, they are constrained to a higher level of
abstraction, such as RTL.

1.1 Main Contributions

The main contribution of this work is to propose a meth-
odology for evaluating the resilience of neural network
systems. The method is based on hybrid System-on-Chip
(SoC) i.e., platforms combining processor systems and pro-
grammable hardware on the same chip. The proposed ap-
proach exploits the hybrid platform for emulating the tar-
get hardware accelerator and injecting faults in its micro-
architectural hardware elements. The reconfigurability
feature offered by the platform is used for injecting faults
in the hardware configured on the programmable logic by
manipulation of the configuration memory data. Hence,
the proposed approach involves hardware in the reliability
analysis without the demands of a radiation-based ap-
proach but working at a lower level of abstraction than tra-
ditional software-based approaches. Moreover, it allows to
fully control the models and locations of the faults injected
in the hardware components, enabling comprehensive and
controlled analysis.

The second contribution of this work is the platform for
performing the reliability analysis based on this approach.
The proposed platform, named FireNN, is detailly pre-
sented. One of the key features of the platform is to provide
the technique and the know-how for modifying the netlist
implemented on the programmable hardware through an

aware bitstream manipulation, enabling the injection of
specific fault models.

Lastly, a reliability analysis of a layer of the AlexNet
neural network is performed by using the proposed plat-
form and approach. The results obtained by the fault injec-
tion analysis are compared with the results obtained from
a software-based fault injection campaign performed at the
application level. The application-level fault injection cam-
paign is performed by the software fault injection module
embedded in FireNN itself, which is independent of the
programmable-hardware-based approach.

The proposed approach is presented as a new method-
ology for reliability analysis to be added to the existing
ones. The proposed methodology has advantages and
characteristics that differentiate it from the state of the art.
The involvement of a hardware platform in the reliability
enables the study of the microarchitectural faults, not
achievable using software-level simulation approaches
that are totally unaware of the underlying hardware. Com-
pared to software simulation of the hardware-level of the
hardware platform, this solution offers significant im-
provement in terms of time analysis, thanks to the use of
an actual hardware platform instead of a simulation envi-
ronment. With respect to radiation tests, the approach pro-
vides a means for performing microarchitectural analysis
when radiation test is not feasible or as a preliminary anal-
ysis in advance of a future radiation test.

This work is organized as follows. Section 2 describes
the relevant background for this work on neural networks,
programmable hardware, reliability of these technologies,
and testing methodologies. Section 3 provides an overview
of the related works in the field of neural network reliabil-
ity, including results, methods, and testing platforms. The
proposed approach and the developed platform are pre-
sented in sections 4 and 5, respectively. Section 6 is dedi-
cated to the experimental analysis and results. Finally, con-
clusions are drawn in Section 7.

2 BACKGROUND

2.1 Neural Networks

Modern neural networks are computing systems made of
various cascaded computational layers. Neurons are com-
putational elements typically characterized by weights, an
activation function, and a bias. In Fig.1, conceptual sche-
mas of a three-layered neural network (a) and a neuron are
illustrated. However, Deep Neural Networks (i.e. net-
works composed of many layers), and particularly Convo-
lutional Neural Networks (CNNs), have proven to out-
stand in performance simplest neural networks in applica-
tions such as classification, prediction, and object detec-
tion. With the increasing of hidden layers (i.e., layers be-
tween the input and output layers), the numbers of
weights, as well as the required memory and computa-
tional power, escalated quickly. The convolutional layers
are the most important and computationally intensive
among them. Pooling and ReLu are very common opera-
tions performed after convolution for downsampling con-
volution results and introducing non-linearity in the net-
work, respectively.

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 3

Modern neural network architectures have hundreds of
layers and tens of millions of parameters. The training
phase is a complex mathematical process based on algo-
rithms that modify the value of the parameters (e.g.,
weights and bias) to maximize the accuracy of the network.
The huge memory and computational power required by
modern architectures made hardware-acceleration essen-
tials during both neural networks training and inference
phases.

The choice of the neural network architecture to adopt
for performing a specific task is a complex topic. State-of-
the-art neural network architectures change quickly, and
the adopted design choices can strongly affect the perfor-
mance and accuracy of the adopted architecture. The high
diffusion of neural networks made the born of frameworks
necessary in order to easily allow the development and
evaluation of neural network architectures, also for a de-
veloper with basic or no knowledge of machine learning
[15].

2.2 Approaches for Reliability Analyses of NNs

The reliability analyses of neural networks focus primarily
on the failures affecting the system during the inference
phase since the training phase is performed only once and
can be assumed to occur in a controlled environment.
Faults can occur in hardware components due to several
reasons, such as physical manufacturing defects or radia-
tion effects. When this happens, they can be masked by
other components and operations or propagate to the sys-
tem's outputs, causing errors and eventual failure of the
whole system. The state-of-the-art approaches for studying
the reliability of neural networks are based on different
levels of abstraction from the hardware.

Radiation testing is the method closer to resembling the
real case scenario. The actual hardware is exposed to a flux
of particles for imitating harsh environments or long peri-
ods of execution. Hence, radiation testing requires highly
specialized equipment and presents some limit of visibility
and control (i.e., more components are usually irradiated
during a single radiation test) that restrict its use,

especially in the early development phase of a project,
when the actual hardware architecture is not finalized yet.
When radiation testing is not affordable, different method-
ologies are used for emulating the system and the faults in
order to perform reliability analysis.

Software-level simulation is the method having the
highest level of abstraction from the hardware. It relies on
an application-level analysis, unaware of the underlying
hardware actually implementing the neural network,
where faults are emulated in the software model or algo-
rithms of the network. This approach has huge benefits
such as high controllability and inherent simplicity and
flexibility due to the software level on which it operates.
However, the complete abstraction from the actual hard-
ware is partially a limitation. Some faults, such as bit flips
in memory cells, are easy to emulate in the software-level
model. Differently, errors in hardware microarchitectural
components (e.g. impacting the communication interfaces,
interconnection lines, timing, specific computational units,
and many other elements strictly related to the accelerator
hardware architecture), are much more difficult to emu-
late.

When a more accurate analysis is required, a hardware-
level simulation relying on a model of the hardware plat-
form must be performed. Faults are injected in the simu-
lated hardware architecture, usually RT- or Gate- level.
The low-level simulation allows representing the behavior
of the involved hardware providing a more representative
analysis. The main disadvantage of this approach is the
huge amount of time required for carrying out hardware
simulations of complex systems, such as hardware acceler-
ators or microprocessors.

2.3 Programmable Hardware

Modern programmable hardware devices, such as hybrid
systems (e.g., All Programmable SoC or AP-SoC) and Field
Programmable Gate Arrays (FPGAs), are integrated cir-
cuits consisting of a large number of programmable logic
blocks and configurable interconnections. FPGAs have
been consolidated as hardware accelerators for neural net-
works thanks to the high performance and flexibility of
these devices. AP-SoC extends the traditional FPGAs par-
adigm integrating one or more processor systems in the
same chip. Due to the flexibility offered by the software,
AP-SoCs have proven to be extremely suitable for imple-
menting complex applications, including neural networks.
Two of the characteristics that have contributed to the suc-
cess of these technologies are hardware programmability
and reconfigurability. The application layer of hardware-
programmable devices consists of various types of config-
urable elements, such as LUTs, DSPs, BRAMs, Flip-Flops,
interconnections, and others. The content of the configura-
tion memory, which is the main part of the configuration
layer of the device, defines the working functionality of the
configurable resources and how they interconnect. For in-
stance, the configuration memory defines the truth table
used by the LUTs, the way they are connected to build
complex combinational netlists, the configuration of the
BRAMs, the operation mode of DSPs, and so on. In partic-
ular, the interconnections among blocks are managed

Fig. 1. Conceptual schemas of a three-layer perceptron (a) and a
neuron (b).

