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Several studies have investigated the dynamics of a single spherical bubble at rest under a nonstationary
pressure forcing. However, attention has almost always been focused on periodic pressure oscillations, neglecting
the case of stochastic forcing. This fact is quite surprising, as random pressure fluctuations are widespread
in many applications involving bubbles (e.g., hydrodynamic cavitation in turbulent flows or bubble dynamics
in acoustic cavitation), and noise, in general, is known to induce a variety of counterintuitive phenomena in
nonlinear dynamical systems such as bubble oscillators. To shed light on this unexplored topic, here we study
bubble dynamics as described by the Keller-Miksis equation, under a pressure forcing described by a Gaussian
colored noise modeled as an Ornstein-Uhlenbeck process. Results indicate that, depending on noise intensity,
bubbles display two peculiar behaviors: when intensity is low, the fluctuating pressure forcing mainly excites
the free oscillations of the bubble, and the bubble’s radius undergoes small amplitude oscillations with a rather
regular periodicity. Differently, high noise intensity induces chaotic bubble dynamics, whereby nonlinear effects
are exacerbated and the bubble behaves as an amplifier of the external random forcing.

DOI: 10.1103/PhysRevE.103.023108

I. INTRODUCTION

Over the past few decades, the dynamics of gas-bubbles
(also referred to as cavities) in liquids has attracted a lot of in-
terest in the scientific community; see, e.g., [1–3]. This paper
focuses on the canonical case of a spherical bubble subjected
to a prescribed external forcing which drives variations in
the bubble’s radius. The problem has been extensively ad-
dressed (see, e.g., [4–7]) and can be mathematically described
by ordinary differential equations, which, depending upon
different simplifying assumptions, can take different forms
[8–12]. Despite such differences, all these equations share the
common feature of retaining strongly nonlinear terms which
make gas-bubbles in liquids dynamically rich systems [13].

One of the attractive features of bubble dynamics involves
the possibility of cavities undergoing abrupt variations in size.
In particular, due to the high inertia of the liquid hosting
the cavities, bubbles, if properly excited, can be subjected to
abrupt collapses that generate intense pressure and tempera-
ture peaks, which, in turn, are associated with the generation
of shock waves and the emission of light and sound [14–16].

The attractiveness of such extreme pressure and tempera-
ture events stems from the fact that they can be exploited in
several technological applications. For instance, in medicine,
bubble collapses are used to break liver and kidney stones and
cancer cells [17,18]. In the water industry, bubbles’ collapses
physically inactivate bacteria, and the free-radicals generated
by the temperature peaks reached during the collapsing phase
are used to oxidize pollutants for waste-water treatment pur-
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poses [19–22]; in geophysics, bubble implosions are useful
for subsea geological explorations [23,24].

Several factors influence bubble dynamics. The most rel-
evant are the properties of the liquid hosting the gas bubble
[25], the presence of solid boundaries close to the bubble
[26–28], the interaction with other proximal gas cavities
[29,30], and the action of an external forcing that alters the
bubble equilibrium conditions. Two classes of forcing are
commonly considered. The first one consists in the alteration
of the bubble size in a liquid at rest (with time-invariant
pressure) using either laser beams or sparks [31,32]. The
second class involves variations of the static pressure of the
liquid hosting the bubble [33,34]. Static pressure variations
are usually induced by ultrasound waves traveling within a
volume of liquid at rest [35,36] or by alterations of the liquid
velocity (e.g., geometrical constrictions like orifice plates or
Venturi tubes) in a pressurized system of conduits [37,38].

The pressure forcing—especially the case of pressure fluc-
tuations in a liquid at rest—has been the focus of a great deal
of studies and will be considered also in the present paper.
Most previous works have generally explored the effects of
sinusoidal pressure oscillations on the bubble’s radius (see,
e.g., [39]). In spite of the simple and regular temporal struc-
ture of the forcing, the response of the bubble turned out
to be very rich, exhibiting period-doubling bifurcations and
period-doubling cascades that can ultimately lead to a chaotic
behavior [40–45].

Other studies have investigated the forced dynamics of
bubbles when the pressure of the hosting liquid is perturbed
by a biharmonic signal obtained as the sum of two sinusoidal
signals [46,47]. It was found that such a combined signal
induces significant alterations in the thresholds of period-
doubling bifurcations and period-doubling cascades. It was
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therefore suggested to adopt biharmonic pressure signals to
control chaos inception and to give a more controlled and
predictable bubble behavior [48]. Finally, some theoretical
and experimental studies have focused on the transient phase
occurring during the inception of an ultrasound field and in
pulsed ultrasound fields [49–51]. Results showed that the
collapse of bubbles was more intense in the transient phases,
rather than during the regular sinusoidal phase of pulsed ultra-
sound fields.

In the authors’ opinion, the aforementioned results from
the literature suggest that transients and irregularities of the
external forcing can lead to yet unexplored bubbles’ re-
sponses. This should not be entirely surprising because it
is well known that many interesting and unexpected phe-
nomena emerge from the stochastic forcing (i.e., a form of
irregular forcing) of strongly nonlinear systems (i.e., the so
called noise-induced phenomena; see [52–55]). It is within
this context that the aim and relevance of the present paper
are cast. The aim is indeed to explore the response of a single
bubble to random fluctuations of the external pressure. The
relevance of the study lies in the fact that stochastic pressure-
forcing is important for a number of applications, and is
encountered in a number of environments. Notable examples
include (i) hydrodynamic cavitation reactors (mainly used
for water-treatment processes) where the pressure fluctuations
imposed by turbulence and by the geometry of the reactor
are known to heavily influence bubble dynamics [30,43,56]
and, ultimately, bubble efficiency in oxidation and disinfection

processes; and (ii) acoustic cavitation reactors, where bubble
dynamics is influenced by the interactions between the si-
nusoidal pressure-waves generated by ultrasound transmitters
and the random shock pressure waves generated by imploding
bubbles [38,57,58].

To fulfill the aim of the paper, we chose to adopt a
modeling approach whereby the dynamics of bubble was in-
vestigated through numerical integration of the Keller-Miksis
equations [40]. The pressure of the fluid hosting the bubble
(i.e., the pressure forcing) was assumed to undergo stochas-
tic fluctuations which were simulated using the Ornstein-
Uhlenbeck model [59]. This model is well-established and
represents a wide number of random processes in nature
[60–63]. More importantly, it is characterized by only two
free parameters that allow for a systematic exploration of
noise-intensity and noise-autocorrelation effects on bubble
dynamics.

II. METHODS

A. Mathematical modeling of bubble dynamics

We focus on a single bubble located far from solid bound-
aries or liquid surfaces. The bubble is assumed to be spherical,
positionally stable, and its surface is assumed not to be af-
fected by instability mechanisms [64]. To study the dynamics
of this type of cavity, it is standard to focus on the temporal
evolution of the bubble radius, R(t ), where t is time. A well-
known mathematical framework for the modeling of R(t ) is
given by the Keller-Miksis equation [40]

(
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)
RR̈ +

(
1 − Ṙ
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)
3

2
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(
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)(
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(
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)
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where dots denote time derivation, c is the speed of sound, ρ is
the liquid density, p(t ) is the (possibly time-dependent) liquid
pressure indefinitely far from the bubble wall (often indicated
in the literature also as p∞), and pw is the liquid pressure at
the bubble wall. We chose the Keller-Miksis equation in place
of more simplified formulations (e.g., the Rayleigh-Plesset
equation) in order to properly model large and fast temporal
variations of the radius R(t ) [40]. In the following, we will
show that long-lasting and large increments of the bubbles’
radius play a key role in determining chaos in the radius dy-
namics. In this regard, Nazari-Mahroo et al. [65] compared the
Keller-Miksis, Gilmore, and Lezzi-Prosperetti models, and
showed that—during the radius expansion stage—they behave
very similarly. This means that the results presented herein
are robust and overall insensitive to the choice of the specific
bubbles’ dynamics model. It should also be noted that during
the radius expansion stage, the bubble remains spherical. This
is confirmed, for instance, by the experiments reported by
Löfstedt et al. [66].

