
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime / Dovetta, Simone;
Pistoia, Angela. - In: MATHEMATICS IN ENGINEERING. - ISSN 2640-3501. - 4:4(2022), pp. 1-21.
[10.3934/mine.2022027]

Original

Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime

Publisher:

Published
DOI:10.3934/mine.2022027

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2957822 since: 2022-03-09T14:01:29Z

AIMS Press



http://www.aimspress.com/journal/mine

Mathematics in Engineering, 4(4): 1–21.
DOI:10.3934/mine.2022027
Received: 01 May 2021
Accepted: 16 August 2021
Published: 19 August 2021

Research article

Solutions to a cubic Schrödinger system with mixed attractive and repulsive
forces in a critical regime†

Simone Dovetta and Angela Pistoia∗

Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via
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Abstract: We study the existence of solutions to the cubic Schrödinger system

−∆ui =

m∑
j=1

βi ju2
jui + λiui in Ω, ui = 0 on ∂Ω, i = 1, . . . ,m,

when Ω is a bounded domain in R4, λi are positive small numbers, βi j are real numbers so that βii > 0
and βi j = β ji, i , j. We assemble the components ui in groups so that all the interaction forces βi j

among components of the same group are attractive, i.e., βi j > 0, while forces among components of
different groups are repulsive or weakly attractive, i.e., βi j < β for some β small. We find solutions
such that each component within a given group blows-up around the same point and the different
groups blow-up around different points, as all the parameters λi’s approach zero.

Keywords: cubic Schrödinger system; attractive and repulsive forces; blow–up phenomenon;
Ljapunov–Schmidt reduction

1. Introduction

The study of solitary waves Φi = exp(ιωit)ui of the nonlinear Schrödinger system

−ι∂tΦi = ∆Φi + Φi

m∑
j=1

βi j|Φ j|
2, Φi : Ω→ C, i = 1, . . . ,m,
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where Ω is a smooth domain in RN naturally leads to study the elliptic system

− ∆ui + ωiui =

m∑
j=1

βi ju2
jui, ui : Ω→ R, i = 1, . . . ,m. (1.1)

Here ωi and βi j = β ji are real numbers and βii > 0. This type of systems arises in many physical models
such as incoherent wave packets in Kerr medium in nonlinear optics (see [1]) and in Bose–Einstein
condensates for multi–species condensates (see [25]). The coefficient βi j represents the interaction
force between components ui and u j. The sign of βi j determines whether the interactions between
components are repulsive (or competitive), i.e., βi j < 0, or attractive (or cooperative), i.e., βi j > 0. In
particular, one usually assumes βii > 0. We observe that system (1.1) has always the trivial solution,
namely when all the components vanish. If one or more components are identically zero, then system
(1.1) reduces to a system with a smaller number of components. Therefore, we are interested in finding
solutions whose all components are not trivial. These are called fully nontrivial solutions.

In low dimensions 1 ≤ N ≤ 4, problem (1.1) has a variational structure: solutions to (1.1) are
critical points of the energy J : H → R defined by

J(u) :=
1
2

m∑
i=1

∫
Ω

(
|∇ui|

2 + ωiu2
i

)
−

1
4

m∑
i, j=1

βi j

∫
Ω

u2
i u2

j ,

where the space H is either H1(Ω) or H1
0(Ω), depending on the boundary conditions associated to ui in

(1.1) in the case of not empty ∂Ω. Therefore, the existence and multiplicity of solutions can be obtained
using classical methods in critical point theory. However, there is an important difference between the
dimensions 1 ≤ N ≤ 3 and the dimension N = 4. Actually, in dimension N = 4 the nonlinear part
of J has a critical growth and the lack of compactness of the Sobolev embedding H1(Ω) ↪→ L4(Ω)
makes difficult the search for critical points. On the other hand, in dimensions 1 ≤ N ≤ 3 the problem
has a subcritical regime and the variational tools can be successfully applied to get a wide number of
results. We refer to the introduction of the most recent paper [6] for an overview on the topic and for
a complete list of references. Up to our knowledge, the higher dimensional case N ≥ 5 is completely
open, because the problem does not have a variational structure and new ideas are needed.