(b)

(a)

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

through interconnection matrices. Interconnection matri-
ces consist of Programmable Interconnection Points (PIPs).
These interconnections, usually implemented by pass-
transistors, are enabled by the configuration data to con-
nect the resources of the application layer for implement-
ing the circuit on the programmable hardware. The config-
uration memory is written using the configuration data,
usually referred to it as the bitstream. The configuration
bitstream is generated using vendor tools for a specific de-
vice. Reconfigurable hardware can be reconfigured by
writing new content in the configuration memory that
modifies the implemented netlist.

One of the main limitations of programmable devices is
the high hardware expertise required to develop a highly
optimized design for this technology. However, modern
High-Level Synthesis (HLS) tools are rapidly easing the de-
velopment for programmable logic, improving obtained
performance, and time-to-design. Additionally, new AP-
SoC platforms are easing and increasing the use of pro-
grammable hardware in hardware-accelerated systems for
neural networks. In hybrid platforms (e.g., Zynq AP-SoC),
the programmable logic integrated with a processor sys-
tem on the same chip allows limiting the use of the hard-
ware to the computationally demanding operations, leav-
ing more complex tasks to the processors, combining soft-
ware flexibility and hardware performance.

3 RELATED WORKS

The growing demand for highly reliable neural networks
for mission-critical applications and the success of complex
neural networks architectures, together with the shrinking
of the device technology that makes their hardware-accel-
erators more brittle, have encouraged research works on
reliability evaluation of neural network systems and con-
sequently, methodologies, approaches, and platform for
reliability analysis.

In [16], the authors propose a quantitative reliability
analysis of three neural network architectures, such as
fully connected, CNNs, and Gated Recurrent Units
(GRUs). The paper introduces Ares, a lightweight frame-
work for empirical analysis based on a software-based ap-
proach working at the algorithmic level. The framework
allows performing preliminary analyses to obtain insight
into where to conduct more detailed fault analysis at the
microarchitectural level. The available fault locations are
limited to the memory domain and include weights, activ-
ities, and hidden states, while data paths are not supported
yet. It can inject both static and transient faults. In [17], the
authors perform a software-level fault injection, abstract-
ing by the actual hardware, using a fault injection environ-
ment based on the darknet framework. However, in [18],
the authors report the limitations of a hardware-unaware
approach compared to a comprehensive analysis involving
the hardware level. In order to carry out fault injections
taking into account the hardware platform, they proposed
an environment to speed up RTL simulations of DNNs in-
ferences through a multilevel approach based on the pipe-
line paradigm. Another approach is presented in [19],
where an application-level fault injection environment is

built on the Tiny-CNN framework for evaluating hard-
ware-accelerated systems. The approach is able to inject in
the data path and buffer without considering combina-
tional logic and control logic units. Since the unavailability
of RTL implementation of the accelerators, the authors
mapped each line of code in the software simulator to the
respective hardware element to assess the contribution of
each fault injection location in terms of hardware microar-
chitecture. Also in [20] and [21], the fault injectors rely on
the application level but are built on top of a torch-based
framework. Most of the works which are not based on ap-
plication-level rely on radiation testing. In particular, [22]
analyzes the reliability of Kepler, Maxwell, and Pascal
GPU architectures by NVIDIA. The analysis involves
YOLO, Faster R-CNN, and ResNet and it is carried out
both through architecture-level fault injection, using
NVIDIA SASSIFI fault injector, and radiation testing.

Several works are dedicated to the evaluation of the re-
liability of circuits implemented on programmable hard-
ware. Since the flexibility offered by programmable hard-
ware, different hardware applications, and cores have been
evaluated such as soft processors [23], AXI modules [24],
and communication modules [25]. Focusing on the neural
network topic, many works are dedicated to the reliability
evaluation of neural network applications implemented
using a programmable-hardware-based accelerator. In
[26], the authors provide a detailed reliability analysis of a
neural network accelerator implemented on FPGA. The
fault emulation is based on a fault injector module imple-
mented along with the same FPGA with the design under
test. Hence, the approach required some minor hardware
modifications in order to integrate the fault injection mech-
anism in the neural network circuit. In [28], the reliability
of an AP-SoC platform running a CNN for traffic sign
recognition has been tested both through radiation testing
and emulating SEUs in the configuration memory of the
programmable logic. In [24], a reliability analysis of an
FPGA device implementing a CNN is executed. The injec-
tion methodology consists of flipping bits in the configura-
tion memory of the device. The work highlights how the
network under the test is reliable against SEUs affecting
storage bits while SEU affecting bits related to other re-
sources such as DSPs, LUTs, or interconnections are lead-
ing to wrong object classifications.

Most of the listed works rely on application-level soft-
ware-based fault injection approaches, unaware of the un-
derlying hardware platform. Some of the works perform-
ing on-hardware evaluation rely on irradiation as a testing
methodology. Programmable hardware is used only as the
hardware accelerator to be tested, both through irradiation
and fault injection. However, in these works, configuration
memory manipulation is performed unaware of the re-
sources it will corrupt and the effects on the implemented
netlist. In particular, there is no reference either to the pos-
sibility to exploit programmable hardware to perform de-
tailed analysis at the microarchitectural level, detect the ef-
fects caused by injecting specific fault models and identify
the more critical elements of the hardware architecture,
which is instead achievable using the methodology we
propose.

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 5

4 A HYBRID APPROACH TO RELIABILITY ANALYSIS

The proposed method is a general-purpose approach for
the reliability evaluation of any kind of neural network
system implemented on hardware devices.

The core of the approach is the use of the all-program-
mable hybrid devices (i.e. system-on-chips combining soft-
ware and hardware programmability) to enable analysis
involving the hardware level. The hardware programma-
bility of the hybrid platforms fulfills two roles: the first, it
emulates the hardware architecture of the hardware accel-
erator running the neural network; the latter, it offers the
mechanism for the injection of hardware faults exploiting
the reconfigurability feature of the device.

On one hand, the fault injection process is performed
through configuration memory manipulation injecting
faults directly at the hardware level. On the other hand, the
software programmability is managing the fault injection
process by applying the test set, performing the evaluation,
and the analysis of the fault injection results.

The flow of the approach is illustrated in Fig. 2. The de-
velopment of the design emulating the target hardware ac-
celerator is performed by using the traditional design flow
for programmable hardware. In particular, both HDL and
HLS descriptions can be used as a starting point. As an al-
ternative, also third parties developed IPs can be used. The
experiment manager module is instrumented with the
neural network architecture to be analyzed and data about
the experimental analysis to be performed. Hence, the
manager handles the integration of the emulated accelera-
tors in the network model and controls the fault injector for
performing the experiments and the collection of the re-
sults.

The use of the programmable logic of the hybrid devices
allows evaluating the effects of faults directly on the hard-
ware. Moreover, it offers a high level of control and visibil-
ity due to the possibility to inject faults in specific

hardware components and resources. An additional char-
acteristic is the possibility to perform emulation-based
analysis of hardware not yet produced, providing im-
portant resiliency information even during the design pro-
cess of neural network architecture and hardware acceler-
ators (ASICs and FPGA mainly). In particular, when the
selected solution for hardware acceleration is programma-
ble logic itself, the actual hardware accelerator is imple-
mented on the programmable hardware without the need
to emulate the target accelerator.

