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Kalman varieties of tensors are algebraic varieties consisting of ten-
sors whose singular vector k-tuples lay on prescribed subvarieties. 
They were first studied by Ottaviani and Sturmfels in the context of 
matrices. We extend recent results of Ottaviani and the first author 
to the partially symmetric setting. We describe a generating func-
tion whose coefficients are the degrees of these varieties and we 
analyze its asymptotics, providing analytic results à la Zeilberger 
and Pantone. We emphasize the special role of isotropic vectors 
in the spectral theory of tensors and describe the totally isotropic 
Kalman variety as a dual variety.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open 
access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Singular vector k-tuples are the partially symmetric tensor analog of singular vector pairs of rect-
angular matrices. Their definition is recalled in §2. We refer to Qi and Luo (2017) for background and 
applications.

In this article, we tackle the problem of describing the set of partially symmetric tensors admitting 
a singular vector k-tuple (x1, . . . , xk), where (the equivalence class of) each entry xi lies on a fixed 
irreducible subvariety Zi ⊂ P (V i) of the i-th factor. This set is an algebraic variety in the projective 
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space P (Sω1 V 1 ⊗ · · · ⊗ Sωk Vk) of partially symmetric tensors with k factors called generalized Kalman 
variety of tensors.

Recently, the spectral theory of tensors along with its connections to pure and applied algebraic 
geometry and combinatorics is witnessing several interesting results; see e.g. Beorchia et al. (2021), 
Teixera Turatti (2021) for recent geometric results. Despite this progress, algebraic varieties providing 
a clean geometric picture of spectral properties of tensors await to be described. Kalman varieties are 
therefore central objects in this context. This paper is a contribution to this circle of ideas from the 
perspective of degrees of varieties, their generating functions and asymptotics.

The name Kalman variety was first introduced by Ottaviani and Sturmfels in Ottaviani and Sturmfels 
(2013) to indicate the variety of square matrices possessing at least one eigenvector on a fixed linear 
subspace. They determined its codimension, degree and studied its singular locus. Thereafter, Sam 
(2012) and Huang (2020) determined their defining equations. More recently, Ottaviani and the first 
author Ottaviani and Shahidi (2021) rephrased the original setting for singular vector pairs, extending 
it to the case of singular vector k-tuples. Their Kalman variety is the variety of tensors having a 
singular vector k-tuple (x1, . . . , xk), where (the equivalence class of) the first entry x1 lies on a fixed 
linear subspace L ⊂P (V 1).

Our point of departure is (Ottaviani and Shahidi, 2021, Theorem 1.2), where the authors showed 
that the codimension of this Kalman variety is equal to the codimension of L ⊂ P (V 1). Moreover, 
they established an elegant formula for the degrees of the Kalman variety for symmetric and non-
symmetric tensors. In the latter case, letting ni = dim(V i) and δ = codim(L), the desired degree is the 
coefficient of the monomial hδtn1−δ−1

1

∏
i≥2 tni−1

i in the polynomial

k∏
i=1

(̂ti + h)ni − tni
i

(̂ti + h) − ti
, t̂i :=

⎛⎝ k∑
j=1

t j

⎞⎠− ti .

This expression is similar to the formula for the number of singular vector k-tuples of a general tensor. 
The latter quantity coincides with another well-known metric invariant of an algebraic variety, called 
the ED degree of the Segre variety P (V 1) × · · · × P (Vk). For more details on ED degrees of algebraic 
varieties, we refer to Draisma et al. (2016). Ottaviani and Friedland (Friedland and Ottaviani, 2014, 
Theorem 1) computed the above ED degree using Chern classes of a suitable vector bundle on the 
Segre variety.

The aforementioned results establish the enumerative nature of the subject. When enumerative 
structures appear, it is a natural problem to determine a generating function whose coefficients are 
the counted quantities. Generating functions are tremendously useful tools to have a global picture 
of the enumerated objects. See MacMahon (1915), Stanley (2012), Wilf (1990) for fascinating intro-
ductions to this topic along with its applications to combinatorics and analysis. Ekhad and Zeilberger 
(2016) found a generating function for the Friendland-Ottaviani’s formula and hence for the ED de-
grees. The asymptotic behavior was then analyzed by Pantone (2017). Zeilberger’s generating function 
is strikingly similar to the generating function of degrees of hyperdeterminants. An asymptotic analy-
sis of the latter was performed in (Ottaviani et al., 2021, Theorem 3.8).

Our first contribution is a generalization of (Ottaviani and Shahidi, 2021, Theorem 1.2) and (Fried-
land and Ottaviani, 2014, Theorem 12). More specifically, we determine the degrees of generalized 
Kalman varieties of partially symmetric tensors.

Theorem 1. For every i ∈ [k], let Zi ⊂P (V i) be an irreducible projective variety of codimension δi and let Z =∏k
i=1 Zi . We assume that each Zi is not contained in the isotropic quadric Q i ⊂ P (V i). Let δ = (δ1, . . . , δk). 

The generalized Kalman variety

κn,ω(Z) := {T ∈ P (SωV ) | T has a singular vector k-tuple ([x1], . . . , [xk]) ∈ Z}
is connected of codimension δ :=∑k

i=1 δi . The degree of κn,ω(Z) is d(n, δ, ω) 
∏k

i=1 deg(Zi), where d(n, δ, ω)∏

is the coefficient of the monomial hδ k

i=1 tni−δi−1
i in the polynomial
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k∏
i=1

(̂ti + h)ni − tni
i

(̂ti + h) − ti
, t̂i :=

⎛⎝ k∑
j=1

ω jt j

⎞⎠− ti .

We study separately the case when each subvariety Zi coincides with the isotropic quadric Q i . The 
corresponding Kalman variety is called totally isotropic Kalman variety. In Theorem 25, we describe the 
totally isotropic Kalman variety as a dual variety of a specific Segre-Veronese variety. This specializes 
to Theorem 27 in the symmetric case; this last result is related to (Beorchia et al., 2021, Proposition 
2.10).

Our second main result furnishes a Zeilberger-type (Ekhad and Zeilberger, 2016, Proposition 1) 
generating function for the degrees of generalized Kalman varieties in the case δ = (δ, 0, . . . , 0).

Theorem 2. Keep the assumptions of Theorem 1. If δ = (δ, 0, . . . , 0) for some δ ≥ 0, the generating function 
for the coefficients d(n, δ, ω) is

∑
n∈Nk

∞∑
δ=0

d(n, δ,ω)xn yδ = 1

Hω(x, y)

k∏
i=1

xi

1 − xi
(1.1)

where

Hω(x, y) := −y x1

k∏
i=2

(1 + xi) +
k∏

i=1

(1 + xi) −
k∑

j=1

ω j x j

∏
i �= j

(1 + xi) . (1.2)

Our third result offers an asymptotic study of the degrees d(n, δ, ω) in three different regimes: 
first, when ni → ∞ for a single index i. Secondly, in the binary format n1 = · · · = nk = 2 as k → ∞. 
Finally, in the hypercubical format n1 = · · · = nk = n for n → ∞. The last asymptotic study is more 
involved and leads to the following result, which agrees with (Pantone, 2017, Theorem 1.3) for δ =
0 and ω = 1. We refer to the first two paragraphs of Section 2 for the preliminary notations and 
definitions used.

Theorem 3. Consider the factor d(n, δ, ω) in the degree of the generalized Kalman variety κn1,ω1(Z). Assume 
that either k = 2 and w ≥ 2 or k ≥ 3. Then asymptotically, for n → +∞,

d(n, δ,ω) = (ωk − 1)k−1

(2π)
k−1

2 (ωk)
k−2

2 (ωk − 2)
3k−1

2

(
ωk

ωk − 1

)δ
(ωk − 1)kn

n
k−1

2 −δ

[
1 + O

(
1

n

)]
.

In Definition 14, we introduce the Kalman strata. These are, roughly speaking, the building blocks 
of generalized Kalman varieties, and are meant to take into account the presence of isotropic vectors 
in the singular vector tuple. The proof of Theorem 1 relies on determining the linear space of tensors 
having a singular vector k-tuple over a specific Kalman stratum. This is achieved in Theorem 13. This 
result is interesting on its own right, giving an intrinsic description of the fibers in terms of orthogonal 
spaces. Another consequence of Theorem 13 is Proposition 19, where we show the irreducibility of 
the spectral variety (see Definition 11), which is a natural incidence correspondence in this setting.

In §6, we introduce Kalman varieties of symmetric singular vector k-tuples and derive their codi-
mensions. The degrees of these new interesting varieties seem more challenging even in the case of 
matrices. We leave their determination as an open question.
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2. Kalman varieties of tensors

Notation. Throughout the paper, if not specified we denote by j a vector ( j1, . . . , jk) of k variables, 
while xm stands for the monomial xm1

1 · · · xmk
k . We often use the shorthand [k] to denote the set of 

indices {1, . . . , k}. Define 1 = (1, . . . , 1) ∈Nk and, for m ∈N , let m1 = (m, . . . , m) ∈Nk .

For every i ∈ [k] we consider an ni -dimensional vector space V i over the field F =R or F =C. If 
F =R, then we prefer the notation V R

i . Let ω = (ω1, . . . , ωk) be a vector of nonnegative integers. For 
each i ∈ [k], let Sωi V i be the ωi -th symmetric power of V i , as a subspace of the tensor product V ⊗ωi

i . 
Moreover, we denote by SωV the tensor product 

⊗k
i=1 Sωi V i . This is the space of partially symmetric 

tensors of format n×ω1
1 × · · · × n×ωk

k . Every element of SωV is a linear combination of decomposable 
partially symmetric tensors, that is, tensors of the form T = xω1

1 ⊗ · · · ⊗ xωk
k for some vectors xi ∈ V i . 

On each projective space P (V i) we fix a smooth projective quadric hypersurface Q i = V(qi), where 
qi is the homogeneous polynomial in C[xi,1, . . . , xi,ni ]2 associated to a positive definite real quadratic 
form qR

i : V R
i →R. We refer to Q i as the isotropic quadric in the i-th factor P (V i). Finally, we denote 

by P the product 
∏k

i=1 P (V i) and by �n,ω the product P (SωV ) ×P .

Definition 4. The Frobenius (or Bombieri-Weyl) inner product of two complex decomposable tensors T =
xω1

1 ⊗ · · · ⊗ xωk
k and T ′ = yω1

1 ⊗ · · · ⊗ yωk
k of SωV is

qF (T , T ′) := q1(x1,y1)
ω1 · · ·qk(xk,yk)

ωk , (2.1)

and it is naturally extended to every vector in SωV . We identify all the vector spaces with their duals 
using the Frobenius inner product.