The bubble is assumed to contain a mixture of liquid vapor
and noncondensible gas and to be submerged within a liquid
at constant temperature. If this mixture behaves as an ideal
gas, the total pressure inside the bubble can be evaluated as
pG + pv , where pG and pv are the gas and vapor partial pres-

sure inside the cavity, respectively. Under this assumption, the
pressure at the bubble wall, pw, can be derived by a force
balance at the gas-liquid interface, reading

pw = pG + pv − 2S

R
+ 4μ

Ṙ

R
, (2)

where S is the surface tension, and μ is the liquid dynamic vis-
cosity. Provided that the liquid that hosts the bubble is kept at a
constant temperature, the vapor pressure inside the cavity, pv ,
is also constant. The gas pressure inside the bubble, instead,
can be evaluated according to the polytropic relationship

pG = pG,eq

(
Req

R

)3k

, (3)

where pG,eq and Req are the gas pressure inside a bubble and
the bubble radius in equilibrium conditions, respectively, and
k is the so-called polytropic exponent. In this study, bub-
bles are supposed to undergo adiabatic volume changes, i.e.,
k = 1.4. This is consistent with several studies [3,67,68] that
have shown that bubble dynamics—as predicted by adiabatic
mathematical models—matches experimental observations.
Finally, the pressure inside a bubble in steady conditions,
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TABLE I. Physical parameters adopted for the liquid hosting the
bubble. Data refer to water at 293 K.

ρ S μ c pv

(kg m−3) (N m−1) (Pa s) (m s−1) (Pa)

998 73 × 10−3 1.00 × 10−3 1481 2338

pG,eq, is evaluated from (1) and (2) setting Ṙ = R̈ = 0 as

pG,eq = p − pv + 2S

Req
, (4)

where p is the pressure of the liquid far from the bubble.
A key parameter is the period of bubble-free oscillations

[3,25]

Tn = 2π

(
3k(p − pv )

ρR2
eq

+ 2(3k − 1)S

ρR3
eq

)− 1
2

. (5)

This parameter will be crucial in the interpretation of the
temporal evolution of the cavity radius R(t ). In the following,
water at 293 K is assumed as the hosting liquid, and Table I
reports the corresponding physical parameters.

B. The stochastic forcing

The pressure of the liquid hosting the bubble is supposed
to evolve over time as

p(t ) = p̄ + p′(t ), (6)

where p̄ is the mean pressure experienced by the cavity, and
p′(t ) is the time-dependent fluctuation around p̄. The fluctu-
ations p′(t ) are modeled as an Ornstein-Uhlenbeck process
[59,63].

The Ornstein-Uhlenbeck process is a stationary colored
Gaussian-Markov process with the following characteristics:
(i) the probability density function of the realizations p′(t ) is
a normal distribution with zero mean and standard deviation
σp; (ii) the stochastic process is exponentially autocorrelated
as p′(t )p′(t + τ ) = σp exp[−τ/τp], where τp is the autocorre-
lation timescale; and (iii) the process is stationary, namely σp

and τp do not change over time.
We have chosen the Ornstein-Uhlenbeck process as the

random pressure forcing due to its simplicity, mathematical
tractability, and the possibility of changing its variance and
(linear) memory by acting on only two parameters, namely the
standard deviation σp and the autocorrelation timescale τp.

From a numerical point of view, the realizations of the
pressure fluctuations, p′(t ), are evaluated by the so-called
“exact update formula” provided by Gillespie [69], namely

p′(t + �t ) = p′(t )ζ + σp

√
1 − ζ 2n, (7)

where n is a unit normal random number, �t is the time step
of the process, and ζ = exp [−�t/τp]. Since (7) provides an
exact update for p′(t ), the actual value of the time step of the
process is arbitrary, and �t = τp/50 was chosen in this study.

C. Simulation of bubble radius dynamics

To investigate the effect of the stochastic pressure forcing
on the dynamics of a bubble [i.e., on the time-series of the
bubble radius R(t )], a number of numerical simulations were
performed. Each numerical simulation consisted of two steps.
First, a random pressure forcing p(t ) was simulated according
to (7). Secondly, Eq. (1) was forced with p(t ) and numerically
solved to obtain the response of the bubble, namely the time-
series of the radius R(t ).

Simulations of p(t ) were performed setting p̄ = 100 ×
103 Pa. Three correlation times τp = [0.5, 1, 2]Tn were con-
sidered, and the standard deviation of the pressure was
changed in the range [0, 120] × 103 Pa. The duration of the
simulations was set equal to 4000Tn. This duration guaranteed
a robust estimation of all the statistical properties of R(t ) for
all the investigated conditions.

To obtain R(t ) from the numerical integration of (1)
with the forcing (7), the initial conditions R(0) = Req = 5 ×
10−6 m and Ṙ(0) = R̈(0) = 0 were imposed and the time
step �t = 10−8 s was adopted. R(t ) was normalized with
the equilibrium radius Req [25,40,45] to better quantify the
dynamics of the bubble radius.

Figure 1(b) reports the time-series of the normalized radius
R(t )/Req as obtained from integration of Eq. (1) when forced
with the pressure reported in Fig. 1(a). In Figs. 1(c) and 1(d),
the PDFs of the time-series p(t ) and R(t ) [partially reported
in panels (a) and (b)] illustrate the variability of p(t ) and
R(t ). Similarly, Figs. 1(e) and 1(f) report the autocorrelation
functions, and illustrate how the correlation time is evaluated.

The interested reader can find in Appendix C further details
about the numerical techniques adopted to solve (1) and a
sensitivity analysis of the solution with respect to the time
step adopted for the numerical solution, the duration of the
simulations, and the number of realizations adopted for the
statistical analyses.

III. RESULTS

Four complementary perspectives are adopted to study the
behavior of R(t )/Req. The first (Sec. III A) is based on bi-
furcation diagrams and presents a way to identify the onset
of chaos in the R(t )/Req time-series. The second (Sec. III B)
investigates the physical mechanisms underpinning the onset
of chaotic fluctuations. The third (Sec. III C) is a detailed
statistical analysis of R(t )/Req, with a particular emphasis on
the dependence of R(t )/Req statistical moments on various
combinations of noise intensity and correlation timescales.
Finally, Sec. III D digs deeper into second-order statistics and
investigates dominant modes and characteristic timescales of
R(t )/Req time-series. This provides hints about the random
versus organized temporal structure of R(t ).

All the results are wrapped up in Sec. IV, which provides
an overview of the bubbles’ behavior under stochastic pres-
sure forcing, using and harmonizing all the results obtained
from Secs. III A–III D.

A. Assessment of the temporal pattern and bifurcation diagram

We begin the results section by discussing the temporal
dynamics exhibited by R(t )/Req. To this aim, the values R(t =
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FIG. 1. (a) Example of a time-series of the normalized stochastic pressure forcing p(t )/ p̄. (b) Time-series of the normalized radius R(t )/Req

of the bubble forced by the pressure reported in (a). The black dots in (b) highlight the bubble radius attained at the instants nTn, where n is an
integer and Tn is the natural oscillation period of the bubble (see Sec. III A for the explanation). (c),(d) Probability density functions, and (e),(f)
autocorrelation functions of the time-series (partially) reported in (a) and (b). The dashed lines in (e) and (f) mark the level ρp = ρR = 0.1. It
should be noted that the time-lag t̂l such that ρ(t̂l ) = 0.1 is defined as the correlation time of the time-series. The times in (a) and (b) and the
time lags reported in (e) and (f) are normalized by Tn. The adopted parameters are σp = 60 × 103 Pa and τp = 2.0Tn = 2.8 × 10−6 s.

nTn)/Req with n = 1, 2, . . . were extracted from R(t )/Req [see
the dot symbols in Fig. 1(b)]. If the bubble radius oscillation
exhibits a period Tn, R(t ) takes the same value at instants
that are multiples of Tn. Conversely, if R(t ) is not periodic
(or when the period of oscillations is different from Tn), then
R(nTn)/Req exhibits a variability.