Furthermore, the developed platform allows manipu-
lating the configuration data of the programmable hard-
ware for forcing fault models in the resources and inter-
connections. Even if the tools provided by the vendors pre-
vent the generation of faulty configurations (e.g., open or
conflicting nets), it is possible, by bitstream manipulation,
to produce these effects in the netlist implemented on the
hardware for emulating fault models such as stuck-ats,
conflicts, couplings, and others. This concept is illustrated
in Fig. 3. The injection of each specific fault model is per-
formed through the modification of particular bits pro-
gramming a resource. However, the particular role of each
specific bit of the bitstream (i.e., which resource they pro-
gram and how) is not provided by the vendors. Therefore,
several projects and research works proved to be able to
manipulate the bitstream to modify the implemented
netlist without recurring to the vendor tools [30]–[34].

The usability of this approach is highly dependent on
the ease of customizing the neural network architecture as
well as on the ease of emulating faults that usually require
a high level of expertise and knowledge about the manip-
ulation of the configuration memory and architecture of
programmable hardware.

5 THE FIRENN PLATFORM

FireNN is the first platform for enabling resiliency analysis
of neural networks both at the application level and at the
hardware level via emulation. We selected the Zynq family
as the target hybrid platform. In particular, we chose the
Zynq-7020 SoC but the implementation is easily extenda-
ble to other products of the same family. This AP-SoC is

Fig. 3. The implemented netlist without faults (a) can be modified
by manipulating the configuration memory to emulate fault models
such as open (b) or conflicting (c) interconnections.

Fig. 2. The conceptual schema of the elements and processes con-
stituting the proposed approach.

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

equipped with two ARM dual-core Cortex-A9 processors
and a programmable logic implemented with a 28 nm
manufacturing process [29]. The characteristics of the pro-
grammable hardware are summarized in Table I.

The platform is based on a two-environment architec-
ture and supports analyses at layer granularity. The sup-
port to bottom-end hardware enables to perform parallel
analysis exploiting a cluster of testing platforms for reduc-
ing the evaluation time with affordable cost and increasing
dissemination of the proposed approach. Please note that
the first version of FireNN has been presented in [30]. A
detailed description of the extended version of FireNN, im-
plementing more features as well as a rearranged structure
is presented in this section.

5.1 FireNN Architecture Overview

The FireNN platform consists of two environments: the
FireNN Machine and the FireNN Engine. Fig. 4 shows a con-
ceptual view of the modules and frameworks involved in
the FireNN platform. The Machine provides the means for
defining and modifying the neural network model by ex-
tending the PyTorch framework [34]. It runs on the host
computer and is the controller of the experimental flow.
The Machine can communicate with the FireNN Engine run-
ning on the Zynq platform for triggering the deployment
of the emulated accelerator, as well as the fault injection
process.

The main purpose of running the Machine on the host
computer is to offload the computations demand of the
whole network from the Zynq in favor of a higher-perfor-
mance system. Nevertheless, the Machine and the Engine
can also run as two processes on the same hybrid device if
its performance is high enough. The FireNN Machine pro-
vides the APIs for moving the computation performed by
a PyTorch module (i.e., one or more software layers) to the
programmable logic. The relocation APIs offered by the
Machine mimics the interface offered by PyTorch to move
the computation from the CPU to the GPUs. Practically,
this is achieved by instantiating an appropriate hardware-
implemented layer on the programmable logic for per-
forming the same mathematical operation that should be
performed by the software layer. The hardware layer em-
ulates or implements the target hardware to evaluate. The
flow for developing the layer is the same as for traditional
hardware accelerators implementable on programmable
hardware. This allows using also HDL descriptions for
ASICs as a starting point, as well as modern HLS ap-
proaches. In particular, when the target is an FPGA-based
hardware accelerator, the emulating layer can match al-
most completely (depending on the specific devices

involved) to the target implementation. The Engine runs on
the processor system of the Zynq and manages all the op-
erations involving the programmable hardware relying on
the Pynq open-source project for managing the program-
mable hardware from the processor system [35]. The com-
plex process of modifying the configuration memory for
inducing specific fault models targeting precise resources
is managed by the Engine and implemented relying on the
PyXEL framework [31].

5.2 Communication Mechanism

The communication between Machine and Engine is man-
aged by the FireNN Comm module. The module enables in-
ter-process communication across the network between
the Machine and the Engines exploiting the python TCP
sockets mechanism. Communication is based on messages.
The message structure is shown in Fig. 5. In detail, the mes-
sages consist of three fields, a header, a JSON header, and
a payload. The two headers are mandatory, while the pay-
load is optional. The header is the only field with a fixed
length (4 bytes). The JSON header field has a variable
length defined in the 4-bytes header. It consists of a serial-
ized JSON dictionary with three mandatory entries. The
first entry provides information on the type of message.
The second entry is a dictionary with the options and prop-
erties related to the specific message type. The third entry
contains a second dictionary providing additional infor-
mation and property for the message processing task of the
Engine. If the defined protocol allows it for the specific
message type, a fourth entry is present to report the pres-
ence of the optional payload and its length. This payload is
used for transferring weights during the instantiation of
the emulated accelerator, as well as input and output data.
The communication mechanism has been developed to be

Fig. 4. An architectural view of the FireNN platform.

Fig. 5. Structure of the messages used by the communication
mechanism.

HOST COMPUTER

ZYNQ PLATFORM

Programmable HWProcessor System

C
o

m
m

u
n

ic
at

io
n

N
et

w
o

rk

Emulated
Layer

FireNN Machine

FireNN Engine

comm

comm Neural Network Model
TABLE I

CHARACTERISTICS OF ZYNQ 7020 PROGRAMMABLE LOGIC

Resources Quantity

Look-Up Tables (LUTs) 53,200

Flip-Flops 106,400

Block RAM 4.9 Mb (140 Blocks)

DSP Slices 220

Configuration Memory 10,008 frames of 3232 bits

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 7

as transparent as possible to the user. In this way, it is not
required for the user to be concerned about the communi-
cation protocol between the Machine and the Engine mod-
ules.

5.3 The FireNN Machine and Shells

The FireNN Machine manages the neural network architec-
ture and experimental execution. For the description and
implementation of the neural network models, the Machine
relies on the PyTorch framework [34]. The Machine extends
the PyTorch model of the network providing the mecha-
nism for replacing a PyTorch module with an analogous
hardware module running on the programmable hard-
ware.

The instantiation and the management of a specific
hardware module on the programmable hardware side are
managed by the Engine. On the Machine side, the relocation
is achieved through the encapsulation of one or more neu-
ral network layers in a container, named Shell, deriving
from the module class of PyTorch. A conceptual schema
showing how the Shell is integrated into the neural net-
work model is illustrated in Fig.6. The relocation API scans
the structure of the neural network model and inserts the
Shell in the place of the original module directly in the to-
pology of the neural network software model. The Shell en-
capsulates the original layer and implements the mecha-
nism for switching the execution from the original module
to the hardware module and back. Hence, the Shell can in-
teract with the Engine to request the computation to be ex-
ecuted by the hardware module. When a Shell is instanti-
ated on the Machine side, an associated object is instanti-
ated by the Engine in its domain. This object is referred to
as a Gear. The Gear is a hardware implementable module
emulating the hardware accelerator to analyze. Gears and
their characteristics are addressed in the next subsection,
dedicated to the Engine and Gears.