Definition 5. Let T ∈ SωV . A singular vector k-tuple of T is a k-tuple (x1, . . . , xk) of nonzero vectors 
xi ∈ V i such that

rank

(
T (xω1

1 ⊗ · · · ⊗ xωi−1
i ⊗ · · · ⊗ xωk

k )

xi

)
≤ 1 ∀ i ∈ [k] , (2.2)

where T (xω1
1 ⊗· · ·⊗xωi−1

i ⊗· · ·⊗xωk
k ) is the tensor contraction of T with respect to xω1

1 ⊗· · ·⊗xωi−1
i ⊗

· · · ⊗ xωk
k . If ωi = 1 for some i ∈ [k], then xωi−1

i = x0
i = 1 as an element of S0 V i = F . If we interpret 

T as a multi-homogeneous polynomial in the coordinates of each vector xi , then the previous tensor 
contraction corresponds the gradient ∇i T with respect to the coordinates of xi .
A singular vector k-tuple (x1, . . . , xk) is normalized if qi(xi) = 1 for all i ∈ [k]. A singular vector k-tuple 
(x1, . . . , xk) is isotropic if qi(xi) = 0 for some i ∈ [k]. When k = 1, n = (n) and ω = (ω), a vector x ∈ V
satisfying (2.2) is called an eigenvector of the symmetric tensor T ∈ SωV .

Definition 6. Let T ∈ SωV and let (x1, . . . , xk) be a singular vector k-tuple of T . For every i ∈ [k], the 
value σi ∈C such that

T (xω1
1 ⊗ · · · ⊗ xωi−1

i ⊗ · · · ⊗ xωk
k ) = σi xi (2.3)
is called the i-th singular value of (x1, . . . , xk).
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Remark 7. Let T ∈ SωV and let (x1, . . . , xk) be a singular vector k-tuple of T with the associated 
k-tuple (σ1, . . . , σk) of singular values. For every i ∈ [k], the identity (2.3) can be interpreted as the 
identity in (V i)

∗

qF (T ,xω1
1 ⊗ · · · ⊗ xωi−1

i · _ ⊗ · · · ⊗ xωk
k ) = σi qi(xi, _) .

Evaluating the left-hand side of the previous identity at the vector xi yields the number qF (T , xω1
1 ⊗

· · · ⊗ xωk
k ) which does not depend on the specific index i. Thus we have σ1 q1(x1, x1) = · · · =

σk qk(xk, xk). Therefore

(i) σ1 = · · · = σk if (x1, . . . , xk) is normalized. The common value σ := σ1 = · · · = σk is often called 
the singular value of the normalized singular vector k-tuple (x1, . . . , xk).

(ii) σ j = 0 for all j ∈ [k] such that q j(x j, x j) �= 0 if (x1, . . . , xk) is isotropic.

If (x1, . . . , xk) is a singular vector k-tuple of T ∈ SωV , then it is immediate to check that, for 
every tuple (λ1, . . . , λk) of nonzero complex numbers, the k-tuple (λ1 x1, . . . , λk xk) is also a singular 
vector k-tuple of T . For this reason, we consider P =∏k

i=1 P (V i) and say that ([x1], . . . , [xk]) ∈ P is 
a singular vector k-tuple of T if its representative (x1, . . . , xk) is.

Definition 8. For every i ∈ [k], we denote by SO(V i) the (complex) special orthogonal group of auto-
morphisms of V i with determinant 1 that preserve the bilinear product in V i associated to qi .

Remark 9. The notion of singular vector k-tuple is SO(V 1) × · · · × SO(Vk)-equivariant. More explicitly, 
given a singular vector k-tuple (x1, . . . , xk) of T and an element gi ∈ SO(V i) for all i ∈ [k], then 
(g1(x1), . . . , gk(xk)) is a singular vector k-tuple of (g1, . . . , gk) · T . This is because the contraction (or 
scalar product) in the i-th factor is preserved by the action of SO(V i).

Lemma 10. Consider a tuple ([x1], . . . , [xk]) ∈P . For all i ∈ [k], define the subspace

W i := xω1
1 ⊗ · · · ⊗ xωi−1

i 〈xi〉⊥ ⊗ · · · ⊗ xωk
k

= {xω1
1 ⊗ · · · ⊗ xωi−1

i · wi ⊗ · · · ⊗ xωk
k | wi ∈ 〈xi〉⊥} ⊂ SωV ,

(2.4)

where 〈xi〉⊥ is the orthogonal complement of 〈xi〉 in V i with respect to the fixed quadratic form qi .
Given a tensor T ∈ SωV , we have that ([x1], . . . , [xk]) ∈ P is a singular vector k-tuple of T if and only if 
T ∈ (W1 + · · · + Wk)

⊥ , where in this case the sign ⊥ denotes the orthogonal complement with respect to the 
Frobenius inner product in SωV .

Proof. By definition, the tuple ([x1], . . . , [xk]) ∈ P is a singular vector k-tuple of T if and only if the 
relations in (2.2) hold. For a fixed i ∈ [k], the corresponding relation in (2.2) is equivalent to T ∈ W ⊥

i . 
Hence ([x1], . . . , [xk]) ∈P is a singular vector k-tuple of T if and only if T ∈ W ⊥

1 ∩ · · · ∩ W ⊥
k , and one 

has the equality W ⊥
1 ∩ · · · ∩ W ⊥

k = (W1 + · · · + Wk)
⊥ . �

We introduce an incidence correspondence that will play a fundamental role in the upcoming 
proofs.

Definition 11. Let �n,ω =P (SωV ) ×P . The spectral variety of type (n, ω) is

	n,ω := {([T ], [x1], . . . , [xk]) ∈ �n,ω | ([x1], . . . , [xk]) is a singular vector k-tuple for T } .

(2.5)

Remark 12. Note that 	n,ω , as described set-theoretically above, is closed in the Zariski topology: 

equipped with its reduced structure, it is the subvariety whose ideal is the radical ideal of
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( J1 + · · · + Jk) :
(

k∏
i=1

〈xi〉
)∞

⊂ C[x1, . . . ,xk] ,

where 〈xi〉 is the ideal generated by the coordinates of xi and

J i =
〈
2 × 2 minors of

(
T (xω1

1 ⊗ · · · ⊗ xωi−1
i ⊗ · · · ⊗ xωk

k )

xi

)〉
∀ i ∈ [k] .

In the following, we will often consider the diagram

	n,ω

P (SωV ) P ,

α β (2.6)

where α and β denote the two projections along the two factors of �n,ω .

Theorem 13. Let 	n,ω ⊂ �n,ω be the spectral variety of type (n, ω). The projection β : 	n,ω → P is surjec-
tive and every fiber of β over a k-tuple ([x1], . . . , [xk]) with r isotropic components is a projective subspace in 
P (SωV ) of codimension

codim
(
β−1([x1], . . . , [xk])

)=
k∑

i=1

(ni − 1) − max{0, r − 1} . (2.7)

Proof. Consider a tuple ([x1], . . . , [xk]) ∈P . The fiber β−1([x1], . . . , [xk]) is isomorphic to the projec-
tive subspace of classes [T ] ∈ P (SωV ) such that ([x1], . . . , [xk]) is a singular vector k-tuple of T . By 
Lemma 10, we have that

β−1([x1], . . . , [xk]) ∼= P ((W1 + · · · + Wk)
⊥) ,

where the subspaces W i have been defined in (2.4). Hence

codim
(
β−1([x1], . . . , [xk])

)= dim(W1 + · · · + Wk) .

The proof goes by induction on k. First, we assume k = 2. We have

dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) =
2∑

i=1

(ni − 1) − dim(W1 ∩ W2) ,

so it remains to compute dim(W1 ∩ W2) depending on the number of isotropic vectors in the pair 
([x1], [x2]). Consider nonzero elements F1 ∈ W1 and F2 ∈ W2, written explicitly as F1 = xω1−1

1 · w1 ⊗
xω2

2 and F2 = xω1
1 ⊗ xω2−1

2 · w2 for some vectors w1 ∈ 〈x1〉⊥ and w2 ∈ 〈x2〉⊥ . Then necessarily F1 = F2

only if q1(x1) = q2(x2) = 0, in which case the equality is attained for wi ∈ 〈xi〉 ⊂ 〈xi〉⊥ , i ∈ [2]. In 
particular dim(W1 ∩ W2) = 1 and the identity (2.7) is satisfied. Otherwise W1 ∩ W2 = {0} if at least 
one among x1, x2 is not isotropic, and (2.7) is satisfied as well.

Now we assume that the identity (2.7) is satisfied for k − 1 factors among the given k. Without 
loss of generality, we apply the induction step to the first k − 1 factors. In particular

dim(W1 +· · ·+Wk) = dim(W1 +· · ·+Wk−1)+dim(Wk)−dim [(W1 + · · · + Wk−1) ∩ Wk] ,

so it remains to compute dim [(W1 + · · · + Wk−1) ∩ Wk] depending on the number of isotropic vec-
tors in the tuple ([x1], . . . , [xk]). Pick nonzero tensors F1 ∈ W1 + · · · + Wk−1 and F2 ∈ Wk , which can 

be written explicitly as
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F1 =
(

k−1∑
i=1

xω1
1 ⊗ · · · ⊗ xωi−1

i · wi ⊗ · · · ⊗ x
ωk−1
k−1

)
⊗ xωk

k , wi ∈ 〈xi〉⊥

F2 = xω1
1 ⊗ · · · ⊗ x

ωk−1
k−1 ⊗ xωk−1

k · wk , wk ∈ 〈xk〉⊥ .

If qk(xk) �= 0, then necessarily F1 �= F2, so (W1 + · · · + Wk−1) ∩ Wk = {0}. In this case the identity 
(2.7) follows applying the induction step. Otherwise qk(xk) = 0 and in this case F1 = F2 only if wk ∈
〈xk〉 ⊂ 〈xk〉⊥ and

k−1∑
i=1

xω1
1 ⊗ · · · ⊗ xωi−1

i · wi ⊗ · · · ⊗ x
ωk−1
k−1 = xω1

1 ⊗ · · · ⊗ x
ωk−1
k−1 . (2.8)

Now suppose that qi(xi) �= 0 for some i ∈ [k − 1], for simplicity i = 1. Since 〈x1〉⊥ ⊕ 〈x1〉 = Cn1 , we 
have the decomposition(

xω1−1
1 〈x1〉⊥ ⊗

k−1⊗
i=2

Sωi V i

)
⊕
(

xω1−1
1 〈x1〉 ⊗

k−1⊗
i=2

Sωi V i

)
= xω1−1

1 Cn1 ⊗
k−1⊗
i=2

Sωi V i .