Figures 2(a) and 2(b) show results associated with the anal-
ysis of R(nTn)/Req in the form of noise-intensity bifurcation
diagrams. These graphs report on the noise intensity σp/p̄ (on
the x-axis) and on the values of R(nTn)/Req (on the y-axis)
extracted from the corresponding time-series R(t ). The gray
and red dots in Figs. 2(a) and 2(b) refer to different correlation
times τp. The noise-intensity-bifurcation diagrams obtained
in Figs. 2(a) and 2(b) align with those obtained from other
studies that considered a sinusoidal forcing [25,40,45], but
key differences can be observed.

In the case of a sinusoidal forcing with amplitude Ap and
period Tn, the noise-intensity-bifurcation diagrams exhibit two
different zones. When Ap is lower than a threshold Ap,c, the
metric R(nTn)/Req is perfectly constant for any n. This can
be seen, for example, in Figs. 3(a) and 3(b), which report the
radius dynamics forced by the sinusoidal pressure with ampli-
tude Ap < Ap,c shown in Figs. 3(d) and 3(e). Differently, for
Ap > Ap,c the metric R(nTn)/Req exhibits a large variability
for a fixed value of Ap and for different values of n. This
nonregular behavior is exemplified in Fig. 3(c), which shows
the radius dynamics under the sinusoidal pressure forcing with
amplitude Ap > Ap,c of Fig. 3(f). Therefore, in the case of a
sinusoidal forcing, Ap,c represents an amplitude threshold that
sharply separates the nonchaotic and chaotic regimes.

When stochastic fluctuations of pressure are considered,
the variability of R(nTn)/Req increases with increasing σp/p̄
[Figs. 2(a) and 2(b)]. This is consistent with the case of a
sinusoidal forcing. However, while σp/p̄ increases, a clear
threshold that separates regular oscillations from chaotic fluc-
tuations does not emerge. Moreover, even for very low values
of σp/p̄, the metric R(nTn)/Req does show some level of vari-
ability and hence it is not constant.

A more careful inspection shows that a change in the
bubble dynamics occurs at σp/p̄ ≈ 0.30: for σp/p̄ � 0.30,
the normalized radius oscillates around 1 and is con-
fined by the almost symmetrical curves exp[1.9(σp/p̄)] and
exp[−1.5(σp/p̄)] [these curves were obtained by fitting the
maximum and minimum values attained by R(nTn)/Req for
σp/p̄ < 0.30]; differently, for σp/p̄ � 0.30, the variability of
the radius suddenly increases and R(nTn)/Req ∈ [0.01, 50].

B. Physics of chaos inception

To elucidate the physical behavior behind the inception
of chaos in the dynamics of R(t ) occurring for σp/p̄ > 0.3,
Figs. 2(c) and 2(d) report two exemplifying portions of time-
series R(t )/Req. To relate the bubble radius dynamics to the
pressure fluctuations, the corresponding time-series p(t )/p̄
are reported in Figs. 2(e) and 2(f). These pressure time-series
are obtained setting the same noise timescale τp = Tn but
different noise intensities. The dotted lines mark the threshold
p(t )/p̄ = 1, and they help to discern the instants when the in-
stantaneous forcing pressure is below average [i.e., p(t )/p̄ <

1] or above average [i.e., p(t )/p̄ > 1]. We recall that when the
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. (a),(b) Noise-intensity bifurcation diagrams. For a given value of σp/ p̄, the dynamics of R(t ) is simulated for 4000Tn. From this
simulation, only the values R(nTn)/Req are selected, and they are reported in the vertical axis for the given σp/p̄. In both panels, the gray circles
refer to τp = Tn. In panels (a) and (b), the red dots refer to τp = Tn/2 and τp = 2Tn, respectively. (c)–(f) Time segments of the time-series
R(t )/Req and p(t )/ p̄. The horizontal dotted lines mark the equilibrium radius R(t )/Req = 1 and the mean pressure p(t )/ p̄ = 1. The black dots
in (c) and (d) highlight the bubble radius attained at the instants nTn. Panels (c) and (e) refer to σp/p̄ = 0.3, and panels (d) and (f) refer to
σp/p̄ = 0.4; in both cases, τp = Tn.

instantaneous pressure is below (above) average, the bubble
radius tends to increase (decrease).

Figures 2(c) and 2(e) refer to the noise intensity
σp/p̄ = 0.3 (i.e., just below the threshold that separates the
nonchaotic/chaotic behaviors). In this case, the pressure oscil-
lates slightly around the mean value [Fig. 2(e)] and the bubble
radius does not undergo large increments [R(t )/Req never
exceeds the value 2; see Fig. 2(c)]. It follows that during the

small radius increments, little energy is stored in the bubble.
As a consequence of this, (i) the subsequent rebound is mild
[R(t )/Req remains close to unity], and (ii) the radius growth
that follows the rebound is mild as well. The radius dynamics
is therefore characterized by a sequence of modest increments
of radius intercut with mild rebounds. At these conditions, the
period of the oscillations is very close to the natural oscillation
period of the bubble and no chaos is detected.
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Time segments of the time-series R(t )/Req (top row) and p(t )/ p̄ (bottom row) when a sinusoidal external pressure—with amplitude
Ap = √

2σp and period τp = Tn—is applied. The dotted lines mark the equilibrium radius R(t )/Req = 1 and the mean pressure p(t )/ p̄ = 1. The
black dots in (a)–(c) highlight the bubble radius attained at the instants nTn. Panels (a),(d), (b),(e), and (c),(f) refer to σp/ p̄ = 0.4, σp/p̄ = 1.2,
and σp/p̄ = 2.0, respectively.

In contrast, Figs. 2(d) and 2(f) focus on the noise intensity
σp/p̄ = 0.4 (i.e., above the no-chaos/chaos threshold). In this
case, the pressure may deviate significantly from the mean
value [e.g., see immediately after t/Tn = 3575 in Fig. 2(f)].
As a result, large increments in the bubble radius occur, which
may last a few times the natural period Tn. For instance, this
can be seen in Fig. 2(d), where the radius growth starting at
t/Tn ≈ 3575 lasts about 3Tn, and R(t )/Req eventually exceeds
the value 3. During these large increments of radius, a signif-
icant amount of energy is stored in the bubble. Consequently,
(i) the subsequent rebound is violent [R(t )/Req is much lower
than unity], and (ii) the radius growth that follows the rebound
may be considerable and long-lasting [this is exemplified in
Fig. 2(d), where the radius growth that begins after the re-
bound at t/Tn ≈ 3578 lasts about 2Tn]. The radius dynamics
is therefore characterized by a sequence of significant and
long-lasting increments of radius (the duration of these phases
exhibit a wide variability) intercut with violent rebounds. At
these conditions, R(t )/Req deviates significantly from unity,
and the period of the oscillations varies significantly from the
natural oscillation period of the bubble. Accordingly, a chaotic
behavior is detected. It should be noted that the behaviors
reported in the time segments of Figs. 2(c)–2(f) are not rare,
but they are detected in a large number of time segments in
the time-series simulated in this work.

The examples previously reported depict a picture where
bubble chaotic dynamics is characterized by long-lasting
and large radius increments, induced by time-coherent nega-
tive pressure fluctuations. It follows that chaos occurs when
downcrossing events in the pressure signal exceed suitable
thresholds, namely, the duration and the magnitude of the
negative pressure fluctuations (with respect to the pressure

mean value) become sufficiently high. In the cases investi-
gated in this work, such downcrossing analysis shows that
bubble chaotic dynamics occurs when (i) the duration of pres-
sure reduction events exceeds the threshold 1.5Tn, and (ii) the
corresponding mean value of the pressure reduction during
these negative pressure events is greater than 0.6p̄. However,
it should be noted that the bubble response to pressure forcing
depends on the physical properties of fluid and the initial
size of the bubble. Therefore, the physics of chaos inception
previously described (i.e., the interplay between long-lasting,
intense pressure fluctuations and nonlinear bubble dynamics)
is of general validity. However, the exact threshold values
dictating the transition to chaos detected here are surely de-
pendent on the fluid characteristics (see Table I). The precise
determination of this dependence is beyond the scope of the
present work, and will be the subject of future work.