The Shell is equipped with a routine for automatically
inferring the dimensions of input and output data. Indeed,
some PyTorch modules are agnostic of I/O data dimen-
sions (i.e, they can receive tensor of any size as input) but
their I/O data dimensions are defined univocally by the

architecture of the network (e.g., by modules working on
fixed tensor sizes such as fully-connected). Hence, the in-
formation on input and output dimensionality is needed
for the creation of the analogous hardware module.

The Shell has methods to easily switch between the orig-
inal data path using the PyTorch original layer and the new
data path using the hardware module implemented on the
Zynq. This feature allows the execution of the inference us-
ing the original network or the relocated version, i.e. with
a part implemented hardware.

The deployment and execution of an emulated hard-
ware accelerator on the programmable hardware, as well
as the emulation of the faults, are all performed on the En-
gine side. However, they are triggered by the Machine
through the Shell since the Gear is not directly accessible by
the user. Differently, the Machine locally implements the
methods for executing the injection of different kinds of
fault models at the software level since that is performed
without involving the hardware emulation.

The Shell is also equipped with a tracking mechanism
capable of storing input and output data of the Shell itself
to enable post hoc analysis.

5.4 The FireNN Engine and Gears

The Engine runs on the processor system of the Zynq and
manages the programmable hardware and the fault injec-
tion process. For controlling the programmable hardware,
the Engine relies on the PYNQ project for Zynq. PYNQ is
an open-source project, supported by Xilinx to ease the ex-
ploit of the programmable hardware through a python
framework [35]. It provides the APIs for configuring the
programmable hardware of the Zynq, as well as the APIs
for managing I/O and communication between the pro-
grammable hardware and processor system. The Engine's
main tasks are the deployment, execution, and fault injec-
tion of the Gears. When a Shell is instantiated on the Ma-
chine side, an associated Gear is instantiated by the Engine.

A Gear represents a computational module that can be
implemented on the programmable hardware. It emulates
a target hardware accelerator. A Gear consists of three ele-
ments: an interface, a driver, and an implementation file
(i.e., a bitstream). A conceptual schema summarizing the
element composing the Gears is reported in Fig.7. The in-
terface is common to all the Gear. It allows the Engine to
manage the Gear independently of their particular hard-
ware implementation. The driver provides the APIs for us-
ing the specific hardware module through the interface.
The implementation file is the bitstream containing the
configuration data for programming the programmable
hardware with the hardware module. If necessary, when a
Gear object is created, the characterizing parameters of the
original neural network layer it is replacing (e.g. weights,
bias, etc.) need to be transmitted by the Shell during the re-
location process.

Fig. 6. Conceptual Schema of the integration of the Shell in the orig-
inal model of the network.

LAYER 0

LAYER 1

LAYER 2

LAYER 3

LAYER N-1

LAYER N

…

to_device (‘zynq’) LAYER 0

LAYER 1

LAYER 2

SHELL

LAYER N-1

LAYER N

…

Zynq

L
A

YER
3

Original Network Modified Architecture

Original Output

New Output

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

When on the Machine side a Shell requires the execution
of a computation on a specific Gear, the Engine configures
the programmable hardware with the specific Gear imple-
mentation, receives the input data, triggers the computa-
tion on the hardware, and transmits back the results.
Hence, each Gear is associated with a specific computa-
tional layer on the software model of the network and em-
ulates a particular hardware accelerator. The development
of a Gear is performed using the traditional development
flow for programmable hardware (e.g., starting by HDL or
HLS description), or it can be based on IPs by third parties.

The fault injection is a complex process performed by
the Engine relying on the PyXEL framework for perform-
ing the bitstream manipulation [31]. It can modify the bits
of the configuration bitstream for changing the configura-
tion of specific resources of the programmable hardware.
In particular, PyXEL makes it possible to manipulate those
bits for injecting a specific fault model, such as soft error
affecting the truth table of a LUT, or the open-interconnec-
tion fault model (by disabling a programmable intercon-
nection as already shown in Fig. 3). The Gear common in-
terface is provided with a tunable timeout mechanism to
avoid endless waits as a result of faults injected during the
injection operation. When the injection of a specific fault
model is requested by the Shell a faulty version of the Gear
is created and used for the computation. The Engine can be
instructed to inject faults in a specific entity (e.g., the AXI
Interface), in specific resources (e.g., BRAMs interconnec-
tions, LUTs truth tables), or induce specific faults (e.g.,
open interconnections).

6 EXPERIMENTAL SETUP, ANALYSIS, AND RESULTS

The experimental evaluation of the FireNN platform has
been applied to the reliability analysis of the AlexNet neu-
ral network. AlexNet has been implemented considering
the PyTorch model provided by torchvision [36]. The 2D-
convolution computation within the fifth convolutional
layer of AlexNet has been implemented as a hardware ac-
celerator using Vivado HLS [37]. We performed different
fault injection campaigns on the specific convolutional
layer of the same neural network model. Performed anal-
yses include both traditional software-level analysis and
analyses based on the proposed approach relying on the
emulation of accelerators and fault models using hybrid

devices. FireNN allows to measure several parameters in-
cluding error rates, failure rates, ratios between failures
and errors, timeout events, and distribution of degrada-
tions and misclassifications for the evaluation set.

6.1 Neural Network Model

The architecture of the network used in the experimental
analysis is presented in Fig. 8. The network model is the
version of the AlexNet network provided by torchvision.
AlexNet is a CNN for object classification [38]. The model
is provided trained using the ImageNet dataset as the
training set [39]. The trained model of the network is able
to classify 1,000 different classes. The architecture of
AlexNet consists of several layers implementing convolu-
tion, pooling, and ReLu operations.

The input is a tensor of dimensions 3×224×224 repre-
senting an RGB picture. When a specific implementation
for the hardware-accelerated version of a layer is provided,
the platform can carry out reliability analysis of a neural
network model with a layer granularity. The layer selected
for the reliability analysis is the last convolutional layer of
the network since in [19] it has been identified as the most
sensitive one of the convolutional layers. The layer is char-
acterized by 590,080 parameters (also referred to as
weights) consisting of 256 bias and 256 kernels, each one
has dimensions of 256×3×3.

The output of the last fully connected layer of the neural
network is an array of values, each one associated with a
class. This value assesses the probability of the input be-
longing to the specific class. Using a normalized exponen-
tial function (usually referred to as softmax), these values
are normalized and reduced to a probabilistic distribution
over all the labels. Hence, the final output of the neural net-
work is a rank of labels with an associated percentage of
confidence to each item. The item with the higher confi-
dence represents the classification output.

6.2 Evaluation Set and Error Classification

The inputs of the neural network are images representing
objects belonging to the set of the 1,000 labels used in the
training phase. The images need to be preprocessed (e.g.,
cropped and normalized) in order to be suitable as inputs

Fig. 7. Architectural Schema of the elements composing a Gear.

Fig. 8. Schema of the AlexNet model used in the experiments.