On one hand, the left-hand side of (2.8) can be rewritten as

xω1−1
1 · w1 ⊗ xω2

2 ⊗ · · · ⊗ x
ωk−1
k−1 +

k−1∑
i=2

xω1
1 ⊗ · · · ⊗ xωi−1

i · wi ⊗ · · · ⊗ x
ωk−1
k−1 .

The first summand is a nonzero element of xω1−1
1 〈x1〉⊥ ⊗⊗k−1

i=2 Sωi V i , whereas the second summand 
is a nonzero element of xω1−1

1 〈x1〉 ⊗⊗k−1
i=2 Sωi V i . On the other hand, the right-hand side of (2.8) lives 

only in xω1−1
1 〈x1〉 ⊗⊗k−1

i=2 Sωi V i . Hence F1 �= F2 and (W1 +· · ·+ Wk−1) ∩ Wk = {0}. The identity (2.7)
again follows applying the induction step.

We conclude that, if (W1 + · · · + Wk−1) ∩ Wk �= {0}, then qi(xi) = 0 for all i ∈ [k]. Under this 
assumption, we have that dim [(W1 + · · · + Wk−1) ∩ Wk] = 1: indeed, the only possibility to have 
F1 = F2 is that wi ∈ 〈xi〉 for all i ∈ [k]. Hence, by induction,

dim(W1 + · · · + Wk) = dim(W1 + · · · + Wk−1) + dim(Wk)− dim [(W1 + · · · + Wk−1)∩ Wk]

=
k∑

i=1

(ni − 1) − (k − 1) ,

which agrees with (2.7) when r = k. �
Definition 14 (Kalman strata). For every i ∈ [k], let Zi ⊂P (V i) be a projective variety and consider the 
product Z =∏k

i=1 Zi . Given a subset J ⊂ [k], we define the product

Q J :=
∏
j∈ J

Q j ×
∏
j /∈ J

[P (V j) \ Q j] ⊂ P .

The partially isotropic Kalman strata with respect to Z are

κ
J

n,ω(Z) := {T ∈ P (SωV ) | T has a singular vector k-tuple ([x1], . . . , [xk]) ∈ Z ∩ Q J } .

In particular,

• for J = ∅, we call κnor
n,ω(Z) := κ∅

n,ω(Z) the normalized Kalman variety with respect to Z because we 
may assume that all components xi are normalized with respect to the inner product qi . We also ∏

denote by Q nor the product Q ∅ = k

j=1[P (V j) \ Q j].
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• for J = [k], we call κ iso
n,ω(Z) := κ [k]

n,ω(Z) the totally isotropic Kalman variety with respect to Z be-
cause all components xi are isotropic. In this case

κ iso
n,ω(Z) = {T ∈ P (SωV ) | T has a singular vector k-tuple ([x1], . . . , [xk]) ∈ Z ∩ Q } ,

namely the right-hand side is already closed. Here we use the shorthand Q := Q [k] =∏k
i=1 Q i . If 

Z = Q , we indicate this variety simply with κ iso
n,ω .

Note that all the loci κ J
n,ω(Z) are closed by definition, and they may be reducible. We generally refer 

to all of them (to their irreducible components) as Kalman strata. If ω = 1, we use the shorthand 
κ

J
n (Z) = κ

J
n,1(Z).

Definition 15. For every i ∈ [k], let Zi ⊂ P (V i) be a projective variety. The generalized Kalman variety
with respect to Z =∏k

i=1 Zi is

κn,ω(Z) := {T ∈ P (SωV ) | T has a singular vector k-tuple ([x1], . . . , [xk]) ∈ Z} . (2.9)

The Kalman strata κ J
n,ω(Z) of Definition 14 are closed subvarieties of the generalized Kalman variety. 

Moreover, if Z = Q =∏k
i=1 Q i , then κn,ω(Q ) = κ iso

n,ω .

Similarly as in Remark 12, the right-hand side of (2.9) is closed in the Zariski topology.

Definition 16. Consider the spectral variety 	n,ω ⊂ �n,ω . For every i ∈ [k], let Zi ⊂ P (V i) be a pro-
jective variety and consider the product Z =∏k

i=1 Zi ⊂ P . The spectral variety of type (n, ω) restricted 
to Z is the incidence variety 	n,ω(Z) := 	n,ω ∩ [P (SωV ) × Z ]. In particular,

	n,ω(Z) = {(T , [x1], . . . , [xk]) | ([x1], . . . , [xk]) ∈ Z is a singular vector k-tuple for T } .

Similarly as in (2.6), in the following proofs we will consider the diagram of projections

	n,ω(Z)

P (SωV ) Z .

αZ βZ (2.10)

Before we proceed, we recall a standard lemma needed in the next proofs. The (omitted) proof 
relies on a direct application of (Hartshorne, 1977, Proposition 7.10) and (Vakil, 2017, Exercise 11.4.C).

Lemma 17. Let ϕ : M → N be a surjective morphism of projective varieties and assume that N is connected. 
Suppose there exists a finite collection {Si}i∈I of irreducible quasi-projective subvarieties of N such that N =⋃

i∈I Si with the property that, for each i ∈ I , the restriction ϕ|ϕ−1(Si)
: ϕ−1(Si) → Si has equidimensional 

linear projective fibers. Then:

(i) Each closed subvariety ϕ−1(Si) ⊂ M is irreducible.
(ii) M is connected and M =⋃

i∈I ϕ
−1(Si). In particular, the irreducible components of M have the form 

ϕ−1(Si) for some i ∈ I .
(iii) One has ϕ−1(Si) \ ϕ−1(Si) ⊂⋃ j∈I\{i} ϕ−1(S j).

Proposition 18. For every i ∈ [k], let Zi ⊂ P (V i) be an irreducible projective variety of codimension δi and 
consider the product Z =∏k

i=1 Zi ⊂P . We assume that Zi �⊂ Q i for all i ∈ [k] and let δ :=∑k
i=1 δi . Then:
(i) The variety κnor
n,ω(Z) is irreducible of dimension dim(κnor

n,ω(Z)) = dim(P (SωV )) − δ.
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(ii) For any J �= ∅, we have dim(κ
J

n,ω(Z)) < dim(κnor
n,ω(Z)).

Proof. (i). Consider the restricted spectral variety 	n,ω(Z) along with the two projections αZ and 
βZ introduced in diagram (2.10). The morphism βZ is surjective and the fiber β−1

Z ([x1], . . . , [xk]) is 
set-theoretically the collection of tensors T ∈ P (SωV ) that possess ([x1], . . . , [xk]) ∈ Z as a singular 
vector k-tuple.

Let Q =∏k
i=1 Q i ⊂P and Y = β−1

Z (Z \ Q ) ⊂ 	n,ω(Z). Now consider the morphism

ψ := βZ |β−1
Z (Z\Q )

: β−1
Z (Z \ Q ) → Z \ Q .

By Theorem 13, ψ is a surjective morphism with equidimensional linear projective fibers of codimen-
sion 

∑k
i=1(ni − 1) in P (SωV ). By Lemma 17(i), Y is irreducible.

Now consider the first projection αZ : 	n,ω(Z) → P (SωV ). The morphism αZ is projective and 
hence closed. One has κnor

n,ω(Z) = αZ (Y ). To see this, notice that by definition we have:

αZ (β−1
Z (Z \ Q )) = {T ∈ P (SωV ) | T has a singular vector k-tuple ([x1], . . . , [xk]) ∈ Z \ Q } .

One finds κnor
n,ω(Z) = αZ (β−1

Z (Z \ Q )) = αZ (β−1
Z (Z \ Q )) = αZ (Y ) = αZ (Y ). Here the first equality fol-

lows by Definition 14, the second by continuity of αZ , and the last follows from αZ being closed. 
Moreover, since Y is irreducible, then so is κnor

n,ω(Z).
In order to calculate the codimension of κnor

n,ω(Z), note that dim(Y ) = dim(P (SωV )) + dim(Z) −∑k
i=1(ni − 1) = dim(P (Sω V )) − δ. Observe that the general fiber of the restriction of αZ to Y is finite. 

Indeed, a point of the product Z \ Q is the equivalence class of a tuple of non-isotropic vectors. The 
group SO(V 1) × · · · × SO(Vk) acts transitively on equivalence classes of non-isotropic vectors. Thus 
a general tensor in the fiber under βZ of a point in Z \ Q has a finite number of singular vector 
k-tuples. This implies the finiteness of the restriction of αZ to Y . Then dim(κnor

n,ω(Z)) = dim(Y ). So 
codim(κnor

n,ω(Z)) = δ.

(ii). Fix a nonempty subset J ⊂ [k] and consider the quasi-projective subvariety Z ∩ Q J of Z . By 
Theorem 13, the fiber of βZ at every point of Z ∩ Q J has dimension dim(P (Sω V )) −∑k

i=1(ni − 1) +
(| J | − 1). Let Y J = β−1(Z ∩ Q J ). Thus

dim(Y J ) =
∑
j /∈ J

dim(Z j) +
∑
j∈ J

[dim(Z j) − 1] + dim(P (SωV )) −
k∑

i=1

(ni − 1) + (| J | − 1)

= dim(P (SωV )) − δ − 1 .

As before, we find that κ J
n,ω(Z) = αZ (Y J ). Thus the dimension of κ J

n,ω(Z) is at most that of Y J , which 
finishes the proof. �

The last step before proving Theorem 1 is establishing the irreducibility of the spectral variety 
	n,ω .

Proposition 19. The spectral variety 	n,ω ⊂ �n,ω is irreducible and 	n,ω = β−1(P \ Q ).

Proof. The product P =∏k
i=1 P (V i) comes equipped with the i-th projection map πi : P → P (V i). 

On the product P , consider the pull-back vector bundles

εi := π∗
i QP (V i)(ω1, . . . ,ωi−1,ωi − 1,ωi+1, . . . ,ωk) ∀ i ∈ [k] .

The fiber of each vector bundle εi at [x] = [xω1
1 ⊗ · · · ⊗ xωk

k ] is isomorphic to
Hom(xω1
1 ⊗ · · · ⊗ xωi−1

i ⊗ · · · ⊗ xωk
k , V i/〈xi〉) .
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Let ωi = (ω1, . . . , ωi − 1, . . . , ωk). Every tensor T ∈ SωV induces a section sT of εi which corresponds 
to the composition

〈xω1
1 ⊗ · · · ⊗ xωi−1

i ⊗ · · · ⊗ xωk
k 〉 i

↪→ Sωi V
T−→ V i

π
� V i

〈xi〉 .
This section vanishes on [x] if and only if

rank

(
T (xω1

1 ⊗ · · · ⊗ xωi−1
i ⊗ · · · ⊗ xωk

k )

xi

)
≤ 1 .