We now briefly highlight the key role of pressure stochas-
ticity in the inception of chaos in bubble dynamics. To this
aim, we evaluated the response of a bubble to three sinusoidal
pressure forcings p(t )/p̄ = 1 + (Ap/p̄) sin(2πt/Tn), and we
compared it against the behavior depicted in Figs. 2(d) and
2(f). Three relevant values of the oscillation amplitude, Ap,
were tested: (i) Ap/p̄ = √

2 × 0.4, such that the standard
deviation of the sinusoidal signal is σp = 0.4 × p̄, and the re-
sulting radius dynamics can be compared with Fig. 2(d) (that
refers to a stochastic pressure forcing with σp/p̄ = 0.4); (ii)
Ap/p̄ = √

2 × 1.2 (i.e., the sinusoidal forcing is characterized
by σp/p̄ = 1.2) such that the minimum pressure attained by
the sinusoidal forcing is the same as that typically attained by
the stochastic forcing of Fig. 2(f); and (iii) Ap/p̄ = √

2 × 2.0,
inducing pressure oscillations with σp/p̄ = 2.0, i.e., much
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(a) (b)

(c) (d)

FIG. 4. Effect of σp/ p̄ on some relevant statistical parameters that describe the time-series R(t ).

higher than 0.4. Results on R(t )/Req are reported in Fig. 3. The
noise intensities σp/p̄ = 0.4 and σp/p̄ = 1.2 [Figs. 3(d) and
3(e)] did not lead to inception of chaos: the radius time-series
were very regular and exhibited fluctuations with the constant
period Tn [Figs. 3(a) and 3(b)]. Differently, for σp/p̄ = 2.0
[Fig. 3(f)], a chaotic behavior of the bubble radius occurred
[Fig. 3(c)].

The comparison of results shown in Fig. 2 (related to
random forcing) and in Fig. 3 (corresponding to sinusoidal
forcing) clearly shows that stochasticity promotes chaos in-
ception. Although sinusoidal pressure signals have the same
standard deviation [σp/p̄ = 0.4, Figs. 3(a) and 3(d)] or the
same typical minimum values [Figs. 3(b) and 3(e)] of the
stochastic forcing, sinusoidal pressure forcing does not lead
to chaotic bubble dynamics, while random forcing does. Only
the increment of the oscillation amplitude of the sinusoidal
pressure to Ap/p̄ = √

2 × 2.0 eventually leads to the incep-
tion of chaos. Namely, the noise intensity of the sinusoidal
pressure should be five times larger than that of the stochastic
case in order to observe a similar pattern of chaotic radius
fluctuations.

The role of the correlation time of the forcing, τp, was
also explored. Red dots in Figs. 2(a) and 2(b) correspond to
τp = 0.5Tn and τp = 2Tn, respectively; in each panel, data
pertaining to τp = Tn (gray circles in both panels) are kept
to allow for comparisons. It emerges that variations of τp

are relevant only for σp/p̄ � 0.30 (i.e., above the threshold
identified before) and positively correlated with the variability
of the bubble radius. This behavior is in accordance with the
physical explanation of the inception of chaos described so far.
Higher values of correlation time of the forcing entail longer

periods over which the pressure fluctuation has a constant
sign. Hence, longer periods of pressure below average can be
observed. These, in turn, promote large radius increments and
thus the inception of chaos. This analysis is performed in more
detail in Appendix A.

C. Statistical analysis

The analysis of Fig. 2 reveals that R(t ) deviates signif-
icantly from its equilibrium value and the behavior of R(t )
can be very irregular. To better quantify the deviations of R(t )
from Req, the probability density functions (PDFs) and the
cumulative distribution functions (CDFs) of the metric R/Req

were evaluated. Details about this statistical analysis are given
in Appendix B, where we report that changes in both σp/p̄
and τp induce significant alterations in the PDF of the bubble
radius R(t ). However, σp/p̄ effects seem to be stronger. For
this reason, the effect of σp/p̄ was systematically explored in
the relatively large range [0,1.20] for only three values of the
noise correlation time τp = [0.5, 1, 2]Tn.

For the sake of clarity, the corresponding effects on the
PDFs of R(t ) are then expressed in terms of four relevant
statistical parameters, reported in Fig. 4: (i) the mean value
of the normalized bubble radius, R̄/Req; (ii) the coefficient of
variation of R(t ), i.e., cV,R = σR/R̄; (iii) the skewness sR of the
time-series; and (iv) the kurtosis kR of R(t ).

The noise intensity σp/p̄ has a strong effect on the mean
value of the bubble radius [Fig. 4(a)]. In particular, σp/p̄ is
positively correlated with R̄. This is a key point: the mean
value of the bubble radius depends not only on the mean
pressure, p̄, but also on the noise intensity, σp. Therefore, in
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the case of a stochastic pressure forcing, it can be misleading
to estimate the mean value of the bubble radius just from the
mean (background) pressure.

When σp/p̄ exceeds 0.60, different curves R̄/Req are ob-
served for different values of τp. This can be explained as
follows. According to the analysis presented in Sec. III A,
the deviation of R̄ from Req is due to the nonlinear nature
of the bubble dynamics, and, in particular, it is ascribable to
the effect of time segments during which the instantaneous
pressure is below average [i.e., when p(t ) < p̄]. When the
pressure is below average, the bubble radius undergoes a
strong increment and deviates significantly from Req [i.e., the
equilibrium radius attained at p(t ) = p̄; see Figs. 2(c) and
2(d)]. This clearly contributes to an increase in R̄. It was also
pointed out that the higher τp is, the longer is the duration
of time segments during which the instantaneous pressure
is below average (see Appendix A), and thus the stronger
are the increments of the bubble radius and, consequently, R̄
from Req. Besides R̄, the other statistical parameters are all
also strongly affected by the noise intensity [see Figs. 4(b)–
4(d)].

The correlation time τp does not change the qualitative
behavior of the curves presented in Fig. 4, however some
peculiarities do occur: (i) the effect of τp on the mean value
and on the coefficient of variation of R(t ) is most relevant for
high values of σp/p̄ [Figs. 4(a) and 4(b)]; (ii) the skewness
and the kurtosis are affected by τp the most when σp/p̄ is in
the range [0.4,0.8] [see Figs. 4(c) and 4(d)], while instead the
curves tend to merge for higher values of the correlation time
of the pressure forcing.

The behavior of skewness and kurtosis shows other inter-
esting aspects. For all investigated values of τp, they increase
with increasing σp/p̄ within the range σp/p̄ = [0, 0.60]. For
σp/p̄ � 0.60, instead, they seem to tend monotonically (kur-
tosis) or nonmonotonically (skewness) to an asymptotic value
[Figs. 4(c) and 4(d)]. Interestingly, the kurtosis tends to its
Gaussian value of 3. In summary, the trends observed in Fig. 4
indicate that increments in the noise intensity tend to increase
the mean radius of the bubble as well as the intensity of its
variations [Figs. 4(a) and 4(b)]. The positive value of the
skewness indicates that it is more probable to have R(t ) > Req

than R(t ) < Req. This asymmetry increases with increasing
σp/p̄ but saturates for σp/p̄ � 0.60. The behavior depicted
by kurtosis indicates that the occurrence of extreme events
(i.e., intermittency) in R(t ) increases with increasing noise
intensity, but, as per the skewness, it saturates for σp/p̄ �
0.60.