In this paper, we will focus on problem (1.1) when Ω is a smooth bounded domain in R4 with
Dirichlet boundary condition. We shall rewrite (1.1) in the form

− ∆ui =

m∑
j=1

βi ju2
jui + λiui in Ω, ui = 0 on ∂Ω, i = 1, . . . ,m, (1.2)

where λi are real numbers, as this way it can be seen as a generalization of the celebrated Brezis–
Nirenberg problem [5]

− ∆u = u3 + λu in Ω, u = 0 on ∂Ω. (1.3)

It is worthwhile to remind that the existence of solutions to (1.3) strongly depends on the geometry of
Ω. In particular, if Ω is a starshaped domain, then Pohozaev’s identity ensures that (1.3) has no solution
when λ ≤ 0.On the other hand, Brezis and Nirenberg [5] proved that (1.3) has a positive solution if and
only if λ ∈ (0,Λ1(Ω)) where Λ1 is the first eigenvalue of −∆ with homogeneous Dirichlet condition
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on ∂Ω. These solutions are often referred to as least energy solutions, as they can be obtained also by
minimizing the functional

1
2

∫
Ω

(
|∇u|2 − λ|u|2

)
−

1
4

∫
Ω

|u|4

restricted to the associated Nehari manifold. Later, Han [12] and Rey [18] studied the asymptotic
behaviour of this solution as λ → 0 and proved that it blows–up at a point ξ0 ∈ Ω which is a critical
point of the Robin’s function, whereas far away from ξ0 his shape resembles the bubble

Uδ,ξ(x) := α
δ

δ2 + |x − ξ|2
, α = 2

√
2. (1.4)

Recall that it is well known (see [2,23]) that {Uδ,ξ : δ > 0, ξ ∈ R4} is the set of all the positive solutions
to the critical problem

− ∆U = U3 in R4. (1.5)

Let us also remind that the Robin’s function is defined by r(x) := H(x, x), x ∈ Ω, where H(x, y) is the
regular part of the Green function of −∆ in Ω with Dirichlet boundary condition.

Successively, relying on the profile of the bubble as a first order approximation, the Ljapunov–
Schmidt procedure has been fruitfully used to build both positive and sign–changing solutions to (1.3)
blowing–up at different points in Ω as the parameter λ approaches zero (see for example Rey [18] and
Musso and Pistoia [14]).

As far as we know, few results are available about existence and multiplicity of solutions to the
critical system (1.2). The first result is due to Chen and Zou [9], who considered (1.2) with 2
components only 

− ∆u1 = µ1u3
1 + βu1u2

2 + λ1u1 in Ω

− ∆u2 = µ2u3
2 + βu2

1u2 + λ2u2 in Ω

u1 = u2 = 0 on ∂Ω.

(1.6)

When 0 < λ1, λ2 < Λ1(Ω), they proved the existence of a least energy positive solution in the
competitive case (i.e., β < 0) and in the cooperative case (i.e., β > 0) if β ∈ (0, β] ∪ [β,+∞), for some
β ≥ max{µ1, µ2} > min{µ1, µ2} ≥ β > 0. In the cooperative case, when λ1 = λ2 the least energy
solution is synchronized, i.e., (u1, u2) = (c1u, c2u) where u is the least energy positive solution of the
Eq (1.3) and (c1, c2) is a positive solution to the algebraic system1 = µ1c2

1 + βc2
2

1 = µ2c2
2 + βc2

1.

In the competitive case, the authors studied also the limit profile of the components of the least energy
solution and proved that the following alternative occurs: either one of the components vanishes and
the other one converges to a least energy positive solution of the Eq (1.3), or both components survive
and their limits separate in different regions of the domain Ω, i.e., a phase separation phenomenon
takes place. In the subcritical regime such a phenomenon has been studied by Noris, Tavares, Terracini
and Verzini [15].

Afterwards, Chen and Lin [8] studied the asymptotic behavior of the least energy solution of (1.6) in
the cooperative case as max{λ1, λ2} → 0 and found that both components blow–up at the same critical
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point of the Robin’s function, in the same spirit of the result by Han and Rey for the single equation
(1.3).

The existence of blowing–up solutions for system (1.2) with an arbitrary number of components has
been studied by Pistoia and Tavares [17]. Using a Ljapunov–Schmidt procedure, they built solutions
to (1.2) whose m components blow–up at m different non–degenerate critical points of the Robin’s
function as λ∗ := max{λ1, . . . , λm} → 0, provided the interaction forces are either negative or not
too large, namely β∗ := maxi j βi j ≤ β for some β > 0. For example, their result holds in dumbbell
shaped domains which are obtained by connecting m mutually disjoint connected domains D1, . . . ,Dm

by thin handles. In this case the Robin’s function has m distinct local minimum points which are non–
degenerate for a generic choice of the domain as proved by Micheletti and Pistoia [13]. Moreover,
if, as λ∗ → 0, we let β∗ := maxi, j βi j approach −∞ with a sufficiently low velocity (depending on λ∗),
then it is still possible to show that all the components blow–up at different points and a segregation
phenomen occurs.