Define the vector bundle ε :=⊕k
i=1 εi on P . For every T ∈ SωV , the diagonal section (sT , . . . , sT ) ∈

H0(ε) vanishes on x if and only if (x1, . . . , xk) is a partially symmetric singular k-tuple of T .
Using the vector bundle ε and the natural projections α̃ : �n,ω → P (SωV ) and β̃ : �n,ω → P , we 
introduce the Friedland-Ottaviani vector bundle on �n,ω:

E := α̃∗(OP (Sω V )(1)) ⊗ β̃∗(ε) .

The vector bundle E has rank 
∑

i(ni − 1) and was first introduced by Friedland and Ottaviani for 
studying singular vector k-tuples; see (Friedland and Ottaviani, 2014, Theorem 12). The vanishing 
locus Z(s) of the section s ∈ H0(E) given by the map T �→ (sT , . . . , sT ) equals the spectral variety 
	n,ω ⊂ �n,ω (Friedland and Ottaviani, 2014, Lemma 9).

The variety β−1(P \ Q ) is an irreducible component of 	n,ω by Lemma 17(i). By Theorem 13 and 
Lemma 17(ii), if some another irreducible component of 	n,ω exists, its codimension must be strictly 
higher than codim(β−1(P \ Q )) =∑i(ni − 1) = rank(E). In any affine open U ⊂ �n,ω trivializing the 
vector bundle E , Z(s)|U = 	n,ω|U is defined by the vanishing of rank(E) equations. Therefore, by 
Krull’s principal ideal theorem, on the affine chart U ⊂ X there cannot be any irreducible component 
of 	n,ω|U whose codimension is strictly higher than rank(E). Gluing an affine open cover of �n,ω

trivializing E , then one finds that there cannot be other irreducible components of 	n,ω besides 
β−1(P \ Q ). This proves the equality and irreducibility. �

We are ready to prove Theorem 1.

Proof of Theorem 1. Consider the product �n,ω and the spectral variety 	n,ω(Z) restricted to Z . 
Moreover, we consider the projections βZ and αZ of diagram (2.10). By Theorem 13 and Lemma 17(ii), 
the irreducible components of 	n,ω(Z) are, up to permuting factors, of the form Y ′

J = β−1
Z (Z ′

J ), where 
Z ′

J is an irreducible component of Z ∩ Q J for some J ⊂ [k], as Z ∩ Q J might be reducible. Note that 
the generalized Kalman variety is κn,ω(Z) = αZ (	n,ω(Z)). Therefore the irreducible components of 
the generalized Kalman variety are of the form αZ (Y ′

J ), each one of those is a Kalman stratum.
From the dimensions calculated in Proposition 18, it follows that the unique highest-dimensional 

irreducible component of κn,ω(Z) is the normalized Kalman variety κnor
n,ω(Z). Therefore codimension 

and degree of the generalized Kalman variety coincide with the ones of κnor
n,ω(Z).

Again by Lemma 17(ii), 	n,ω(Z) is connected. Since αZ is continuous, κn,ω(Z) is connected.
We are left with the computation of deg(κn,ω(Z)) = deg(κnor

n,ω(Z)). As in the proof of Proposi-
tion 19, we work with the Friedland-Ottaviani vector bundle E of rank 

∑
i(ni − 1) on �n,ω .

Denote by D = ∏k
i=1

(ni+ωi−1
ωi

) − 1 the dimension of P (Sω V ). We recall that α and β appear-

ing in diagram (2.6) are the restrictions of α̃ and β̃ to 	n,ω . By Proposition 19, 	n,ω = Z(s) =
β−1(P \ Q ) and has codimension 

∑
i(ni − 1) in �n,ω . Therefore the top Chern class c∑

i(ni−1)(E)

of E satisfies c∑
i(ni−1)(E) = [Z(s)] ∈ A∗(�n,ω), where A∗(�n,ω) = C[h, t1, . . . , tk]/(hD+1, tn1

1 , . . . , tnk
k )

(h = c1(OP (Sω V )(1)) and ti = c1(OP (V i)(1))) is the Chow ring of �n,ω .
We now look at the intersection Z(s) ∩ β−1(Z) ⊂ �n,ω , which may be reducible. Note that this 

intersection contains β−1(Z \ Q ), which has codimension 
∑

i(ni − 1) + codim(Z) =∑
i(ni − 1) + δ. 
We now check whether the intersection contains other components whose codimension is smaller 
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than or equal to the codimension of β−1(Z \ Q ). By Lemma 17(iii), Z(s) \ β−1(P \ Q ) is a union of 
quasi-projective varieties of the form β−1(

∏
j∈ J Q j ×∏

j /∈ J [P (V j) \ Q j]). Therefore (Z(s) \ β−1(P \
Q )) ∩β−1(Z) is a union of quasi-projective varieties of the form β−1(

∏
j∈ J Q j ∩ Z j ×∏ j /∈ J [Z j \ Q j]). 

As in the proof of Proposition 18, all these quasi-projective varieties have dimensions strictly smaller 
than the dimension of β−1(Z \ Q ). In conclusion, the intersection Z(s) ∩ β−1(Z) ⊂ �n,ω contains a 
unique irreducible component in codimension 

∑
i(ni − 1) + δ; the other potential components are in 

strictly higher codimensions.
The previous paragraph shows that the element c∑

i(ni−1)(E) 
∏k

i=1 deg(Zi) · β∗(π∗
i (OZi (1)δi )) of 

the Chow ring is nonzero in codimension 
∑

i(ni − 1) + δ and zero in smaller codimension. Thus the 
intersection number

α∗(c1(OP (Sω V )(1))D−δ · c∑
i(ni−1)(E)

k∏
i=1

deg(Zi) · β∗(π∗
i (OZi (1)δi ))

in the Chow ring A∗(�n,ω) is the degree of α(β−1(Z \ Q )) = κnor
n,ω(Z).

The Friedland-Ottaviani vector bundle E is the direct sum of k summands. By Euler’s exact se-
quence, each of these summands has Chern polynomial

(1 + t̂i + h)ni

1 + t̂i + h − ti
= (1 + t̂i + h)ni−1

1 − ti
1+t̂i+h

=
∞∑
j=0

(1 + t̂i + h)ni−1− jt j
i =

ni−1∑
j=0

(1 + t̂i + h)ni−1− jt j
i ,

where t̂i :=
(∑k

j=1 ω jt j

)
− ti . The statement then follows as in the proof of (Ottaviani and Shahidi, 

2021, Theorem 3.4), noting that we carry as extra factor the product of the degrees deg(Zi). �
Remark 20. We do not know whether the generalized Kalman variety κn,ω(Z), under the assumptions 
of Theorem 1, is always irreducible. The issue is that we do not know in general how the Kalman 
strata intersect.

The next examples suggest that these varieties might be subtle (even for matrices) and show 
irreducibility is not true when the assumptions Zi �⊂ Q i of Theorem 1 are weakened.

Example 21. Let k = 2, n = (2, 3), and ω = (1, 1). We assume that P (V 1) ∼= P 1
C , P (V 2) ∼= P 2

C , Q 1 =
V(x2

1,1 + x2
1,2) ⊂ P 1

C and Q 2 = V(x2
2,1 + x2

2,2 + x2
2,3) ⊂ P 2

C . On one hand, the product P 1
C × Q 2 is 

irreducible in P 1
C ×P 2

C . On the other hand, the generalized Kalman variety κn(P 1
C × Q 2) is a degree 

8 hypersurface with three irreducible components:

(i) the totally isotropic Kalman variety κ iso
n , that is a degree 4 hypersurface with two irreducible 

components. Using coordinates aij for the space P (C2 ⊗C3) ∼=P 5
C , its equation is

4(a11a21 + a12a22 + a13a23)
2 + (a2

11 + a2
12 + a2

13 − a2
21 − a2

22 − a2
23)

2 .

The first summand corresponds to the Euclidean inner product of the two rows of A = (aij) ∈
C2 ⊗C3. The second summand is the difference between the Euclidean norms of the two rows 
of A.

(ii) the Kalman stratum κ {2}
n (P 1

C × Q 2), that is a degree 4 irreducible hypersurface of equation

(a11a22 − a12a21)
2 + (a11a23 − a13a21)

2 + (a12a23 − a13a22)
2 ,

namely the sum of squares of the three maximal minors of A.

If n = (2, 4), then the generalized Kalman variety κn(P 1
C × Q 2), where Q 2 = V(x2

2,1 +· · ·+ x2
2,4) ⊂P 3

C , 
is a degree 8 hypersurface in P (C2 ⊗C4) ∼=P 7

C with three analogous irreducible components.

For n = (3, 3), one finds κn(P 2

C × Q 2) = κ iso
n = κn(Q 1 ×P 2

C).
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Example 22. Let us consider the matrix case k = 2, n = (4, 4), δ = (2, 1) and ω = (1, 1). Consider the 
twisted cubic curve Z1 ⊂ P 3

C and a general quadric surface Z2 ⊂ P (V 2) ∼= P 3
C . Applying Theorem 1, 

we have

deg(κnor
n (Z)) = deg(Z1)deg(Z2)d((4,4), (2,1), (1,1)) ,

where d((4, 4), (2, 1), (1, 1)) is the coefficient of the monomial h3t1t2
2 in the polynomial

3∑
i, j=0

(t1 + h)3− j(t2 + h)3−1ti
1t j

2 = · · · + 20 h3t1t2
2 + · · · ,

therefore deg(κnor
n (Z)) = 3 · 2 · 20 = 120. We provide a Macaulay2 code Grayson and Stillman (1997)

to verify symbolically this degree computation. We speed up our degree computation by working over 
the finite field Z/Z101 and restricting to a 3-dimensional subspace H ⊂ P (C4 ⊗C4), since κnor

n (Z)

has codimension 2 + 1 = 3:

K = ZZ/101; R = K[u_0..u_3,x_(1,1)..x_(2,4)];
coeffs = toList((1,1)..(4,4));
for f in coeffs do a_f = sum(m+1, i-> random(K)*u_i);
M = sum(4, i-> sum(4, j-> a_(i+1,j+1)*x_(1,i+1)*x_(2,j+1)));
xx1 = matrix{{x_(1,1)..x_(1,4)}}; xx2 = matrix{{x_(2,1)..x_(2,4)}};
I = minors(2,contract(xx1,M)||xx1)+minors(2,contract(xx2,M)||xx2)+

ideal(sum(4, i-> x_(1,i+1)^2)-1,sum(4, i-> x_(2,i+1)^2)-1);

Here I is the ideal of relations among the singular vector pairs in the symbolic coordinates of M. 
We impose the existence of a singular vector pair on Z = Z1 × Z2 as follows:

Z_1 = minors(2, matrix{{x_(1,1)..x_(1,3)},{x_(1,2)..x_(1,4)}});
Z_2 = ideal((symmetricPower(2,xx2)*random(K^10,K^1))_(0,0));
J = I + Z_1 + Z_2;

Finally, the ideal of κnor
n (Z) is computed with

Kalman = eliminate(toList(x_(1,1)..x_(2,4)), J);
degree Kalman -- this confirms that the variety has degree 120

Remark 23. Note that Theorem 1 includes the symmetric case. Consider an irreducible variety Z ⊂
P (V ) not contained in the isotropic quadric Q ⊂P (V ) and the generalized Kalman variety κn,ω(Z) :=
κn,ω(Z), where δ = (δ), δ = codim(Z), n = (n) and ω = (ω). Its degree is d(n, δ, ω) deg(Z), where 
d(n, δ, ω) is the coefficient of the monomial hδtn−δ−1 in the polynomial

[(ω − 1)t + h]n − tn

(ω − 1)t + h − t
=

n−1∑
i=0

[(ω − 1)t + h]n−1−iti

=
n−1∑
i=0

n−1−i∑
j=0

(
n − 1 − i

j

)
(ω − 1)n−1−i− jtn−1− jh j .