An important aspect in studies about nonlinear oscillators
is to evaluate whether the system behaves as a “damper” or
as an “amplifier” of the external forcing [54]. To this end, the
variability of the bubble radius was compared to the variability
of the forcing pressure forcing (see Fig. 5). The gas bubble can
be classified as a “damper” when the coefficient of variation
of the fluctuating pressure forcing is larger than the coefficient
of variation of the fluctuating bubble radius (i.e., cV,p > cV,R,
gray zone in Fig. 5). On the other hand, if cV,p < cV,R (white
zone in Fig. 5), the gas bubble behaves as a noise “amplifier.”
The correlation time of the noise, τp, is a key parameter
in determining the amplifier/damper behavior of the bubble
oscillator. For τp � Tn, the bubble dynamics usually exhibits

FIG. 5. Effect of the coefficient of variation of the pressure, cV,p,
on the coefficient of variation of the bubble radius, cV,R. The shaded
zone highlights the lower half-plane bounded by the bisector, where
the bubble exhibits “damper” behavior. In the upper half-plane, the
bubble behaves as an “amplifier.”

a “damper” behavior. Differently, when τp = 2Tn, the bubble
behaves as a noise “amplifier” for cV,p � 0.5.

D. Temporal correlation

It is now instructive to analyze the correlation timescale
of the radius signal R(t ). To this end, we evaluate the au-
tocorrelation function ρR(tl ) [see the examples reported in
Figs. 6(A1) and 6(B1)]. Then, we select the turnover time-
lag t̂l,R so that ρR(t̂l,R) = 0.1 [red circles in Figs. 6(A1) and
6(B1)]. Finally, the integral scale of the signal is evaluated
as IR = ∫ t̂l,R

0 ρR(tl )dtl . If the same procedure is applied to the
time-series p(t ) [see Figs. 6(A2) and 6(B2)], the integral scale
of the noise Ip = τp is obtained. To highlight the nonlinear
behavior of the bubble oscillator, we focus on the ratio be-
tween the integral scale of the bubble radius and the integral
scale of the pressure, namely IR/Ip [Fig. 6(a)]. Note that the
definition of the crossover timescale based on the fact that
ρR = 0.1 is arbitrary. Note also that any other value of ρR

reasonably close to 0 proved to lead to almost identical results
and trends presented in Fig. 6(a), meaning that the results
discussed in what follows are essentially independent of the
exact definition of the crossover timescale.

Figure 6(a) shows the effect of the noise intensity σp/p̄ on
IR/Ip, and two contrasting behaviors are observed. When the
noise intensity σp/p̄ is lower or greater than ≈0.30 (this value
depends slightly on τp), then IR � Ip [gray zone in Fig. 6(a)]
and IR � Ip [white zone in Fig. 6(a)], respectively.
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(a)
(A1)

(A2)

(A3)

(B1)

(B2)

(B3)

(A4)

(A5)

(B4)

(B5)

FIG. 6. (a) Effect of the noise intensity σp/p̄ on the ratio between the integral scale of the radius time-series, IR, and the integral scale
of the pressure forcing, Ip. The gray zone highlights the condition IR < Ip. Autocorrelation diagrams of R(t ) [panels (A1) and (B1)] and p(t )
[panels (A2) and (B2)]. The red lines mark the level where the autocorrelation function is 0.1. (A3),(B3) Power (amplitude) spectrum of R(t ).
It should be noted that the horizontal axis reports the period of the kth harmonics (rather than its frequency). (A4)–(B5) Relevant time segment
of the time-series R(t ) and p(t ). The dotted lines mark the equilibrium radius Req and the mean pressure p̄.

To investigate the physical processes underpinning this
sharp change in the behavior of IR/Ip, we select two values
of σp/p̄ for which these contrasting behaviors are observed
[see points A and B in Fig. 6(a)]. For both cases, the radius
signal R(t ) [Figs. 6(A4) and 6(B4)] and the pressure signal
p(t ) [Figs. 6(A5) and 6(B5)] are also reported over a signif-
icant time interval. Moreover, the power spectrum of R(t ) is
evaluated [Figs. 6(A3) and 6(B3)].

Case A. For low values of the noise intensity, the only
effect of pressure fluctuations is to excite the free oscillations
of the bubble. For instance, when σp/p̄ = 0.14, the bubble
radius oscillates with a varying amplitude [see Fig. 6(A4)],
but the oscillation period is almost constant, and it is close
to the natural period of oscillation of the bubble, Tn. This
is confirmed by (i) the peak in the power spectrum of
R(t ) [Fig. 6(A3)], and (ii) the shape of the autocorrelation
function [Fig. 6(A1)], which resembles that of a periodic
signal with period equal to Tn. Therefore, for low noise
intensity levels, pressure variations are not able to signifi-
cantly alter the free oscillations of the bubbles and induce
chaos.

Case B. For high values of the noise intensity, pressure
fluctuations drive the bubble dynamics. In the considered
case (the noise intensity is σp/p̄ = 1.10), the bubble ex-
hibits oscillations that attain large amplitudes [Fig. 6(B4)].
Differently from Case A, the oscillation period undergoes
strong variations in the range [0.5, 10]Tn. As a result, the
power spectrum of R(t ) [see Fig. 6(B3)] does not show any
clear peak, and harmonics with periods in the wide range
[101, 103]Tn are characterized by comparable amplitudes. The
signal portions reported in Figs. 6(B4) and 6(B5) show that
pressure variations alter to a major extent the dynamics of
the bubble—according to the physical mechanisms explained
in Sec. III B—and free oscillations with period Tn are rarely
observed. For instance, during the very long time segment
from t ≈ 2 × 10−6 to t ≈ 10 × 10−6 s, the bubble radius
becomes very large [≈ 10 times the equilibrium value; see
Fig. 6(B4)]. After this long growth phase, oscillations with
a period slightly higher than Tn are observed. The high values
of IR observed for high values of σp are therefore induced by
the long periods over which a constant growth of R(t ) takes
place. Note that these long-lasting growth phases are followed
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(a)

(b)

FIG. 7. Time-series of R(t )/Req in four relevant time segments in the case of τp = Tn/2 (a) and τp = 2Tn (b). In both cases, σp/ p̄ = 0.70.
The red dots plotted at R(t )/Req = 1 mark the instants when p(t ) < p̄, and they should not be confused with the dynamics of R(t )/Req reported
by the black line. Panels (a) and (b) report different ranges in the vertical axis.

by rebounds exhibiting a period comparable to the bubble’s
natural period. It follows that the increment of IR due to long-
lasting radius growth phases cannot be balanced by phases
during which the bubble oscillates with a period close to Tn.

The behavior previously described justifies the negligible
effect of noise correlation time on bubble dynamics ob-
served when the noise intensity is below the no-chaos/chaos
threshold. This result was detected in Figs. 2(a) and 2(b)

(a) (b)

(d)(c)

FIG. 8. (a,b) Probability density function of the metric R/Req. (c) Complementary cumulative distribution function of R/Req evaluated for
R/Req > 1 (right tail of the distribution). (d) Cumulative distribution function of R/Req evaluated for R/Req < 1 (left tail of the distribution);
note that the horizontal axis reports Req/R and not R/Req as in panel (c).
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(a)

(b)

FIG. 9. (a) Example of curves R(�t, t ) numerically computed
adopting different time steps �t . (b) Relative error εR(t ) occurring in
the numerical computation performed with different time steps. The
relative error is evaluated considering the curve computed with �t =
10−9 s as the exact reference. The initial conditions are R(0)/Req = 2
and Ṙ(0) = 0. The pressure field is uniform.

(see Sec. III B). When the noise intensity is below the
no-chaos/chaos threshold, bubbles oscillate at their natural
frequency, and the only role of pressure fluctuation is to
provide energy to sustain this motion. The characteristics
of such pressure fluctuations are irrelevant in determining
the frequency of vibration of the bubble. At most, they
slightly alter the amplitude of the radius oscillation. Differ-
ently, when the noise intensity is above the no-chaos/chaos
threshold, the bubble’s dynamics are strongly driven by the
pressure forcing. Hence, key characteristics of the pressure
fluctuation—such as the noise correlation time—become im-
portant in determining bubble dynamics. In particular, longer
correlation times—according to the mechanisms illustrated
in Sec. III B—are associated with a more chaotic bubble re-
sponse.