ZYNQ PLATFORM

Programmable HW

Active
Gear

G
ear

In
terface

G
ear D

river

Neural networkShell Layer under test
Other layers

HOST COMPUTER

FireNN Engine

Processor System

FireNN Machine

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 9

of the network. Since our goal is to assess the reliability in-
stead of the accuracy of the network, we are interested in
the deviation from the unfaulty behavior independently of
the original accuracy of the network. Therefore, since not
strategic for our purpose, we picked 50 pictures from the
ImageNet collection on fauna [39] as evluation set. The
main objective of the reliability analysis is to identify if an
injected fault will produce a modification in the confidence
associated with each label, possibly causing a change with
respect to the original classification. Hence, the original
model is initially used for obtaining the results of an un-
faulty run. Then, the golden results are used for detecting
errors through comparison with the output obtained by a
fault-injected model of the network. The errors detected by
this procedure are classified into three groups.

1. Misclassification: the label with higher confidence
has changed due to the injected fault.

2. Degradation: the confidences of one or more labels
have changed due to the injected fault.

3. Timeout: the injected fault prevents the network
from completing the classification.

Since the misclassification is usually caused by a severe
degradation of the confidence values and it totally changes
the expected results, we considered it as a critical failure
instead of an error only potentially affecting the classifica-
tion. The failure rate is computed as the number of injec-
tions that caused misclassification out of the total while the
error rate is computed as the number of injections that
caused at least one degradation (independently if they do
or do not lead to misclassification) out of the total.

Since the evaluation set is composed of different images
with heterogeneous characteristics (e.g., producing classi-
fication with different confidence values), it could be pos-
sible to have a mixed outcome as a result of fault injection
(i.e., a mix of misclassifications, errors, and correct results
assigned to different inputs of the evaluation set). If at least
one input has been misclassified the error is categorized as
misclassification. Degradations follow the same rule. Ad-
ditionally, we considered a deviation minor than 1·10-4 in
the confidence percentage as negligible since they can be
caused by the use of the IEEE-754 standard for data repre-
sentation and computation. Hence, a deviation of less than
1·10-4 percentage points is not classified as an error.

6.3 Fault Models

In the reliability analyses carried out in this section, we
evaluated three different fault models. Single Event Upset
is a well-known phenomenon caused by the interaction be-
tween the hardware and ionizing particles and affecting
memory cells during the execution of the application. SEUs
are very common in space but they can affect also systems
working at sea level.

Subsection 6.5 report a reliability evaluation against
SEUs affecting the weights and the inputs (i.e., the memory
cells storing the values) of the software-level simulation of
the analyzed neural network. Errors are emulated directly
modifying the value of the variables at the bit-level. Errors
are injected in the value of weights and layer inputs during
runtime.

Even if caused by the same phenomenon, SEUs

affecting the configuration memory of programmable
hardware have to be considered differently. Due to the
characteristics of programmable hardware, SEUs affecting
the configuration memory will result in a permanent fault
affecting the hardware architecture of the circuit imple-
mented on the programmable hardware (until the hard-
ware is not programmed with a new circuit). In subsection
6.6, the reliability analysis of a circuit implementing a con-
volutional layer of the AlexNet network is performed.
SEUs in configuration memory have been modeled as bit
flips affecting the content of the memory. The fault has
been emulated in the configuration memory of the pro-
grammable hardware programming the board with a
faulty bitstream and the implemented circuit is used for
executing the convolutional layer under test. These SEUs
in configuration memory can cause various actual faults in
the circuit implemented in the hardware according to
which bit (randomly selected) has been corrupted. For ex-
ample, if a memory cell programming a LUT is affected, it
may cause a logical fault while if the memory cell is related
to a programmable interconnection it may cause an open
fault or an antenna

Finally, section 6.7 has been dedicated to evaluating the
effects of open faults exclusively. Open faults can be
caused by several causes, such as fabrication defects, aging
effects. In programmable hardware, they can also derive
by undesired modification of the configuration memory
caused by SEUs. The open fault model has been emulated
in the architecture of the hardware accelerator imple-
mented on the programmable hardware by an aware ma-
nipulation of the configuration memory bits programming
the nets of the implemented circuit. The fault model has
been emulated in the hardware programming the device
with a faulty bitstream.

6.4 Hardware Accelerator

As a hardware accelerator, we developed a hardware mod-
ule implementing the fifth convolutional layer of the
AlexNet network. The hardware accelerator has been de-
veloped using Vivado HLS. It computes 2-D multichannel
convolution between inputs with dimension 13×13 and a
3×3 kernel and it has 256 input channels and 256 output
channels. Data are represented with a 32-bits floating-
point representation, accordingly with the data type used
by the PyTorch model of the overall network. Data transfer
between the processor system and programmable hard-
ware is performed by the FPGA direct memory access to
transfer streams of data from the DDR memory to the pro-
grammable logic and vice versa. The IP Core is pipelined
and performs convolution using an algorithm based on

TABLE II

RESOURCES UTILIZATION OF HARDWARE CONVOLUTIONAL IP

Resources AXI Modules Core Total

Slice LUTs 4,452 31,746 36,198

Slice Registers 5,795 25,476 31,271

Block RAMs 16 67 83

DSP Slices 0 48 48

Muxes 25 87 102

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

two buffers and a shifting window. The interface of the
core is implemented with an AXI4-Lite control register in-
terface. The resources used by the convolutional core and
the communication modules (i.e., AXI modules) are re-
ported in Table II.

6.5 Software-based Reliability Analysis

We used software-based fault injection campaigns to
achieve two reliability analyses considering faults affecting
weight and bias of the layer, and faults affecting input and
output data of the layer.

In the first fault injection campaign, we used a tradi-
tional approach based on software fault injection in order
to perform further results comparison. We emulated SEUs
(i.e., a single bit flip) in the 32-bits floating-point represen-
tations of the parameters (weights and bias) of the fifth
convolutional layer of the AlexNet model. Therefore, each
faulty network presents a single bit flip in its parameters
with respect to the unfaulty version. The fault injection
campaigns have been executed using the software-level
fault injector embedded in the FireNN platform.

We performed 10,000 experiments and we run the clas-
sification task on the whole evaluation set under the same
faulty bit in each experiment. The fault locations (i.e., pa-
rameter and bit to inject) have been randomly generated
for each experiment. As a result, we obtained an error rate
of 40.57% and a failure rate of 2.10%, while 5.18% of the
detected degradations led to misclassification. We have not
observed any timeout errors.

As we explained in subsection 6.2, misclassification of a
single input image of the evaluation set is enough to cate-
gorize a fault as causing misclassification. The impact of a
fault considering the overall evaluation set can be different
since a fault may affect from 1 to all the images of the eval-
uation set. Therefore, we analyzed the distribution of the

faults leading to misclassification over the number of out-
puts for which the misclassification has been observed and
we reported the data in Fig. 9.a. Fig. 9.b reports the data for
degradations. This result suggests that it is common for
faulty networks presenting misclassifications to have two
possible behaviors. The first one is to have misclassifica-
tion on very few outputs. This could happen due to specific
elements of the evaluation set being hard to classify. There-
fore, they are more sensitive than others to variations in-
duced by faults and they will cause a misclassification also
with small deviations from the unfaulty behavior. The sec-
ond one is to affect a very high percentage of the evaluation
set. This effect could be caused by the stimulation of highly
critical bits of the parameters of the neural network layer.

A second fault injection campaign has been performed
using the same fault model but affecting the inputs or out-
puts of the module instead of the parameters. The fault is
injected in the same location for all the inputs of the mod-
ule (i.e, on the same data of the input or output tensor and
the same bit of the data) for each experiment.