The coefficient of the monomial hδtn−δ−1 in the last polynomial is

n−1∑
i=0

(
n − 1 − i

δ

)
(ω−1)n−δ−1−i =

n−δ−1∑
i=0

(
n − 1 − i

δ

)
(ω−1)n−δ−1−i =

n−δ−1∑
j=0

(
δ + j

j

)
(ω−1) j ,
which recovers (Ottaviani and Shahidi, 2021, Theorem 2.3).
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3. The totally isotropic Kalman variety

In Theorem 1 we assumed that each Zi is not contained in the corresponding isotropic quadric Q i . 
On the opposite side, we exhibit a description of totally isotropic Kalman varieties as dual varieties. 
Before we prove the precise statement, we need the following lemma.

Lemma 24. Consider the product Q =∏k
i=1 Q i of isotropic quadrics Q i ⊂ P (V i). Let vn,ω : P → P (SωV )

be the degree-ω Segre-Veronese embedding of P =∏k
i=1 P (V i). Then the dual variety [vn,ω(Q )]∨ is a hyper-

surface for every choice of n and ω.

Proof. Considering a slight modification of (Gel’fand et al., 1994, Chapter 1, Corollary 5.10), the variety 
[vn,ω(Q )]∨ is a hypersurface if and only if

dim(vn j ,ω j (Q j)) + codim([vn j ,ω j (Q j)]∨) − 1 ≤ dim(vn,ω(Q )) ∀ j ∈ [k] , (3.1)

where each variety vn j ,ω j (Q j), which is the degree-ω j Veronese embedding of Q j . The variety 
[vn j ,ω j (Q j)]∨ is a hypersurface for all ω j ≥ 1 by (Sodomaco, 2018, Corollary 4.8). Therefore, for all 
j ∈ [k] the corresponding inequality in (3.1) becomes n j − 2 ≤ dim(vn,ω(Q )) = n1 + · · · + nk − 2k, 
which is clearly satisfied. �
Theorem 25. Assume n j ≥ 3 for all j ∈ [k]. Consider the product Q =∏k

i=1 Q i of isotropic quadrics Q i ⊂
P (V i). Let κ iso

n,ω be the totally isotropic Kalman variety, i.e., the variety of partially symmetric tensors having 
a singular vector k-tuple in Q . Let vn,ω : P → P (SωV ) be the degree-ω Segre-Veronese embedding of P =∏k

i=1 P (V i). Then

κ iso
n,ω = [vn,ω(Q )]∨ . (3.2)

In particular, κ iso
n,ω is an irreducible hypersurface of P (SωV ). Its degree is equal to the degree of [vn,ω(Q )]∨ , 

that is

2k
N∑

j=0

(−1) j(N + 1 − j)!
∑
|α|= j

⎡⎢⎢⎣ k∏
l=1

ω
nl−2−αl
l

(nl − 2 − αl)!
αl∑

βl=0
l∈[k]

k∏
l=1

(
nl

βl

)
(−2)αl−βl

⎤⎥⎥⎦ (3.3)

where N = dim(vn,ω(Q )) = n1 + · · · + nk − 2k.
If J := { j ∈ [k] | n j = 2} �= ∅, then identity (3.2) still holds. In such a case, κ iso

n,ω(Q ) has 2| J | irreducible 
components, where each one of them is isomorphic to the Kalman variety of the irreducible product 

∏
j /∈ J Q j .

Proof. A tensor T ∈ P (SωV ) is a hyperplane HT ⊂ P (SωV )∗ . Recall that we identify all the vector 
spaces with their duals using the Frobenius inner product.

Suppose that, for some k-tuple ([x1], . . . , [xk]) ∈ Q , the affine tangent space T̂ [xω1
1 ⊗···⊗x

ωk
k ]vn,ω(Q )

at [xω1
1 ⊗ · · · ⊗ xωk

k ] to vn,ω(Q ) is a subspace of the affine cone ĤT of HT . Any vector v of this affine 
tangent space may be written as

v =
k∑

i=1

xω1
1 ⊗ · · · ⊗ xωi−1

i · yi ⊗ · · · ⊗ xωk
k , yi ∈ T̂ [xi ] Q i ∀ i ∈ [k] .

By linearity, we may suppose that v = xω1
1 ⊗ · · · ⊗ xωi−1

i · yi ⊗ · · · ⊗ xωk
k for some i ∈ [k]. Then v ∈ ĤT

for every choice of yi ∈ T̂ [xi ] Q i . This implies that the contraction T (xω1
1 ⊗ · · · ⊗ xωi−1

i · yi ⊗ · · · ⊗ xωk
k )

vanishes for every yi ∈ T̂ [xi ] Q i . Equivalently, the vector wi := T (xω1
1 ⊗ · · · ⊗ xωi−1

i · _ ⊗ · · · ⊗ xωk
k ) ∈ V i( )
is contained in the affine conormal space N̂[xi ] Q i = T̂ [xi ] Q i
⊥

. Observing that
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N̂[xi ] Q i =
{

yi ∈ V i | rank

(∇qi(xi)

yi

)
≤ 1

}
=
{

yi ∈ V i | rank

(
xi
yi

)
≤ 1

}
= 〈xi〉 ,

we conclude that the vector wi defined above is proportional to the vector xi . Applying this argument 
for each i ∈ [k], we find that ([x1], . . . , [xk]) is a singular vector k-tuple for the tensor T . This means 
that T ∈ κ iso

n,ω . Recall that

[vn,ω(Q )]∨ = {T ∈ P (SωV ) | T̂ [x]vn,ω(Q ) ⊂ HT for some [x] ∈ vn,ω(Q )} .

Upon taking closures, we have proven the inclusion [vn,ω(Q )]∨ ⊂ κ iso
n,ω . The variety [vn,ω(Q )]∨ is 

a hypersurface for every choice of n and ω by Lemma 24. On the other hand, the totally isotropic 
Kalman variety κ iso

n,ω is an irreducible hypersurface if n j ≥ 3 for all j ∈ [k]. Hence equality κ iso
n,ω =

[vn,ω(Q )]∨ follows.
Since [vn,ω(Q )]∨ is a hypersurface, its degree is equal to the polar class δ0(vn,ω(Q )) by (Holme, 

1988, Theorem 3.4). This invariant can be computed using the Chern classes of vn,ω(Q ) by the rela-
tion

δ0(vn,ω(Q )) =
N∑

j=0

(−1) j(N + 1 − j)c j(vn,ω(Q )) · hN− j ,

where h = c1(Ovn,ω(Q )(1)) is the hyperplane class. This computation was done in (Sodomaco, 2020, 
Proposition 5.3.1) in a slightly more general setting and leads to the degree (3.3).

Suppose J �= ∅. For 1 ≤ j ≤ 2| J | , define Y j to be the jth irreducible component of Q . Notice that 
each Y j is isomorphic to a product of quadrics. We now describe [vn,ω(Q )]∨ in terms of the dual 
varieties [vn,ω(Y j)]∨ .

By definition, vn,ω(Q ) =⋃ j∈ J vn,ω(Y j). Consider the conormal variety Nvn,ω(Q ) and the diagram

Nvn,ω(Q )

vn,ω(Q ) P (SωV ).

p1 p2 (3.4)

The preimage under p1 of each irreducible component vn,ω(Y j) is a projective bundle and therefore 
irreducible (Vakil, 2017, Exercise 11.4.C). The image of such a component is the irreducible hyper-
surface [vn,ω(Y j)]∨ . This shows that [vn,ω(Q )]∨ = ⋃

j∈ J [vn,ω(Y j)]∨ . To see that these irreducible 
components are all distinct, assume [vn,ω(Y j)]∨ = [vn,ω(Yi)]∨ for some i �= j ∈ J . Applying the dual 
construction again and the fact that every projective irreducible variety is reflexive in characteristic 
zero, we find that vn,ω(Y j) = [vn,ω(Y j)]∨∨ = [vn,ω(Yi)]∨∨ = vn,ω(Yi), a contradiction, because Yi and 
Y j are distinct.

Now, the totally isotropic Kalman variety is κ iso
n,ω =⋃ j∈ J κ

iso
n,ω(Y j), where we do not know a priori 

that all the irreducible varieties in the union are distinct. However, by the first part of this proof, 
we find that κ iso

n,ω(Y j) = [vn,ω(Y j)]∨ . Moreover, as we have checked, all the irreducible components 
[vn,ω(Y j)]∨ are distinct. Therefore κ iso

n,ω =⋃ j∈ J [vn,ω(Y j)]∨ = [vn,ω(Q )]∨ has 2| J | components, where 
each of them is a dual variety of the corresponding irreducible quadric. �
Example 26. Let k = 2 and n = (2, 2). We assume that P (V 1) = P (V 2) ∼= P 1

C and Q 1 = Q 2 = V(x2
1 +

x2
2) ⊂P 1

C . One has

κn(P 1
C × Q 2) = κ iso

n = κn(Q 1 × P 1
C) .

This is a reducible hypersurface of degree 4 whose irreducible components are four planes in 
P (C2 ⊗ C2) ∼= P 3

C , dual to the four points of Q 1 × Q 2 as predicted by Theorem 25. Denot-
ing aij the homogeneous coordinates of P 3

C , it is defined by the vanishing of the polynomial [ ] [ ]

(a11 − a22)

2 + (a12 + a21)
2 (a11 + a22)

2 + (a12 − a21)
2 . There are four lines in P 3

C obtained as the 
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intersection of the four pairs of non-conjugate planes. Each of the Kalman strata κ {1}
n (Q 1 × P 1

C) =
κ

{1}
n (P 1

C ×P 1
C) and κ {2}

n (P 1
C × Q 2) = κ

{2}
n (P 1

C ×P 1
C) consists of two such lines. Therefore, both these 

Kalman strata have degree 2 and codimension 2.