IV. CONCLUSIONS

The response of a single bubble to a stochastic pressure
forcing was investigated. The motivation underpinning this

study lies in the following: (i) the occurrence of random
pressure fluctuations in many applications exploiting bub-
ble dynamics; and (ii) the strong nonlinearities affecting the
deterministic bubble dynamics, which suggests the possible
occurrence of nontrivial noise-induced phenomena.

Two key parameters control stochastic bubble dynamics:
the ratio between the standard deviation and the mean value
of the forcing pressure (σp/p̄), and the ratio between the
noise correlation timescale bubble’s free-oscillations period
(τp/Tn). Two typical behaviors were detected. The first oc-
curs when σp/p̄ is lower than a threshold value around
0.3, namely, when pressure fluctuates with small amplitudes.
In this case, the random pressure forcing mainly excites
the free oscillations of the bubble whose radius undergoes
small-amplitude oscillations and exhibits a rather regular pe-
riodicity. Moreover, we observed that (i) the effect of τp/Tn

is small, (ii) the mean value of the background pressure can
be adopted to estimate the mean value of the bubble radius,
and (iii) the bubble always behaves as a damper of external
noise.

The second behavior occurs when the fluid hosting the
bubble experiences large-amplitude pressure fluctuations (i.e.,
σp/p̄ > 0.3). At these conditions, pressure stochasticity is
able to trigger a chaotic bubble dynamics. Time-series of
the bubble radius exhibit large-amplitude fluctuations and no
evident periodicities occur, not even at the bubble’s natural
frequency. The parameter τp/Tn now significantly affects the
bubble dynamics. In particular, when τp/Tn is high, long time
intervals during which the instantaneous pressure is below
the mean pressure appear; these intervals entail large incre-
ments of R(t ) and are usually followed by cavity collapses
and rebounds. A strong variability of the R(t ) time-series
occurs, and the bubble behaves as a nonlinear oscillator that
amplifies the external noise. Consequently, the mean value of
the background pressure cannot be adopted to estimate the
mean value of the bubble radius; in doing so, the mean radius
of the bubble can be underestimated by a factor 5. Finally,
we should mention the key role of stochasticity in triggering
chaos in a bubble’s radius dynamics. Two pressure forcings—
one stochastic, one sinusoidal—characterized by the same
noise intensity σp/p̄ behave very differently: the stochastic
pressure forcing is more prone to trigger strong chaotic radius
fluctuations than its sinusoidal counterpart.

In this work, we have demonstrated that stochastic forc-
ing can induce interesting and unexpected bubble behaviors,
presumably induced by the strongly nonlinear nature of the
bubble oscillator. This paves the way to study other type of
noises (e.g., dichotomous or shot noises) and to investigate
how random forcing could be conveniently exploited in var-
ious applications. For example, noise-induced violent cavity
implosions—attained when the intensity and correlation of
pressure fluctuations are high—can be used to make water
disinfection processes based on hydrodynamic cavitation and
sono-chemical reactions more energy-efficient.
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(a)

(b)

FIG. 10. Effect of the duration T of the simulation on the statisti-
cal metrics that describes the time-series R(t ). Similar to Fig. 4, two
statistical parameters and their dependence on σp/ p̄ are considered.
The different curves were evaluated considering different lengths of
the simulation. The parameter τp = Tn is adopted.

APPENDIX A: ROLE OF CORRELATION TIME

To elucidate the increment of variability of R(t ) with τp,
Figs. 7(a) and 7(b) report some exemplifying portions of
time-series R(t )/Req obtained with the same noise intensity
σp/p̄ = 0.70 (chosen in order to be in the chaos domain) but
different noise timescales, namely τp = Tn/2 and τp = 2Tn,
respectively. To relate the bubble radius dynamics to the pres-
sure fluctuations, red dots plotted in Figs. 7(a) and 7(b) [along
the line R(t )/Req = 1] mark the instants when the instanta-
neous forcing pressure is below average [i.e., p(t ) < p̄]. From
a physical point of view, when the instantaneous pressure is
below average, the bubble radius tends to increase; on the
contrary, radius contractions are promoted when the instanta-
neous pressure is above average [i.e., p(t ) > p̄, identified by
no dots at R(t )/Req = 1].

Figure 7(a) shows that, when the correlation time of the
pressure forcing, τp, is low, time segments with pressure
below average [p(t ) < p̄] and time segments with pressure
above average [p(t ) > p̄] alternate fairly regularly: the red
dots plotted at R(t )/Req = 1 are grouped in short time seg-
ments, and they are followed by short segments where no dots
are reported. A key consequence of short time segments with
pressure below average [p(t ) < p̄] is that the bubble radius

cannot attain large increments [see the black time-series in
Fig. 7(a)].

In contrast, for high values of the correlation time, time
segments with pressure below average [p(t ) < p̄] persist for a
long time and are followed by long-lasting time intervals with
pressure values above average [p(t ) > p̄]: Fig. 7(b) shows,
indeed, that long sets of red dots alternate with long sets
without dots. In this case, time segments in which the pres-
sure is below average [p(t ) < p̄] last so long that very large
radius increments are attained [e.g., see the strong growth of
R(t ) occurring at t/Tn ≈ 255 in the second time segments
of Fig. 7(b)]. Conversely, when the condition p(t ) > p̄ is
restored, the bubble collapses. As explained in Sec. III B, the
occurrence of these phases of remarkable radius expansion
contributes to trigger the irregularity of R(t ).

APPENDIX B: STATISTICAL ANALYSIS—PDF AND CDF

In Fig. 8, we show some exemplifying cases in order to
discuss the effect of σp/p̄ and τp on the probability density
function (PDF) and the cumulative density function (CDF)
of the bubble radius. To this end, it is useful to define a
benchmark case (see the thick black lines).

We selected the benchmark correlation time τp = Tn. This
choice was based on past studies that considered sinusoidal
pressure oscillations. These studies found that complex dy-
namics occurs when the period of the sinusoidal forcing
is equal to the natural oscillation period of the bubble
[13,25,41,42,45]. Therefore, we expect bubbles to exhibit in-
teresting dynamics when the correlation time of the noise
signal is equal to the natural oscillation period of the bubble.
On the other hand, we selected the benchmark noise intensity
σp/p̄ = 0.60. This choice was based on the results reported in
Figs. 2(a) and 2(b), showing chaotic dynamics of the bubble
radius in the σp/p̄ range [0.30,1.10]. We wanted to focus on
bubbles exhibiting chaotic behavior, so we chose a value of
noise intensity in this chaos range.

The noise intensity (in terms of σp/p̄) was then altered,
keeping τp = Tn [broken lines in Figs. 8(a), 8(c) and 8(d)].
Finally, τp was also changed while σp/p̄ was kept at its bench-
mark value [broken lines in Fig. 8(b)]. The dotted (dash-dot)
lines refer to a parameter higher (lower) than the benchmark
value.

Irrespective of the noise parameters {σp/p̄, τp}, the quan-
tity R/Req exhibits a unimodal PDF [Figs. 8(a) and 8(b)]
whose shape, however, depends significantly on the noise
intensity [Fig. 8(a)]. In particular, increments of σp/p̄ induce
the reduction of the peak height, the fattening of the tails,
more asymmetrical PDFs, and the increment of the mode.
Differently from σp/p̄, changes of τp induce less relevant
effects [Fig. 8(b)]. No changes of the peak height, of the mode
of the PDF, and of the symmetry of the curves are in fact
observed. The only relevant effect is a slight expansion of
the distribution range toward higher values of R/Req, which
occurs when the correlation time increases [see the right tail
of the dotted curve in Fig. 8(b)].