To conclude the state of the art, we would like to mention some recent results obtained by exploiting
a variational point of view. Guo, Luo and Zou [11] proved the existence of a least energy solution to
(1.2) in the purely cooperative regime (i.e., mini, j βi j ≥ 0) when λ1 = · · · = λm and showed that such
a solution is synchronized under some additional technical conditions on the coupling coefficients.
Tavares and You [24] generalized the previous result to a mixed competitive/weakly cooperative regime
(i.e., maxi, j βi j not too large). Clapp and Szulkin [10] found a least energy solution in the purely
competitive regime (i.e., maxi, j βi j < 0), which is not synchronized when the coupling terms βi j diverge
to −∞.

Now, let us go back to the result obtained by Pistoia and Tavares [17] concerning the existence
of solutions to (1.2) with all the components blowing–up around different points in Ω when all the
mixed forces are repulsive or weakly attractive. It is natural to ask what happens for more general
mixed repulsive and attractive forces. Our idea is to assemble the components ui in groups so that
all the interaction forces βi j among components of the same group are attractive, while forces among
components of different groups are repulsive or weakly attractive. In this setting, we address the
following question:

(Q) is it possible to find solutions such that each component within a given group concentrates around
the same point and different groups concentrate around different points?

Taking the notation introduced in [16], given 1 ≤ q ≤ m, let us introduce a q−decomposition of m,
namely a vector (l0, . . . , lq) ∈ Nq+1 such that

0 = l0 < l1 < · · · < lq−1 < lq = m.

Given a q–decomposition of m, we set, for h = 1, . . . , q,

Ih := {i ∈ {1, . . . ,m} : lh−1 < i ≤ lh}.

In this way, we have partitioned the set {1, . . . ,m} into q groups I1, . . . , Iq, and we can consequently
split the components of our system into q groups {ui : i ∈ Ih}. Notice that if lh − lh−1 = 1, then Ih

reduces to the singleton {i}, for some i ∈ {1, . . . ,m}. We will assume that for every h = 1, . . . , q.

Mathematics in Engineering Volume 4, Issue 4, 1–21.
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(A1) the algebraic system
1 =

∑
j∈Ih

βi jc2
j , i ∈ Ih, (1.7)

has a solution ch = (ci)i∈Ih with ci > 0 for every i ∈ Ih;
(A2) the matrix

(
βi j

)
i, j∈Ih

is invertible and all the entries are positive.

We observe that (A1) is satisfied for instance if for every i , j (see [3])

βi j =: β > max
i∈Ih

βii for every i ∈ Ih.

Remark 1.1. Assumptions (A1) and (A2) are necessary to build the solutions to (1.2) using the
classical Ljapunov-Schmidt procedure, namely (A1) allows to find a good ansatz which is
non-degenerate because of (A2). Let us be more precise.

From a PDE point of view, assumption (A1) is equivalent to require that the nonlinear PDE sub-
system

− ∆Wi = Wi

∑
j∈Ih

βi jW2
j in Rn, i ∈ Ih, (1.8)

has a synchronized solution Wi = ciU, i ∈ Ih, where the positive function

U(x) := α
1

1 + |x|2
, α = 2

√
2,

solves the critical Eq (1.5). The first key point in the reduction procedure is done: the main order term
of the components ui with i ∈ Ih is nothing but the syncronized solution of the sub-system (1.8).

Assumption (A2) ensures that such a synchronized solution of (1.8) is non–degenerate (see [16,
Proposition 1.4]), in the sense that the linear system (obtained by linearizing system (1.8) around the
synchronized solution)

− ∆vi = U2


3βiic2

i +
∑

j∈Ih
j,i

βi jc2
j

 vi + 2
∑

j∈Ih
j,i

βi jcic jv j

 in Rn, i ∈ Ih, (1.9)

has a 5–dimensional set of solutions(
v1, . . . , v|Ih |

)
∈ span

{
ehψ

` | ` = 0, 1, . . . , 4
}
⊂

(
H1

0(Ω)
)|Ih |

(1.10)

where eh ∈ R|Ih | is a suitable vector (see [16, Lemma 6.1]) and the functions

ψ0(y) =
1 − |y|2

(1 + |y|2)2 and ψ`(y) =
y`

(1 + |y|2)2 , ` = 1, . . . , 4,

solve the linear equation
−∆ψ = 3U2ψ in R4.

The non-degeneracy of the building block is ensured and the second key point in the reduction
procedure is also done.
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We are now in position to state our main result.