In the symmetric case, Theorem 25 specializes to the following result, which is related to (Beorchia 
et al., 2021, Proposition 2.10).

Theorem 27. Let κ iso
n,ω be the Kalman variety of symmetric tensors having an isotropic eigenvector. Let 

vn,ω : P (V ) →P (SωV ) be the degree-ω Veronese embedding of P (V ). Then

κ iso
n,ω = [vn,ω(Q )]∨ .

In particular, κ iso
n,ω is an irreducible hypersurface of P (SωV ). Its degree is

deg(κ iso
n,ω) = 2

n−2∑
j=0

( j + 1)(ω − 1) j . (3.5)

Example 28. Consider the totally isotropic Kalman variety κ iso
3,2 of ternary quadrics possessing an 

isotropic eigenvector. By Theorem 27, this is an irreducible hypersurface of degree 6 in P (Sω V ) ∼=P 5. 
We include a Macaulay2 code to verify this, using both descriptions according to Theorem 27. Below 
we denote the homogeneous coordinates of P (Sω V ) by a0, . . . , a5.

As Kalman variety:

R = QQ[x_1..x_3,a_0..a_5,c_0..c_5];
MX = matrix{{x_1^2,2*x_1*x_2,2*x_1*x_3,x_2^2,2*x_2*x_3,x_3^2}};
aa = matrix{{a_0..a_5}}; xx = matrix{{x_1..x_3}};
f = (MX*transpose(aa))_(0,0);
Ivect = minors(2,diff(xx,f)||xx);
IQ = ideal(sum(3, i-> x_(i+1)^2));
sat = saturate(Ivect+IQ,ideal xx);
Kalman = eliminate(first entries xx,sat);

As dual variety [v3,2(Q )]∨:

cc = matrix{{c_0..c_5}};
IVQ = eliminate(first entries xx,

saturate(ideal(first entries(MX-aa))+IQ,ideal xx));
jacIVQ = diff(aa, transpose gens IVQ);
norIVQ = saturate(IVQ + minors(codim(IVQ)+1,jacIVQ||cc), ideal aa);
dualIVQ = eliminate(first entries aa, norIVQ);
eq = sub(dualIVQ_0, apply(6, i-> c_i=>a_i));
eq == Kalman_0 -- the two equations coincide

We point that the defining polynomial eq of [vn,ω(Q )]∨ has a role in the theory of characteristic 
polynomials of symmetric tensors. The second author showed that the leading coefficient of the char-
acteristic polynomial of a symmetric tensor in Sω V is equal, up to scaling, to the defining polynomial 
of [vn,ω(Q )]∨ with multiplicity ω − 2 Sodomaco (2018).

4. Generating functions

A generating function is a device somewhat similar to a bag.
Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in a bag, 
and then we have only one object to carry, the bag.
[George Pólya (Pólya, 1954, Chapter VI)]
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In the previous section, we determined the degrees of the generalized Kalman varieties κn,ω(Z) by 
computing the coefficients d(n, δ, ω). In the spirit of Pólya’s quote, Theorem 2 furnishes a generating 
function for the coefficients d(n, δ, ω) when δ = (δ, 0, . . . , 0), or equivalently when we consider only 
one subvariety Z1 ⊂ P (Cn1 ) of codimension δ. For this particular choice of δ, we use the notation 
d(n, δ, ω) in place of d(n, δ, ω). Before proceeding to the proof of Theorem 2, we start with a lemma.

Lemma 29. Let d(m) =∑m1−1
j1=0 · · ·∑mk−1

jk=0 f ( j1, . . . , jk). Then

∑
m∈Nk

d(m)xm =
(

k∏
i=1

xi

1 − xi

)∑
j∈Nk

f (j)xj .

Proof. The proof is an induction on k. For k = 1, we have

∞∑
m=0

⎛⎝m−1∑
j=0

f ( j)

⎞⎠ xm = f (0)x + ( f (0) + f (1)) x2 + ( f (0) + f (1) + f (2)) x3 + · · ·

= (x + x2 + x3 + · · · )
(

f (0) + f (1)x + f (2)x2 + · · ·
)

= x

1 − x

∞∑
j=0

f ( j)x j .

The induction step is similar. �
As in Zeilberger’s approach Ekhad and Zeilberger (2016), we shall employ a classical and powerful 

theorem of MacMahon (MacMahon, 1915, §3, Chapter 2, 66).

Theorem 30 (MacMahon Master Theorem). Let A = (aij) be an m × m complex matrix, and let z =
(z1, . . . , zm) be a vector of formal variables. Let f (p) be the coefficient of the monomial zp in the product ∏m

i=1(ai1z1 + · · · + aimzm)pi . Let w = (w1, . . . , wm) be another vector of formal variables, T = diag(w) and 
denote by Im the identity matrix of size m. Then∑

p∈Nm

f (p)wp = 1

det(Im − T A)
.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that, for any vector of codimensions δ, the integer d(n, δ, ω) is the coeffi-
cient of the monomial hδ

∏k
i=1 tni−δi−1

i in the polynomial

k∏
i=1

(̂ti + h)ni − tni
i

(̂ti + h) − ti
=

k∏
i=1

ni−1∑
ji=0

(̂ti + h) ji tni−1− ji
i ,

where δ =∑k
i=1 δi and t̂i :=

(∑k
j=1 ω jt j

)
− ti . Equivalently, d(n, δ, ω) is the constant term of

n1−1∑
j1=0

· · ·
nk−1∑
jk=0

h−δ

k∏
i=1

(̂ti + h) ji tδi− ji
i ,

namely the sum of the constant terms in the products h−δ
∏k

i=1 (̂ti + h) ji tδi− ji
i . Observe that the con-

stant term of each product h−δ
∏k

i=1 (̂ti + h) ji tδi− ji
i is the coefficient of hδ

∏k
i=1 t ji

i in 
∏k

i=1 (̂ti + h) ji tδi
i , 
which we may call f (j, δ). Therefore
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d(δ,n,ω) =
n1−1∑
j1=0

· · ·
nk−1∑
jk=0

f (j, δ) .

Applying Lemma 29 with respect to n, we have

∑
n,δ∈Nk

d(δ,n,ω)xnyδ =
k∏

i=1

xi

1 − xi

∑
j,δ∈Nk

f (j, δ)xjyδ .

From now on, we assume that δ1 = δ and δi = 0 for all i ≥ 2 and we call f (j, δ) the coefficient 
of hδ

∏k
i=1 t ji

i in tδ
1

∏k
i=1 (̂ti + h) ji . In this special case, we can apply MacMahon’s Theorem 30 with 

m = k + 1, f (j, δ) in place of f (p), and considering the product

tδ
1

k∏
i=1

(̂ti + h) ji = tδ
1

k∏
i=1

(ai,1t1 + · · · + ai,ktk + ai,k+1h) ji .

Here A = (aij) is the (k + 1) × (k + 1) matrix defined as

A :=

⎛⎜⎜⎜⎝
1

B
...

1
1 0 · · · 0 0

⎞⎟⎟⎟⎠ ,

where B is the k × k matrix whose (i, j)-th entry is ω j − δi j (δi j = 1 if i = j, and 0 otherwise). Then

∑
j∈Nk

∞∑
δ=0

f (j, δ)xj yδ = 1

det(Ik+1 − T A)
,

where T = diag(x, y). Summing up, we have obtained the formula

∑
n∈Nk

∞∑
δ=0

d(n, δ,ω)xn yδ =
k∏

i=1

xi

1 − xi

1

det(Ik+1 − T A)
. (4.1)

It remains to compute det(Ik+1 − T A). Define M := Ik+1 − T A. More explicitly

M =

⎛⎜⎜⎜⎜⎜⎝
1 − (ω1 − 1)x1 −ω2x1 −ω3x1 · · · −ωk−1x1 −ωkx1 −x1

−ω1x2 1 − (ω2 − 1)x2 −ω3x2 · · · −ωk−1x2 −ωkx2 −x2
...

...
...

...
...

...

−ω1xk −ω2xk −ω3xk · · · −ωk−1xk 1 − (ωk − 1)xk −xk

−y 0 0 · · · 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

By expanding along the last row, we derive two k × k submatrices

M ′ :=

⎛⎜⎜⎜⎝
−ω2x1 −ω3x1 · · · −ωkx1 −x1

1 − (ω2 − 1)x2 −ω3x2 · · · −ωkx2 −x2
...

...
...

...

−ω2xk −ω3xk · · · 1 − (ωk − 1)xk −xk

⎞⎟⎟⎟⎠ ,

M ′′ :=

⎛⎜⎜⎜⎝
1 − (ω1 − 1)x1 −ω2x1 · · · −ωkx1

−ω1x2 1 − (ω2 − 1)x2 · · · −ωkx2
...

...
...

⎞⎟⎟⎟⎠ .
−ω1xk −ω2xk · · · 1 − (ωk − 1)xk
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The next step is to compute the determinants of M ′ and M ′′ .
Claim 1: We have

det(M ′) = (−1)kx1

k∏
i=2

(1 + xi) . (4.2)

First of all, the polynomial det(M ′) has degree ≤ k in x1, . . . , xk . The first row of M ′ is a multiple of x1, 
hence x1 divides det(M ′). Note that, if xi = −1 then the first and the i-th row of M ′ are proportional 
and so deg(M ′) vanishes. By Euclidean division, we may write det(M ′) = (1 + xi)q + R , where R is the 
remainder, which then depends only on the variables x j with j �= i. Hence R(x1, . . . , ̂xi, . . . xk) = 0 for 
every value of the variables. Since we are in characteristic zero, R = 0. The left-hand side is divisible 
by x1

∏
i≥2(1 + xi) of degree k, and hence there is a scalar γ such that det(M ′) = γ x1

∏
i≥2(1 + xi). 

In order to determine that γ = (−1)k , we substitute x1 = 1 and x2 = · · · = xk = 0 in M ′ and observe 
that the determinant of the resulting matrix is (−1)k .

Claim 2: We have

det(M ′′) =
k∏

i=1

(1 + xi) −
k∑

j=1

ω j x j

∏
i �= j

(1 + xi) . (4.3)

Write M ′′ = D −xT ω, where x = (x1, . . . , xk) and ω = (ω1, . . . , ωk) are row vectors and D = diag(1 +x)

is the diagonal matrix whose i-th diagonal entry is 1 + xi . Since D is invertible over the fraction field 
C(x), we have M ′′ = D[Ik − (D−1xT ) ω]. By the matrix determinant lemma (Hogben, 2007, §4.1, Fact 
22) over the fraction field C(x), one has

det(Ik − (D−1xT )ω) = 1 − ωD−1xT .