We performed 10,000 experiments and evaluated the ef-
fect of each single bit flip singularly on the whole evalua-
tion set consisting of 50 pictures. We obtained an error rate
of 46.16% and a failure rate of 15.48% with a ratio of fail-
ures to errors of 33.53%. We have not observed any timeout
errors. The distribution of the faults is illustrated in Figure
10.a for the misclassification and Figure 10.b in the case of
degradation. The result shows how the probability to de-
tect multiple errors and failures decreases both for misclas-
sifications and degradations with the increasing of multi-
plicity. This is a reasonable behavior if we consider that a
specific feature extracted by the current and previous lay-
ers can play a critical role in the classification of a specific
input or class but to be less important for others.

Fig. 9. Distribution of the misclassification (a) and degradation (b)
categories (resulting from fault injection in the parameters) over the
number of outputs experiencing the effect.

Fig. 10. Distribution of the misclassification (a) and degradation (b)
categories (resulting from fault injection in the data) over the number
of outputs experiencing the effect.

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 11

6.6 Hybrid-based Reliability Analysis against SEUs

The hybrid fault injection campaign allows the analysis of
the behavior of the platform and addresses the reliability
of the hardware accelerator when it is physically imple-
mented on programmable hardware. In detail, we emulate
SEUs in the configuration memory of a Zynq device in or-
der to mimic hardware faults affecting the structure of the
neural network implemented on the programmable logic.
In the considered case, the hardware design implemented
on the programmable logic is the convolutional module al-
ready presented in subsection 6.4. The hardware core is
used as the fifth convolutional layer of the AlexNet model
(presented in subsection 6.1). The current fault injection
campaign targets a hardware-accelerated version of the
software convolutional layer analyzed by the previous
software-based reliability analysis.

SEUs affecting configuration memory are a well-known
source of errors for hardware accelerators implemented on
SRAM-based programmable hardware.

We would like to emphasize that the injection of faults
in the configuration memory of the hardware-programma-
ble devices can cause undesired modification in the struc-
ture of the implemented circuit, affecting not only data but
also data path, computational elements, interconnections,
etc. Hence, due to the relation between configuration
memory and circuit configuration, soft errors in the config-
uration memory produce a modification in the hardware
of the circuit until the device will be reconfigured [40]–[42].

We injected 10,000 single bitflips in the configuration
memory of the device implementing the hardware acceler-
ator. We run the classification of the whole evaluation set
consisting of 50 pictures for each faulty configuration of
the hardware-accelerated network. Please notice that, due
to the intrinsic characteristics of programmable devices,

not all the bitflips in configuration memory will generate
faults in the implemented netlist. To elaborate more, since
only a subset of resources is used by the implemented
netlist, injections could target unused resources.

As a result, we obtained an error rate of 11.05%, a failure
rate of 5.12%, and a ratio between failures and errors of
46.33%. Besides, we experienced a timeout in 0.40% of the
injections. Fig. 11 reports the detailed distribution for mis-
classification and degradation as done in the previous fault
injection analyses.

We obtained insight into the location randomly selected
for the injection and the error and failure rates regarding
them applying the PyXEL framework embedded in
FireNN. The achieved results are reported in Table III,
where the column Hits reports how many injections hit one
of the resources (used or unused) listed in the resource col-
umn, while the Hits (Used) column reports the number of
injections that hit a used resource. The third and fourth col-
umns list the error rate and the failure rate generated by
injection of a used resource among the listed ones, respec-
tively. The row of the table referred to as empty collects the
injections which targeted particular sections of the Zynq
configuration memory not configuring any resource.

The error and failure rate associated with a specific re-
source is valuable information provided by the use of
FireNN, concerning the hardware domain. Therefore, it
cannot be inferred using traditional software-based fault
injection approaches. From the analysis, we have been able
to identify that the routing interconnections are both the
most used resource and the ones with the higher sensitiv-
ity to SEUs.

6.7 Hybrid-based Reliability Analysis against
Open-Routing Model

In the current subsection, we present a resiliency analysis
carried out using the FireNN platform. In the analysis, we
emulate the open fault model in the interconnections of a
design implemented on programmable hardware, also
named the open-routing fault model. Open faults are the
most frequent error event happening in programmable
logic devices [43]. As a result of the reliability analysis re-
ported in subsection 6.6, we detected interconnections as a
critical resource for the accelerator introduced in subsec-
tion 6.4. In order to investigate more in detail the issues re-
lated to interconnections faults, we randomly injected
open-routing faults in the routing of the implemented
hardware accelerator. In particular, the platform modified
the bits related to a specific interconnection to create an

Fig. 11. Distribution of the misclassification (a) and degradation (b)
categories (resulting from SEU fault model injection) over the num-
ber of outputs experiencing the effect.

TABLE III

RESUME OF THE FAULT INJECTION CAMPAIGN OF SEUS IN CONF.MEMORY

Resources
Hits

(Any)

Hits

(Used)

Err. Rate

(of Used)

Fail. Rate

(of Used)

Routing 4,577 3,584 23.94% 11.43%

LUTs 1,370 1,058 10.49% 3.11%

Block RAMs 493 384 13.54% 7.55%

DSP 431 324 14.81% 7.10%

Flip-Flops 365 286 10.38% 4.89%

Empty 2337 - - -

Others 427 288 9.85% 9.09%

12 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

open fault in the netlist, similarly to the example reported
in Fig. 3.b. This specific analysis is a prove of how FireNN
can be used for injecting various and specific fault models
in the hardware structure of hardware accelerators either
emulated or implemented on programmable hardware.

The fault injection campaign consists of 10,000 injec-
tions. Interconnections, where to inject the open routing
fault model, have been randomly selected among the pro-
grammable routing segments used by the design imple-
mented on the hybrid device. This means that, differently
from the previous reliability analysis, we are not hitting
unused resources. The analysis showed an error rate of
59.62% and a failure rate of 40.07%. The ratio of failures to
errors for the current fault injection campaign is 67.21%.
2.78% of the fault injections led to timeout events. Fig.12
shows in detail the distribution of detected events for mis-
classifications and degradations. From Fig.12.a, it results
that errors induced by open-interconnection fault models
are very likely to affect all the outputs of the evaluation set.
Additionally, the ratio of failures and errors shows how a
very high percentage of them led to misclassification. Sim-
ilarly, Fig. 12.b shows how a very large part of misclassifi-
cations induced by open-interconnection faults will affect
a very large portion of the outputs.

6.8 Results of the Reliability Analyses

The performed reliability analyses have highlighted
the variety of information that is possible to obtain using
the proposed method and using the FireNN platform. In
Table IV, the obtained measures are resumed. The hybrid-
based approach allowed us to obtain insight into the resil-
iency of the hardware implementation and its microarchi-
tectural elements that cannot be provided using a soft-
ware-based approach. For the analyzed hardware acceler-
ator, we found how the open-routing fault model led to a

high degradation of confidence that often produces mis-
classification, especially compared to SEUs in weights and
data or random SEUs in the configuration memory. These
analyses have been enabled by the proposed platform,
providing the mean for emulating the fault models and in-
tegrating the implementation of specific hardware acceler-
ators in the model describing the neural network architec-
ture.

In order to provide additional analysis exploiting the
proposed platform, we also evaluated a layer of the Res-
Net-18 neural network. The evaluation analyzed a hard-
ware implementation of the last convolutional layer of the
network architecture. ResNet-18 contains many more lay-
ers with respect to the AlexNet network. However, using
the hybrid platform the layers preceding the layer under
test can be run in software, focusing the analysis on the
layer of interest. Since the similarity of the convolutional
layers used in the traditional convolutional networks, the
convolutional core under analysis is similar to the one ex-
posed in detail for the AlexNet layer. The main difference
is the use of 512 channels instead of 256. The results of the
evaluations against SEUs in the configuration memory and
the Open Routing fault model (analogous to the ones per-
formed in subsections 6.7 and 6.8) are resumed in Table V.