Theorem 1.2. Assume (A1) and (A2). Assume furthermore that the Robin’s function has q distint non–
degenerate critical points ξ0

1, . . . , ξ
0
q. There exist β > 0 and λ0 > 0 such that, if β∗ := max (i, j)∈Ih×Ik

h,k
βi j <

β then, for every (λi)m
i=1 with λi ∈ (0, λ0), i = 1, . . . ,m, there exists a solution (u1, . . . , um) to (1.2)

such that, for every h = 1, . . . , q, each group of components {ui : i ∈ Ih} blows–up at ξ0
h as λ∗ :=

maxi=1,...,m λi → 0.
Moreover, if, as λ∗ → 0, β∗ approaches −∞ slowly enough (depending on λ∗), i.e.,

|β∗| = O
(
e

d∗
λ∗

)
for some d∗ sufficiently small, then all the components belonging to different groups

blow–up at different points and segregate, while the components belonging to the same group
blow–up at the same point and aggregate.

Remark 1.3. We remind that in dumbbell shaped domains which are obtained by connecting q
mutually disjoint connected domains by thin handles, the Robin’s function has q distinct critical
points and in a domain with holes the Robin’s function has at least 2 critical points (see Pistoia and
Tavares [17, Examples 1.5 and 1.6]). All these critical points are non–degenerate for a generic choice
of the domain as proved by Micheletti and Pistoia [13].

Remark 1.4. Theorem 1.2 deals with systems with mixed aggregating and segregating forces (i.e.,
some βi j’s are positive, and some others are negative). This is particularly interesting since there are
few results about systems with mixed terms. The subcritical regime has been recently investigated by
Byeon, Kwon and Seok [6], Byeon, Sato and Wang [7], Sato and Wang [19, 20], Soave and Tavares
[22], Soave [21] and Wei and Wu [26]. As far as we know, there are only a couple of results concerning
the critical regime. The first one has been obtained by Pistoia and Soave in [16], where the authors
studied system (1.2) when all the λi’s are zero and the domain has some holes whose size approaches
zero. The second one is due to Tavares and You, who in [24] found a least energy solution to system
(1.2) provided all the parameters λi are equal. It would be interesting to compare this least energy
solution with the blowing-up solutions found in the present paper.

Remark 1.5. We strongly believe that the solutions found in Theorem 1.2 are positive, because they
are constructed as the superposition of positive function and small perturbation term. This is true for
sure if the attractive forces βi j are small, as proved in [17]. In the general case, the proof does not
work and some refined L∞−estimates of the small terms are needed. We will not afford this issue in
the present paper, because the study of the invertibility of the linear operator naturally associated to
the problem (see Proposition 3.1) should be performed in spaces equipped with different norms (i.e.,
L∞–weighted norms) that may deserve further investigations.

The proof of Theorem 1.2 relies on the well known Ljapunov–Schmidt reduction. The main steps
are described in Section 3, where the details of the proof are omitted whenever it can be obtained,
up to minor modifications, by combining the arguments in Pistoia and Tavares [17] and in Pistoia and
Soave [16]. Here we limit ourselves to give a detailed proof of the first step of the scheme, as it suggests
how to adapt the ideas of [16,17] to the present setting. The technical details of this part are developed
in the Appendix. Before getting to this, in Section 2 we recall some well known results that are needed
in the following.
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2. Preliminaries

We denote the standard inner product and norm in H1
0(Ω) by

〈u, v〉H1
0 (Ω) :=

∫
Ω

∇u · ∇v, ‖u‖H1
0 (Ω) :=

(
〈u, u〉H1

0 (Ω)

) 1
2
,

and the Lq-norm (q ≥ 1) by | · |Lq(Ω). Whenever the domain of integration Ω is out of question, we also
make use of the shorthand notation ‖u‖ for ‖u‖H1

0 (Ω) and |u|q for |u|Lq(Ω).
Let i : H1

0(Ω) → L4(Ω) be the canonical Sobolev embedding. We consider the adjoint operator
(−∆)−1 : L

4
3 (Ω)→ H1

0(Ω) characterized by

(−∆)−1(u) = v ⇐⇒

−∆v = u in Ω

v ∈ H1
0(Ω)

It is well known that (−∆)−1 is a continuous operator, and relying on it we can rewrite (1.2) as

ui = (−∆)−1

 m∑
j=1

βi ju2
jui + λiui

 , i = 1, . . . ,m. (2.1)

From now on, we will focus on problem (2.1).
We are going to build a solution u = (u1, . . . , um) to (2.1), whose main term, as the parameters λi

approach zero, is defined in terms of the bubbles Uδ,ξ given in (1.4). More precisely, let us consider the
projection PUδ,ξ of Uδ,ξ into H1

0(Ω), i.e., the unique solution to

−∆(PUδ,ξ) = −∆Uδ,ξ = U3
δ,ξ in Ω, PUδ,ξ = 0 on ∂Ω.