Thus

det(M ′′) = det(D − xT ω) = (1 − ωD−1xT )det(D) =
k∏

i=1

(1 + xi) −
k∑

j=1

ω j x j

∏
i �= j

(1 + xi) .

From the formulas (4.2) and (4.3), we conclude that

det(Ik+1 − T A) = det(M) = (−1)k+1 y det(M ′) + det(M ′′) =

= −y x1

k∏
i=2

(1 + xi) +
k∏

i=1

(1 + xi) −
k∑

j=1

ω j x j

∏
i �= j

(1 + xi) ,

which establishes the result. �
Example 31. For k = 2 and ω = (1, 1) we have

∑
n∈Nk

∞∑
δ=0

d(n, δ,ω)xn yδ = x1

1 − x1
· x2

1 − x2
·
∣∣∣∣∣∣

1 −x1 −x1
−x2 1 −x2
−y 0 1

∣∣∣∣∣∣
−1

= x1

1 − x1
· x2

1 − x2
· 1

1 − x1 y − x1x2 − x1x2 y

= 2yx2
1x2

2 + 3y2x3
1x2

2 + · · ·
This fits with (Ottaviani and Shahidi, 2021, Table 1). Note that for y = 0, when substituted into the 
first expression of the second line, we recover the formula in (Friedland and Ottaviani, 2014, Theorem 

1).
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Remark 32. If ω1 = · · · = ωk = ω, the polynomial Hω(x, y) may be rewritten more symmetrically as

Hω(x, y) = −y x1

k∏
i=2

(1 + xi) +
k∏

i=1

(1 + xi) − ω

k∑
j=1

x j

∏
i �= j

(1 + xi)

= −y x1

k−1∑
i=0

ei (̂x1) +
k∑

i=0

ei(x) − ω

k−1∑
j=0

k∑
i=1

xie j (̂xi)

= −y x1

k−1∑
i=0

ei (̂x1) +
k∑

i=0

(1 − ωi)ei(x) ,

where x̂i denotes the vector (x1, . . . , xi−1, xi+1, . . . , xk) and for a vector x = (z1, . . . , zk), we define 
e0(x) := 1 and ei(x) :=∑1≤ j1<···< ji≤k z j1 · · · z ji ∀ i ∈ [k].

5. Asymptotics

5.1. Asymptotic behavior of d(n, δ, ω) for ni → ∞

Fix an index i ∈ [k]. We study the asymptotic behavior of d(n, δ, ω) when the dimension ni goes to 
infinity. If δi = 0 and ω = (1, . . . , 1), we recover (Ottaviani and Shahidi, 2021, Corollary 3.5). If δi ≥ 1
and ωi = 1, regardless of the other entries of δ and ω, we obtain a new stabilization property.

Proposition 33. Fix i ∈ [k] and assume that ωi = 1. Let ni − 1 =∑ j �=i(n j − 1) + δi . Then

d(n1, . . . ,ni−1,m,ni+1, . . . ,nk, δ,ω) = d(n1, . . . ,ni−1,ni,ni+1, . . . ,nk, δ,ω) ∀m ≥ ni .

Proof. Recall that δ =∑k
i=1 δi . Let Ti =∏ j �=i t

n j−δ j−1
j . We need to compare the coefficients of

(1) hδtm−δi−1
i T i in

(̂ti + h)m − tm
i

t̂i + h − ti

∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j
=
[

m−1∑
l=0

(̂ti + h)m−1−ltl
i

]∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j

(2) hδtni−δi−1
i T i in

(̂ti + h)ni − tni
i

t̂i + h − ti

∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j
=
⎡⎣ni−1∑

l=0

(̂ti + h)n1−1−ltl
i

⎤⎦∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j
.

Observe that we can replace (2) with the coefficient of tm−ni
i hδtni−δi−1

i T i = hδtm−δi−1
i T i in⎡⎣ni−1∑

l=0

(̂ti + h)ni−1−ltl+m−ni
i

⎤⎦∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j

=
⎡⎣ m−1∑

s=m−ni

(̂ti + h)m−1−sts
i

⎤⎦∏
j �=i

(t̂ j + h)n j − t
n j

j

t̂ j + h − t j
.

Now consider the product⎡⎣m−ni−1∑
(̂ti + h)m−1−sts

i

⎤⎦∏ (t̂ j + h)n j − t
n j

j
. (5.1)
s=0 j �=i
t̂ j + h − t j
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Recall that t̂i :=
(∑k

j=1 ω jt j

)
− ti . Since ωi = 1, the maximum degree of ti in the first factor of (5.1)

is m − ni − 1. Moreover, the maximum degree of ti in the second factor of (5.1) is 
∑

j �=i(n j − 1). 
Summing up, the maximum total degree of ti in (5.1) is

m − ni − 1 +
∑
j �=i

(n j − 1) = m − δi − 1 +
⎛⎝δi +

∑
j �=i

(n j − 1) − ni

⎞⎠< m − δi − 1

because δi +∑
j �=i(n j − 1) − ni < 0 by hypothesis. Therefore, the product (5.1) gives no contribution 

to the coefficient of hδtm−δi−1
i T i . This implies the stabilization. �

Remark 34. Proposition 33 does not hold if we study the asymptotic behavior of d(n, δ, ω) when 
ni → ∞ for ωi > 1. An immediate counterexample can be found in the symmetric case k = 1, see 
Remark 23.

5.2. Asymptotic behavior of d(n, δ, ω) in the binary format for k → ∞

Assume n1 = · · · = nk = 2. Here δi ∈ {0, 1} for all i ∈ [k]. By (Ottaviani and Shahidi, 2021, Theorem 
1.2), the integer d(n, δ, ω) is the coefficient of hδ

∏k
i=1 t1−δi

i in

(ω1t1 + · · · + ωktk + h)k =
∑

j1+···+ jk+l=k

(
k

j1, . . . , jk, l

)
(ω1t1)

j1 · · · (ωktk)
jk hl ,

where 
( k

j1,..., jk,l

)
is the multinomial coefficient. Setting P0 := {i ∈ [k] | δi = 0}, we have that |P0| = k −δ

and d(n, δ, ω) = (k
δ

)∏
i∈P0

ωi . In particular, the growth of d(n, δ, ω) is factorial in k.

5.3. Asymptotic behavior of d(n, δ, ω) in the hypercubical format nk for n → ∞

In Theorem 2 we derived a generating function for the integers d(n, δ, ω), hence for δ =
(δ, 0, . . . , 0). Observe that the polynomial Hω(x, y) in (1.2) is of the form Hω(x, y) = −H1,ω(x)y +
H2,ω(x). Therefore, we can rewrite the generating function of the degrees d(n, δ, ω) as

∑
n∈Nk

∞∑
δ=0

d(n, δ,ω)xn yδ = 1

−H1,ω(x)y + H2,ω(x)

k∏
i=1

xi

1 − xi
=

∞∑
δ=0

F (x) yδ , (5.2)

where

Fω(x) := H1,ω(x)δ

H2,ω(x)δ+1

k∏
i=1

xi

1 − xi
= H1,ω(x)δ

∏k
i=1 xi(1 − xi)

δ[
H2,ω(x)

∏k
i=1(1 − xi)

]δ+1 = F N,ω(x)

[F D,ω(x)]δ+1 . (5.3)

From now on, we restrict to the case ω = ω1. By Remark 32 we have

H1,ω1(x) = x1

k−1∑
i=0

ei (̂x1) , H2,ω1(x) =
k∑

i=0

(1 − ωi)ei(x) .

In this case, the reduced denominator F D,ω1(x) of Fω1(x) is symmetric with respect to the variables 
xi and coincides with the denominator of the generating function obtained in (Ekhad and Zeilberger, 
2016, Proposition 1) when ω = 1. The differences with (Ekhad and Zeilberger, 2016, Proposition 1) 
are the numerator and the exponent δ + 1 in the denominator.

Our goal is to fix δ and study the asymptotic behavior of d(n, δ, ω) := d(n1, δ, ω1) for n → ∞. This 
can be done applying the next result by Raichev and Wilson (2008). We refer to that paper for the 

definitions of strictly minimal, critical, isolated, and non-degenerate point needed in the statement.
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Theorem 35. (Raichev and Wilson, 2008, Theorem 3.2) Let k ≥ 2 and let G = G N/Gδ+1
D , whose Taylor ex-

pansion in a neighborhood of the origin is 
∑

α∈Nk gα xα . Suppose c ∈ V = {G D(x) = 0} is smooth with 
ck∂kG D(c) �= 0, strictly minimal, critical, isolated, and non-degenerate. Then, for all N ∈N , as n → +∞,

gn1 = c−n1

⎡⎣((2πn)k−1 det g̃′′(0)
)−1/2 δ∑

i=0

∑
j<N

(n + 1)δ−i

(δ − i)! i! n− j L j(ũi, g̃)+ O
(

nδ−(k−1)/2−N
)⎤⎦ ,

where rs := r(r + 1) · · · (r + s − 1). In the original formula of Raichev-Wilson, we substituted α = 1 and 
p = δ + 1.

The functions g̃ , ũi and L j appearing in Theorem 35 are defined in (Raichev and Wilson, 2008, 
Definition 3.1) and in the statement of (Raichev and Wilson, 2008, Theorem 3.2).

Proposition 36. The point c =
(

1
ωk−1 , . . . , 1

ωk−1

)
is smooth for V = {F D,ω1(x) = 0} with ck∂k F D,ω1(c) �= 0, 

strictly minimal, critical, isolated, and non-degenerate.

Proof. The statement is an immediate consequence of (Ottaviani et al., 2021, Remark 3.10) and (Pan-
tone, 2017, Propositions 2.2,. . . ,2.7). �
Proposition 37. The following identity holds true:

L0(ũ0, g̃) = ũ0(c) = (ωk − 1)k−δ−1

(ωk)k−δ−2(ωk − 2)k
.