6.9 Comparison with state-of-the-art Techniques

The proposed methodology has shown to be a valid alter-
native to the traditional techniques typically adopted for
analyzing the reliability of neural network systems. The
methodology provides a solution for performing reliability
analyses aware of the hardware architecture in a short time
and without requiring highly specialized equipment.

The software-level simulation analysis is still the fast-
est method for performing reliability analysis. For in-
stance, the campaigns injecting faults during software-
level simulation carried out in this section required less
than 10 hours. However, the abstraction from the hard-
ware level prevents the analysis to be comprehensive. The

Fig. 12. Distribution of the misclassification (a) and degradation (b)
categories (resulting from open-interconnection fault model injec-
tion) over the number of outputs experiencing the effect.

TABLE IV
RESUME OF THE ALEXNET RELIABILITY ANALYSES

Method
Software Fault

Injection

Hybrid-based Fault

Emulation (FireNN)

Fault Model
 SEU in

Weights

SEU in

Data

SEU in Conf.

Memory

 Open

Routing

Error Rate 40.57% 46.16% 11.05% 59.62%

Failure Rate 2.10% 15.48% 5.12% 40.07%

Fail./Err. 5.18% 33.53% 46.33% 67.21%

Timeouts 0% 0% 0.40% 2.86%

TABLE V

RESUME OF THE RESNET-18 RELIABILITY ANALYSES

Method
Hybrid-based Fault

Emulation (FireNN)

Fault Model
SEU in Conf.

Memory

 Open

Routing

Error Rate 12.93% 60.38%

Failure Rate 5.81% 42.17%

Fail./Err. 44.93% 69.84%

Timeouts 0.51% 2.86%

DE SIO ET AL.: EVALUATION OF NEURAL NETWORKS RESILIENCY BY HARDWARE EMULATION ON HYBRID PLATFORMS 13

dependency of the application reliability on the specific
hardware platform adopted is well known and the main
reason why more demanding techniques, such as hard-
ware-level simulation and radiation testing, are needed
[13][14][18][28]. This dissimilarity was also found in the
comparison between software-level simulation and hard-
ware-based fault injection reported in the experimental
analysis section.

With respect to hardware-level simulations, the main
advantage offered by the approach is the speedup of the
time needed for the analyses. The hardware-based simula-
tion approach is known to be extremely demanding in
terms of computational power and execution time. For in-
stance, the authors of [18] propose a method for speeding
up hardware-based simulation. In the work, they report a
time of 25 minutes for performing inference of a single in-
put image using a 7 layer CNN simulated at RTL-level us-
ing a server equipped with a dual Intel Xeon CPU E5-2680
v3 and 256 GB. The FireNN platform runs on a Zynq-7020
board and required an average time of 28 seconds for eval-
uating 50 input images, including the time for generating
the fault and communicating with the host computer. For
performing a campaign of 10,000 fault injections with an
evaluation set of 50 images the average required time was
about 80 hours. Compared with the about 208,333 hours
taken by traditional RTL simulation, or with the about
45,833 hours using the method proposed in [18], the use of
hardware emulation can guarantee a significant speedup
of several orders of magnitude.

Additionally, when larger neural networks or hardware
platforms need to be emulated the simulation complexity
grows quickly along with execution time and computa-
tional demands. The hybrid methodology we are propos-
ing addresses the scalability issue in two different ways.
Firstly, the possibility to evaluate on the hardware plat-
form only an architectural layer at once (as we showed in
our experimental analysis) enables a layer-level study.
Hence, the implementation of only a single or a subset of
layers is present on the hardware while the rest of the net-
work can be simulated at the software level. This allows
using also small devices for preliminary analysis on large
neural networks on the condition that the chosen hardware
platform can contain at least one of the layers of the chosen
neural network architecture. Secondly, such an analysis
scales along with the feasibility of the project. Similar to
what happens in a radiation test, scalability is limited by
the implementability of the design on the programmable
hardware and by the number of faults to analyze.

As already stated, radiation testing is still necessary
when a deeply accurate analysis is required. However, the
hybrid methodology provides a good tradeoff for perform-
ing preliminary microarchitectural analysis involving spe-
cific resources or fault models without the need and the
costs for highly specialized equipment. This also makes it
possible to use it in the early stages of the development
process, when the hardware platform has not been firmly
chosen, allowing the eventual hardware platform to be
modified according to the results obtained.

7 CONCLUSIONS

Hardware accelerators are crucial for neural network ap-
plications. Hence, the resiliency of these applications is
strictly dependent on the hardware architecture and neural
network model. In this work, we proposed a new approach
based on the emulation of the hardware accelerators and
fault models through hybrid devices. The feasibility of the
approach has been proven by introducing the first plat-
form for enabling an analysis comprehensives of the hard-
ware level without recurring to radiation testing. We ana-
lyzed the resiliency of a convolutional hardware core inte-
grated into a software model of the AlexNet neural net-
work. Using the FireNN platform, we could compare the
results obtained by software-based and hybrid-based ap-
proaches. FireNN allowed us to emulate particular fault
models typical of programmable hardware devices (i.e.,
SEUs) and ASICs (i.e., open-routing) domains and evalu-
ate the sensitivity of specific resources, providing valuable
insight on the resiliency and the critical elements of the sys-
tem.

REFERENCES

[1] Y. LeCun, Y. Bengio and G. Hinton, "Deep learning", Nature, vol. 521, pp.

436, 05 2015, [online] Available: http://dx.doi.org/10.1038/nature14539.

[2] D. Silver et al., “Mastering the game of Go with deep neural networks

and tree search,” Nature, 2016.

[3] L. Deng et al., “Recent advances in deep learning for speech research at

Microsoft,” 2013.

[4] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed,

and H. Arshad, “State-of-the-art in artificial neural network applications:

A survey,” Heliyon. 2018.

[5] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep

Learning: A Review,” IEEE Transactions on Neural Networks and Learning

Systems. 2019.

[6] M. Capra, B. Bussolino, A. Marchisio, M. Shafique, G. Masera, and M.

Martina, “An Updated Survey of Efficient Hardware Architectures for

Accelerating Deep Convolutional Neural Networks,” Future Internet,

vol. 12, no. 7, p. 113, 2020.

[7] Mittal, S. A survey of FPGA-based accelerators for convolutional neural

networks. Neural Computing and Applications 32, 1109–1139 (2020).

[8] G. Furano et al., “Towards the Use of Artificial Intelligence on the Edge in

Space Systems: Challenges and Opportunities,” IEEE Aerospace and

Electronic Systems Magazine, vol. 35, no. 12, pp. 44–56, 2020.

[9] F. Falcini, G. Lami, and A. M. Costanza, “Deep Learning in Automotive

Software,” IEEE Software, 2017.

[10] A. Luckow, M. Cook, N. Ashcraft, E. Weill, E. Djerekarov and B. Vorster,

"Deep learning in the automotive industry: Applications and tools," 2016

IEEE International Conference on Big Data (Big Data), Washington, DC,

2016, pp. 3759-3768.

[11] ISO, ISO 26262-2 : Road Vehicles-Functional Safety. 2018.