The tails are better described by the cumulative distribution
functions. A complementary distribution is adopted to analyze
the right tail [see Fig. 8(c)]. To focus on the left tail, the cu-
mulative distribution is evaluated [see Fig. 8(d)]. Increments
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(a)

(b)

FIG. 11. Effect of different realizations of the stochastic process
on the statistical parameters that describe the time-series R(t ). Simi-
lar to Fig. 4, two statistical parameters and their dependence on σp/p̄
are considered. The different curves were evaluated with the same
noise intensities and correlation times, but with a different set of
random numbers. The parameter τp = Tn is adopted.

of the noise intensity mainly induce a fattening of the tails and
an increment of the range [see Figs. 8(c) and 8(d)]. In the right
tail, the range increases from 2 to 20 when σp/p̄ increases
from 0.14 to 1.10. Moreover, the frequency of occurrence of
a given R/Req changes by orders of magnitude for the same
increment of σp/p̄. The same behavior is observed in the left
tail: the minimum value attained by R/Req reduces from 0.6
to 0.2 when σp/p̄ increases from 0.14 to 0.60. Interestingly,
the further increment of σp/p̄ from 0.60 to 1.1 does not lead
to a reduction of R/Req. The distribution does not extend
beyond 0.2 [Req/R = 5 in Fig. 8(d)]. However, the frequency
of occurrence of this extreme value increases of more than one
order of magnitude. Finally, as surmised from the analysis of
Figs. 8(a) and 8(b), the PDFs of R/Req display asymmetry.
In fact, the right tail is always characterized by a power-law
behavior [linear in the log-log diagrams of Fig. 8(c)] for low
values of R/Req followed by a cutoff. On the contrary, the left
tail is always approximately linear [Fig. 8(d)].

APPENDIX C: NUMERICAL DETAILS

To evaluate the response of a gas bubble to a pressure forc-
ing, the numerical integration of (1) is required. To this aim,
the dimensional Eq. (1) is first made dimensionless adopting
the length scale Req (i.e., the bubble radius in equilibrium con-
ditions) and the time scale Tn [i.e., the period of bubble-free
oscillations; see Eq. (5)]. Secondly, the second-order differ-
ential dimensionless equation is transformed in the system of
two first-order differential dimensionless equations,

ỹ2 = dỹ1

dt̃
,

dỹ2

dt̃
=

pw−p(t̃ )
P ỹ1

+ ỹ2

N ỹ1
[pG(1 − 3k) − p(t̃ ) + pv] − 1

N
d p(t̃ )

dt̃ − (
1 − Ma

3

) 3ỹ2
2

2ỹ1

1 − Ma + 4μ

Mỹ1

, (C1)

where a tilde denotes dimensionless quantities, ỹ1 = R/Req,
Ma = ỹ2Req/cTn is the Mach number, P = ρR2

eq/T 2
n , M =

cρ/Req, and N = M/Tn. Finally, pw and pG can be ex-
pressed, according to (2)–(4), in terms of ỹ1 and ỹ2 as

pG =
(

2S

Req
− pv + p̄

)(
1

ỹ1

)3k

, (C2)

pw = pG + pv − 2S

Reqỹ1
− 4μỹ2

Tnỹ1
. (C3)

The system of Eqs. (C1) was numerically solved by an ex-
plicit Runge-Kutta approach by using the Dormand-Prince
pair [70].

To select the appropriate time step for numerical in-
tegration, a sensitivity analysis about this parameter was
performed. The test case was a gas bubble with Req = 5 μm,
R(0)/Req = 2, and Ṙ(0) = 0 in a uniform pressure field. Three
time steps (�t = [10−7, 10−8, 10−9] s) were tested in the
numerical simulations of the bubble dynamics (see Fig. 9).

Figure 9(a) shows that �t = 10−9 and 10−8 s led to a bubble
response [in terms of R(t )] that was indistinguishable, while
�t = 10−7 s led to a less precise simulation of the system
dynamics. To better quantify the quality of the numerical
integrations, we evaluated the relative error

εR(t ) = ‖R(�t, t ) − Rref (t )‖
Rref (t )

, (C4)

where R(�t, t ) is the bubble radius at the instant t evaluated
with a numerical simulation in which the time step �t was
adopted. The term Rref (t ) is the “exact” reference value. In
this case, we adopted Rref (t ) = R(�t = 10−9, t ). The time
step �t = 10−8 s was found suitable for the numerical inte-
grations, as the maximum error ε ∼ 0.02 was attained [see
Fig. 9(b)].

To guarantee that the statistical description of a stochastic
process was significant, two tests were performed. The first
test concerns the duration of the considered stochastic process.
In particular, we studied whether the same statistical values
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were obtained, irrespective of the length of the analyzed time-
series. Figure 10 reports the behavior of two statistical metrics
as a function of σp/p̄, as already discussed in Fig. 4. Each
statistical index was evaluated from four time-series, R(t ),
characterized by different durations, T . It can be observed
that simulations carried out with T > 2000Tn lead to curves
characterized by the same behavior. The duration T = 4000Tn

was therefore deemed appropriate for the statistical analysis of
the stochastic bubble dynamics.

The second test was to verify the independence of the
results from a single realization, namely whether different

stochastic realizations of the process lead to the same sta-
tistical indexes. Figure 11 reports two statistical parameters
of Fig. 4. Each statistical index was evaluated with seven
time-series, R(t ), characterized by a different pressure forc-
ing. Each pressure time-series was characterized by the same
statistics (σp, τp), but a different set of random numbers [see
Eq. (7)] was adopted to introduce randomness. It can be
observed that all simulations give curves characterized by
the same behavior. Moreover, the mean value, the standard
deviation, and the kurtosis of the bubble radius were basically
the same.

[1] F. Risso, Agitation, mixing, and transfers induced by bubbles,
Annu. Rev. Fluid Mech. 50, 25 (2018).

[2] A. Prosperetti, Vapor bubbles, Annu. Rev. Fluid Mech. 49, 221
(2017).

[3] C. Brennen, Cavitation and Bubble Dynamics (Cambridge Uni-
versity Press, Cambridge, 2013), pp. 1–249.

[4] M. Azmin, C. Harfield, Z. Ahmad, M. Edirisinghe, and E.
Stride, How do microbubbles and ultrasound interact? Basic
physical, dynamic and engineering principles, Curr. Pharm.
Des. 18, 2118 (2012).

[5] Y. Hao and A. Prosperetti, The effect of viscosity on the spher-
ical stability of oscillating gas bubbles, Phys. Fluids 11, 1309
(1999).

[6] J.-L. Laborde, C. Bouyer, J.-P. Caltagirone, and A. Gérard,
Acoustic bubble cavitation at low frequencies, Ultrasonics 36,
589 (1998).

[7] A. Prosperetti, The thermal behavior of oscillating gas bubbles,
J. Fluid Mech. 222, 587 (1991).

[8] L. Rayleigh, On the pressure developed in a liquid during the
collapse of a spherical cavity, Philos. Mag. Ser. 6 34, 94 (1917).

[9] M. Plesset, The dynamics of cavitation bubbles, J. Appl. Mech.
16, 277 (1949).

[10] F. R. Gilmore, The growth or collapse of a spherical bubble
in a viscous compressible liquid, Technical Report No. 26-4,
Hydrodynamics Laboratory, California Institute of Technology,
Pasadena, CA, 1952.

[11] M. S. Plesset and A. Prosperetti, Bubble dynamics and cavita-
tion, Annu. Rev. Fluid Mech. 9, 145 (1977).

[12] A. Prosperetti, Bubble dynamics in a compressible liquid. Part
1. First-order theory, J. Fluid Mech. 168, 457 (1986).

[13] W. Lauterborn and T. Kurz, Physics of bubble oscillations, Rep.
Prog. Phys. 73, 106501 (2010).

[14] H. Lin, B. Storey, and A. Szeri, Inertially driven inho-
mogeneities in violently collapsing bubbles: The validity
of the Rayleigh-Plesset equation, J. Fluid Mech. 452, 145
(2002).

[15] A. Moshaii and R. Sadighi-Bonabi, Role of liquid compres-
sional viscosity in the dynamics of a sonoluminescing bubble,
Phys. Rev. E 70, 016304 (2004).

[16] O. Supponen, D. Obreschkow, and M. Farhat, Rebounds of
deformed cavitation bubbles, Phys. Rev. Fluids 3, 103604
(2018).

[17] M. Ghorbani, O. Oral, S. Ekici, D. Gozuacik, and A. Kosar,
Review on lithotripsy and cavitation in urinary stone therapy,
IEEE Rev. Biomed. Eng. 9, 264 (2016).