Proof. Recall that L j(ũi, ̃g) is defined in (Raichev and Wilson, 2008, Theorem 3.2). For j = 0, we have 
L0(ũi, ̃g) = ũi(c). By (Raichev and Wilson, 2008, Proposition 4.3), we have ũ0(c) = F N,ω1(c)

(−ck∂k F D,ω1(c))δ+1 , 
where

F N,ω1(c) =
[

c1

k−1∑
i=0

ei (̂c1)

]δ k∏
i=1

ci(1 − ci)
δ

=
[

1

ωk − 1

k−1∑
i=0

(
k − 1

i

)(
1

ωk − 1

)i
]δ (

1

ωk − 1

)k (ωk − 2

ωk − 1

)δk

=
[

1

ωk − 1

(
ωk

ωk − 1

)k−1
]δ (

1

ωk − 1

)k (ωk − 2

ωk − 1

)δk

= (ωk)(k−1)δ(ωk − 2)kδ

(ωk − 1)k(2δ+1)
,

and, similarly as in the proof of (Pantone, 2017, Proposition 2.7), −ck∂k F D,ω1(c) = (ωk)k−2(ωk−2)k

(ωk−1)2k−1 . 
Hence

ũ0(c) = F N,ω1(c)

(−ck∂k F D,ω1(c))δ+1 = (ωk)(k−1)δ(ωk − 2)kδ

(ωk − 1)k(2δ+1)

[
(ωk − 1)2k−1

(ωk)k−2(ωk − 2)k

]δ+1

= (ωk − 1)k−δ−1

(ωk)k−δ−2(ωk − 2)k
. �
We have the necessary tools to prove Theorem 3.
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Proof of Theorem 3. By Theorem 35, for N = 1 and c = ( 1
ωk−1 , . . . , 1

ωk−1 ), we have

d(n, δ,ω) = (ωk − 1)kn

[
1

(2πn)
k−1

2 det g̃′′(0)
1
2

δ∑
i=0

(n + 1)δ−i

(δ − i)! i! L0(ũi, g̃) + O

(
1

n
k+1

2 −δ

)]
,

as n → ∞. Define ηk := (2π)− k−1
2 det g̃′′(0)− 1

2 . Similarly as in (Pantone, 2017, Proposition 2.7), one 
verifies that det g̃′′(0) = (ωk−2)k−1

(ωk)k−2 �= 0. Then

d(n, δ,ω) = (ωk − 1)kn
[
ηk L0(ũ0, g̃)nδ

δ!n
k−1

2

+ O

(
1

n
k+1

2 −δ

)]
= (ωk − 1)kn

[
ηk L0(ũ0, g̃)nδ

δ!n
k−1

2

+ 1

n
k−1

2 −δ
O

(
ηk L0(ũ0, g̃)

n

)]
= (ωk − 1)kn

[
ηk L0(ũ0, g̃)nδ

n
k−1

2

+ ηk L0(ũ0, g̃)

n
k−1

2 −δ
O

(
1

n

)]
= ηk L0(ũ0, g̃)

(ωk − 1)kn

n
k−1

2 −δ

[
1 + O

(
1

n

)]
.

Conclusion follows by plugging in the identity for L0(ũ0, ̃g) in Proposition 37. �
Remark 38. When ω = 1, we obtain the following O (1/n)-approximations for d(n, δ, 1):

d(n, δ,1) ≈

⎧⎪⎨⎪⎩
2√
3π

(
3
2

)δ

8n nδ−1 if k = 3

27
29π

√
π

(
4
3

)δ

81n nδ− 3
2 if k = 4 .

6. Kalman varieties of partially symmetric singular vector k-tuples

In this final section, we restrict to the case V 1 = · · · = Vk = V for some n-dimensional complex 
vector space V and we assume that all isotropic quadrics Q i coincide with the quadric Q ⊂ P (V ). 
We also use the notations P = P (V )×k and Q k = ∏k

i=1 Q ⊂ P . Our goal is to introduce another 
kind of Kalman variety. To motivate this construction, let us consider the matrix case. In this context, 
one may wonder what is the closure of the locus of matrices A ∈ V ⊗ V possessing a non-isotropic 
singular vector pair of the form (x, x) for some x ∈ V . For n = 2, this locus coincides with the subspace 
S2 V ⊂ V ⊗ V of 2 ×2 symmetric matrices. As we shall see, for n ≥ 3 this locus is not a linear subspace 
and contains the subspace S2 V as a proper closed subset.

Definition 39. The normalized symmetric Kalman variety is the variety

κnor
n,k := {T ∈ P (V ⊗k) | T has a singular vector k-tuple ([x], . . . , [x]) for some [x] ∈ P (V ) \ Q } .

(6.1)

In complete analogy with the generalized Kalman variety introduced in Definition 15, one can define 
the generalized symmetric Kalman variety

κn,k := {T ∈ P (V ⊗k) | T has a singular vector k-tuple ([x], . . . , [x]) for some [x] ∈ P (V )} .

(6.2)

As shown in Example 41, the generalized symmetric Kalman variety κn,k may be reducible already for 

matrices.
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Table 1
Codimension and degree of κnor

n,2 for small n.

n codim(κnor
n,2 ) deg(κnor

n,2 ) generators of the ideal I(κnor
n,2 )

2 1 1 1 linear
3 2 7 3 cubics
4 3 24 1 quadric, 1 quartic, 11 sextics
5 4 86 5 quartics, 5 quintics, 5 sextics, 31 septics
6 5 314 1 cubic, 1 quintic, 86 sextics

Theorem 40. The variety κnor
n,k is irreducible of codimension (k − 1)(n − 1) in P (V ⊗k).

Proof. Consider the spectral variety 	n1,1 along with the two projections α and β of 	n1,1 onto 
P (V ⊗k) and P , as in diagram (2.6). By Theorem 13, every fiber of β at each point of P \ Q k is a 
linear subspace of codimension k(n − 1) in P (V ⊗k).

Consider the Segre embedding σ : P → P (V ⊗k), σ([x1], . . . , [xk]) = [x1 ⊗ · · · ⊗ xk]. Denote by vn,k

the k-th Veronese embedding of P (V ), as a subvariety of P (V ⊗k). The variety κnor
n,k has the following 

description in terms of the diagram mentioned above:

κnor
n,k = α(β−1(σ−1(vn,k) \ Q k)),

where σ−1(vn,k) = P ∩ � and � denotes the diagonal. Let Y = β−1(σ−1(vn,k) \ Q k). By Lemma 17, 
Y is irreducible and so is κnor

n,k . Moreover, we have dim(Y ) = dim(P ∩ �) + dim(P (V ⊗k)) − (n − 1)k =
nk − 1 − (k − 1)(n − 1).

The general fiber of α restricted to Y is finite. Indeed, any point of σ−1(vn,k) \ Q k is the equiv-
alence class of a tuple of the same non-isotropic vector. The group SO(V )×k acts transitively on 
equivalence classes of non-isotropic vectors in P . Thus a general tensor in the fiber under β of any 
point in the diagonal σ−1(vn,k) \ Q k has a finite number of singular vector k-tuples. This implies the 
finiteness of α restricted to Y . The variety κnor

n,k is irreducible and has dimension dim(Y ). Hence κnor
n,k

has codimension (k − 1)(n − 1) in P (V ⊗k). �
Example 41. Consider k = 2, V =Cn and Q = V(x2

1 + · · · + x2
n) ⊂P (V ). We have codim(κnor

n,2 ) = n − 1. 
In particular, one finds κnor

2,2 =P (S2C2). The first non-trivial case is the normalized symmetric Kalman 
variety κnor

3,2 which is a subvariety of P (C3 ⊗C3) of codimension 2 and degree 7. By Remark 7, κnor
3,2

coincides with the locus of matrices admitting a usual algebraic singular vector pair. This ideal is 
generated by three cubics that may be recovered with the following construction, suggested to us by 
Jan Draisma.

Let A = (aij) ∈ Cn ⊗ Cn and suppose (y, y) is a (non-isotropic) singular vector pair of A. Up to 
scaling y, we may write A = yyT + C and AT = yyT + C T . The matrix B = A − AT has matrix rank at 
most n −1. Note that, since the latter matrix is skew-symmetric, when n is odd and for general A, one 
has rk(B) = n − 1. In such a case, the cofactor matrix cof(B) has rank one and satisfies B · cof(B)T = 0. 
So the image of cof(B) is spanned by the vector y above.

To derive the cubic equations for n = 3, given x = (x1, x2, x3)
T ∈ C3, we have y = cof(B)x. Since 

y is then an eigenvector of A, let K be the ideal of 2 × 2 minors of the matrix [Ay | y]. We verified 
symbolically in Macaulay2 that K = I(κnor

3,2 ) ∩ J 2, where I(κnor
3,2 ) is the ideal of κnor

3,2 generated 
by the desired three cubics, and where J = 〈x3a12 − x2a13 − x3a21 + x1a23 + x2a31 − x1a32〉 defines 
the hyperplane of matrices orthogonal (with respect to the Frobenius inner product) to the skew-
symmetric matrix⎛⎝ 0 x3 −x2

−x3 0 x1

⎞⎠ .
x2 −x1 0
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Moreover, κnor
3,2 is arithmetically Cohen-Macaulay and its reduced singular locus is P (S2C3). The 

generalized symmetric Kalman variety κ3,2 is reducible of degree 15 and codimension 2. One of its ir-
reducible components is κnor

3,2 . Further numerical data for the varieties κnor
n,2 are summarized in Table 1

for small values of n.

Example 42. In the binary tensor case (n = 2), we obtain that codim(κnor
2,k ) = k −1. The first non-trivial 

case is κnor
2,3 which is a subvariety of P (C2 ⊗ C2 ⊗ C2) of codimension 2 and degree 5. Its ideal is 

generated by one quadric and four quartics.

Question 43. Table 1 reports the degrees of the varieties κnor
n,2 for small values of n. What is the degree 

of κnor
n,k in general?

It is clear that the construction above can be carried out taking into account partial symmetries 
of singular vector k-tuples. For simplicity, we remain in the hypercubical format n×k . To this aim, let 
ω = (ω1, . . . , ωt) be a partition of k, namely ωi ≥ 1 for all i and ω := ω1 + · · · + ωt = k. Without 
loss of generality, we assume that ω1 ≥ · · · ≥ ωt . We denote by sωn,k the Segre-Veronese embedding of 
P (V )×t in P (SωV ), and we consider it as a subvariety of P (V ⊗k). Define

κnor
n,k,ω := {T ∈P (V ⊗k) | T has a singular vector k-tuple ([x1], . . . , [x1]︸ ︷︷ ︸

ω1

, . . . , [xt], . . . , [xt]︸ ︷︷ ︸
ωt

) ∈P \ Q k}.

(6.3)

With similar arguments as in the proof of Theorem 40, one proves the following result.

Theorem 44. Let ω = (ω1, . . . , ωt) be a partition of k. The variety κnor
n,k,ω is irreducible of codimension (k −

t)(n − 1) in P (V ⊗k). So the codimension depends only on the number of parts t of ω.

Example 45. In the binary tensor case (n = 2), we see that codim(κnor
2,k,ω) = k − t . The first non-trivial 

case not considered before is κnor
2,3,(2,1) which is a hypersurface of P (C2 ⊗ C2 ⊗ C2) of degree 8. 

If ω = (2, 1k−2), we have t = k − 1 and therefore κnor
2,k,ω is always a hypersurface. Moreover, note 

that, for instance, codim(κnor
2,4,(2,2)) = codim(κnor

2,4,(3,1)) = 2, even though κnor
2,4,(2,2) and κnor

2,4,(3,1) have 
different degrees.
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