[12] RTCA, “Design assurance guidance for airborne electronic hardware,”

Do-254. 2000.

[13] S. Mittal, “A survey on modeling and improving reliability of DNN

algorithms and accelerators,” Journal of Systems Architecture, vol. 104, no.

August 2019, p. 101689, 2020.

[14] Y. Ibrahim et al., “Soft errors in DNN accelerators: A comprehensive

review”, Microelectronics Reliability, Volume 115, 2020, ISSN 0026-2714.

[15] A. Parvat, J. Chavan, S. Kadam, S. Dev, and V. Pathak, "A survey of deep-

learning frameworks," 2017 International Conference on Inventive Systems

14 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

and Control (ICISC), Coimbatore, 2017, pp. 1-7.

[16] B. Reagen et al., “Ares : A framework for quantifying the resilience of deep

neural networks,” 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC), pp. 1–6.

[17] A. Ruospo, A. Bosio, A. Ianne and E. Sanchez, "Evaluating Convolutional

Neural Networks Reliability depending on their Data Representation,"

2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj,

Slovenia, 2020, pp. 672-679.

[18] A. Ruospo, A. Balaara, A. Bosio and E. Sanchez, "A Pipelined Multi-Level

Fault Injector for Deep Neural Networks," 2020 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), Frascati, Italy, 2020, pp. 1-6.

[19] G. Li et al., "Understanding error propagation in deep learning neural

network (dnn) accelerators and applications" in SC ’17, ACM, pp. 8:1-

8:12, 2017.

[20] B. F. Goldstein et al., "Reliability Evaluation of Compressed Deep

Learning Models," 2020 IEEE 11th Latin American Symposium on Circuits

& Systems (LASCAS), San Jose, Costa Rica, 2020, pp. 1-5.

[21] M. A. Neggaz, et al., "A Reliability Study on CNNs for Critical Embedded

Systems," 2018 IEEE 36th International Conference on Computer Design

(ICCD), Orlando, FL, USA, 2018, pp. 476-479.

[22] F. F. d. Santos et al., "Analyzing and Increasing the Reliability of

Convolutional Neural Networks on GPUs," in IEEE Transactions on

Reliability, vol. 68, no. 2, pp. 663-677, June 2019.

[23] L. A. Aranda, et al. "Analysis of the Critical Bits of a RISC-V Processor

Implemented in an SRAM-Based FPGA for Space Applications"

Electronics 9, no. 1: 175, 2020.

[24] C. De Sio, S. Azimi, and Luca Sterpone, "On the Evaluation of SEU Effects

on AXI Interconnect Within AP- SoCs", International Conference on

Architecture of Computing Systems, pp. 215-227, 2020.

[25] Z. Gao, L. Zhang, R. Han, P. Reviriego and Z. Li, "Reliability Evaluation

of Turbo Decoders Implemented on SRAM-FPGAs," 2020 IEEE 38th

VLSI Test Symposium (VTS), 2020, pp. 1-6.

[26] D. Xu et al., "Reliability Evaluation and Analysis of FPGA-Based Neural

Network Acceleration System," in IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 29, no. 3, pp. 472-484, March 2021.

[27] I. C. Lopes, et al., "Reliability analysis on case-study traffic sign

convolutional neural network on APSoC," 2018 IEEE 19th Latin-American

Test Symposium (LATS), Sao Paulo, 2018.

[28] B. Du, et al., "On the Reliability of Convolutional Neural Network

Implementation on SRAM-based FPGA," 2019 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), Noordwijk, Netherlands, 2019, pp. 1-6.

[29] Xilinx, “Zynq-7000 SoC Technical Reference Manual,” Ug585, 2018.

[30] C. De Sio, S. Azimi, L. Sterpone, "An Emulation Platform for Evaluating

the Reliability of Deep Neural Networks," 2020 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology

Systems (DFT), Frascati, Italy, 2020, pp. 1-4.

[31] L. Bozzoli, C. De Sio, L. Sterpone and C. Bernardeschi, "PyXEL: An

Integrated Environment for the Analysis of Fault Effects in SRAM-Based

FPGA Routing," 2018 International Symposium on Rapid System Prototyping

(RSP), Torino, Italy, 2018, pp. 70-75.

[32] K. Dang Pham, E. Horta and D. Koch, "BITMAN: A tool and API for

FPGA bitstream manipulations," Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, Lausanne, 2017, pp. 894-897.

[33] T. Haroldsen, B. Nelson and B. Hutchings, "RapidSmith 2: A Framework

for BEL-Level CAD Exploration on Xilinx FPGAs", Proceedings of the 2015

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

2015, pp. 66–69.

[34] A. Paszke, et al., “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”, 2019, ArXiv, abs/1912.01703.

[35] "pynq.io", 2016, [online] Available: www.pynq.io.

[36] S. Marcel, and Y. Rodriguez. “Torchvision the machine-vision package

of torch.” ACM Multimedia, 2010.

[37] Xilinx, “Vivado High-Level Synthesis,” Ug902, 2018.

[38] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional

Neural Networks Alex,” Proceedings of the 31st International Conference on

Machine Learning (ICML-14), 2012.

[39] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A

large-scale hierarchical image database," 2009 IEEE Conference on

Computer Vision and Pattern Recognition, Miami, FL, 2009, pp. 248-255.

[40] B. Du et al., “Ultrahigh Energy Heavy Ion Test Beam on Xilinx Kintex-7

SRAM-Based FPGA,” IEEE Transactions on Nuclear Science, 2019.

[41] C. De Sio, et al., “Radiation-induced Single Event Transient effects during

the reconfiguration process of SRAM-based FPGAs,” Microelectronics

Reliability, vol. 100–101.

[42] C. Bernardeschi, et al., “UA2TPG: An untestability analyzer and test

pattern generator for SEUs in the configuration memory of SRAM-based

FPGAS,” Integration, the VLSI Journal, 2016.

[43] C. Bernardeschi, L. Cassano, A. Domenici, and L. Sterpone, "ASSESS: A

Simulator of Soft Errors in the Configuration Memory of SRAM-Based

FPGAs," in IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 33, no. 9, pp. 1342-1355, Sept. 2014.

Corrado De Sio received the B.S. and M.S. de-
grees in Computer Engineering from the Univer-
sity of Pisa, Pisa, Italy, in 2018. He was a Re-
search Assistant in the CAD and Reliability
Group, Department of Computer and Control En-
gineering, Politecnico di Torino. Currently, he is a
Ph.D. Student at Politecnico di Torino. His re-
search interests include the reliability of reconfig-

urable devices, radiation effects, and soft-errors.

 Sarah Azimi received her Ph.D. from Politecnico
di Torino, Turin, Italy, in 2019. Currently, she is
working in the CAD & Reliability group of the De-
partment of Computer and Control Engineering In
Politecnico di Torino as an Assistant Professor.
Her research interests include fault-tolerant elec-
tronic design, physical models and validation plat-
forms, radiation effects on components and sys-

tems. She is a member of the IEEE.

 Luca Sterpone received the M.S. and Ph.D. de-
grees in computer engineering from the Politec-
nico di Torino, Italy, in 2003 and 2007, respec-
tively, where he is currently a Full Professor with
the Department of Computer and Control Engi-
neering. He has authored more than 200 papers
and he received several awards for his research
activities. His current research interests include re-
configurable computing, computer-aided design

algorithms, fault tolerance architectures, and radiation effects on com-
ponents and systems.