[18] V. Agnese, V. Costa, G. Scoarughi, C. Corso, V. Carina, A. De
Luca, D. Bellavia, L. Raimondi, S. Pagani, M. Midiri, G. Stassi,
R. Alessandro, M. Fini, G. Barbato, and G. Giavaresi, Focused
ultrasound effects on osteosarcoma cell lines, BioMed Res. Int.
2019, 6082304 (2019).

[19] M. Dular, T. Griessler-Bulc, I. Gutierrez-Aguirre, E. Heath,
T. Kosjek, A. Krivograd Klemenčič, M. Oder, M. Petkovšek,
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[44] G. Simon, P. Cvitanović, M. Levinsen, I. Csabai, and Á.
Horváth, Periodic orbit theory applied to a chaotically oscillat-
ing gas bubble in water, Nonlinearity 15, 25 (2002).

[45] C. Macdonald and J. Gomatam, Chaotic dynamics of microbub-
bles in ultrasonic fields, Proc. Inst. Mech. Eng. Part C: J. Mech.
Eng. Sci. 220, 333 (2006).

[46] V. Moholkar, S. Rekveld, and M. Warmoeskerken, Modeling of
the acoustic pressure fields and the distribution of the cavitation
phenomena in a dual frequency sonic processor, Ultrasonics 38,
666 (2000).

[47] P. Kanthale, A. Brotchie, M. Ashokkumar, and F. Grieser, Ex-
perimental and theoretical investigations on sonoluminescence
under dual frequency conditions, Ultrason. Sonochem. 15, 629
(2008).

[48] Y. Zhang and Y. Zhang, Chaotic oscillations of gas bubbles
under dual-frequency acoustic excitation, Ultrason. Sonochem.
40, 151 (2018).

[49] T. Leighton, Transient excitation of insonated bubbles,
Ultrasonics 27, 50 (1989).

[50] K. Efthymiou, N. Pelekasis, M. Butler, D. Thomas, and
V. Sboros, The effect of resonance on transient mi-
crobubble acoustic response: Experimental observations and
numerical simulations, J. Acoust. Soc. Am. 143, 1392
(2018).

[51] E. Igualada-Villodre, A. Medina-Palomo, P. Vega-Martínez, and
J. Rodríguez-Rodríguez, Transient effects in the translation of
bubbles insonated with acoustic pulses of finite duration, J.
Fluid Mech. 836, 649 (2018).

[52] N. Berglund and B. Gentz, Noise-Induced Phenomena
in Slow-Fast Dynamical Systems: A Sample-Paths Ap-
proach, Probability and Its Applications (Springer, London,
2006).

[53] F. Sagués, J. M. Sancho, and J. García-Ojalvo, Spatiotemporal
order out of noise, Rev. Mod. Phys. 79, 829 (2007).

[54] L. Ridolfi, P. D’Odorico, and F. Laio, Noise-Induced Phenom-
ena in the Environmental Sciences (Cambridge University Press,
Cambridge, 2011).

[55] M. Freidlin, J. Szucs, and A. Wentzell, Random Perturbations
of Dynamical Systems, Grundlehren der Mathematischen Wis-
senschaften (Springer, New York, 2012).

[56] W. McNamara III, Y. Didenko, and K. Suslick, Sonolumi-
nescence temperatures during multi-bubble cavitation, Nature
(London) 401, 772 (1999).

[57] V. Moholkar and A. Pandit, Bubble behavior in hydrody-
namic cavitation: Effect of turbulence, AIChE J. 43, 1641
(1997).

[58] A. Sharma, P. Gogate, A. Mahulkar, and A. Pandit, Modeling
of hydrodynamic cavitation reactors based on orifice plates
considering hydrodynamics and chemical reactions occurring
in bubble, Chem. Eng. J. 143, 201 (2008).

[59] G. Uhlenbeck and L. Ornstein, On the theory of the Brownian
motion, Phys. Rev. 36, 823 (1930).

[60] A. Li and G. Ahmadi, Dispersion and deposition of spherical
particles from point sources in a turbulent channel flow, Aerosol
Sci. Technol. 16, 209 (1992).

[61] P. Jung, Periodically driven stochastic systems, Phys. Rep. 234,
175 (1993).

[62] E. Codling, M. Plank, and S. Benhamou, Random
walk models in biology, J. R. Soc. Interface 5, 813
(2008).

[63] A. Gu, B. Guo, and B. Wang, Long term behavior of ran-
dom Navier-Stokes equations driven by colored noise, Discrete
Contin. Dyn. Syst. Ser. B 25, 2495 (2020).

[64] R. Mettin and A. Doinikov, Translational instability of a spher-
ical bubble in a standing ultrasound wave, Appl. Acoust. 70,
1330 (2009).

[65] H. Nazari-Mahroo, K. Pasandideh, H. A. Navid and R. Sadighi-
Bonabi, Influence of liquid compressibility on the dynamics
of single bubble sonoluminescence, Phys. Lett. A 382, 1962
(2018).

[66] R. Löfstedt, B. P. Barber, and S. J. Putterman, Toward a hy-
drodynamic theory of sonoluminescence, Phys. Fluids 5, 2911
(1992).

[67] E. Neppiras, Acoustic cavitation, Phys. Rep. 61, 159 (1980).
[68] F. Hegedus, S. Koch, W. Garen, Z. Pandula, G. Paál, L.

Kullmann, and U. Teubner, The effect of high viscosity on
compressible and incompressible Rayleigh-Plesset-type bubble
models, Int. J. Heat Fluid Flow 42, 200 (2013).

[69] D. T. Gillespie, Exact numerical simulation of the Ornstein-
Uhlenbeck process and its integral, Phys Rev E. 54, 2084
(1996).

[70] J. Dormand and P. Prince, A family of embedded Runge-Kutta
formulae, J. Comput. Appl. Math. 6, 19 (1980).

023108-15

https://doi.org/10.1115/1.3425571
https://doi.org/10.1063/1.1401810
https://doi.org/10.1103/PhysRevLett.86.4819
https://doi.org/10.1016/j.jfluidstructs.2005.08.008
https://doi.org/10.1016/0041-624X(84)90024-6
https://doi.org/10.1142/S0217979204026494
https://doi.org/10.1002/(SICI)1521-4125(199912)22:12<1017::AID-CEAT1017>3.0.CO;2-L
https://doi.org/10.1016/j.ultsonch.2007.03.007
https://doi.org/10.1002/9780470141694.ch5
https://doi.org/10.1121/1.384720
https://doi.org/10.1103/PhysRevLett.47.1445
https://doi.org/10.1121/1.399855
https://doi.org/10.1016/1350-4177(95)00021-W
https://doi.org/10.1088/0951-7715/15/1/302
https://doi.org/10.1243/095440606X79596
https://doi.org/10.1016/S0041-624X(99)00204-8
https://doi.org/10.1016/j.ultsonch.2007.08.006
https://doi.org/10.1016/j.ultsonch.2017.03.058
https://doi.org/10.1016/0041-624X(89)90009-7
https://doi.org/10.1121/1.5026021
https://doi.org/10.1017/jfm.2017.799
https://doi.org/10.1103/RevModPhys.79.829
https://doi.org/10.1038/44536
https://doi.org/10.1002/aic.690430628
https://doi.org/10.1016/j.cej.2008.04.005
https://doi.org/10.1103/PhysRev.36.823
https://doi.org/10.1080/02786829208959550
https://doi.org/10.1016/0370-1573(93)90022-6
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.3934/dcdsb.2020020
https://doi.org/10.1016/j.apacoust.2008.09.016
https://doi.org/10.1016/j.physleta.2018.04.058
https://doi.org/10.1063/1.858700
https://doi.org/10.1016/0370-1573(80)90115-5
https://doi.org/10.1016/j.ijheatfluidflow.2013.04.004
https://doi.org/10.1103/PhysRevE.54.2084
https://doi.org/10.1016/0771-050X(80)90013-3