We shall use many times the fact that 0 ≤ PUδ,ξ ≤ Uδ,ξ, which is a simple consequence of the maximum
principle. Moreover it is well known that

PUδ,ξ(x) = Uδ,ξ(x) − αδH(x, ξ) + O
(
δ3

)
.

Here G(x, y) is the Green function of −∆ with Dirichlet boundary condition in Ω and H(x, y) is its
regular part.
Now, we search for a solution u := (u1, . . . , um) to (2.1) as

u = W + φ, where W :=
(
c1PUδ1,ξ1 , . . . , cqPUδq,ξq

)
∈ (H1

0(Ω))|I1 | × · · · × (H1
0(Ω))|Iq |, (2.2)

where each vector ch ∈ R|Ih | is defined in (1.7), the concentration parameters δh = e
−

dh
λ∗h with λ∗h :=

maxi∈Ih λi, and the concentration points ξh ∈ Ω are such that (d, ξ) = (d1, . . . , dq, ξ1, . . . , ξq) ∈ Xη, with

Xη :=
{
(d, ξ) ∈ Rq ×Ωq : η < dh < η

−1, dist(ξh, ∂Ω) ≥ η, |ξh − ξk| ≥ η if h , k
}
, (2.3)

for some η ∈ (0, 1). Recall that |I1| + · · · + |Iq| = m. The higher order term φ = (φ1, . . . , φm) ∈
(
H1

0(Ω)
)m

belongs to the space K⊥ whose definition involves the solutions of the linear equation

− ∆ψ = 3U2
δ,ξψ in R4, ψ ∈ D1,2(R4). (2.4)
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More precisely, we know that the set of solutions to (2.4) is a 5−dimensional space, which is generated
by (see [4])

ψ0
δ,ξ :=

∂Uδ,ξ

∂δ
= α

|x − ξ|2 − δ2(
δ2 + |x − ξ|2

)2

ψ`δ,ξ :=
∂Uδ,ξ

∂ξ`
= 2αNδ

x` − ξ`(
δ2 + |x − ξ|2

)2 , ` = 1, . . . , 4.

It is necessary to introduce the projections Pψ`δ,ξ of ψ`δ,ξ (` = 0, . . . ,N) into H1
0(Ω), i.e.,

− ∆(Pψ`δ,ξ) = −∆ψ`δ,ξ = 3U2
δ,ξψ

`
δ,ξ in Ω, Pψ`δ,ξ = 0 on ∂Ω, (2.5)

and it is useful to recall that

Pψ0
δ,ξ(x) = ψ0

δ,ξ(x) − αH(x, ξ) + O
(
δ2

)
,

Pψ`δ,ξ(x) = ψ`δ,ξ(x) − αδ∂`H(x, ξ) + O
(
δ3

)
, ` = 1, . . . , 4.

Now, we define the space K⊥ as

K := K1 × · · · × Kq and K⊥ = K⊥1 × · · · × K⊥q , (2.6)

where (see (1.10))

Kh := span
{
ehPψ`δh,ξh

: ` = 0, . . . , 4
}
⊂

(
H1

0(Ω)
)|Ih |

, h = 1, . . . , q. (2.7)

The unknowns in (2.2) are the rates of the concentration parameters dh’s, the concentration points ξh’s
and the remainder terms φi’s. To identify them, we will use a Ljapunov–Schmidt reduction method.
First, we rewrite system (2.1) as a couple of systems. Let us introduce the orthogonal projections

Π := (Π1, . . . ,Πq) : (H1
0(Ω))|I1 | × · · · × H1

0(Ω))|Iq | → K

and
Π⊥ := (Π⊥1 , . . . ,Π

⊥
q ) : (H1

0(Ω))|I1 | × · · · × H1
0(Ω))|Iq | → K⊥,

where Πh :
(
H1

0(Ω)
)|Ih |
→ Kh and Π⊥h :

(
H1

0(Ω)
)|Ih |
→ K⊥h denote the orthogonal projections, for every

h = 1, . . . , q.
It is not difficult to check that (2.1) is equivalent to the couple of systems

Π⊥
[
L(φ) +N(φ) + E

]
= 0 (2.8)

and
Π

[
L(φ) +N(φ) + E

]
= 0, (2.9)

where the linear operator L(φ) = (L1(φ), . . . ,Lm(φ)) :
(
H1

0(Ω)
)m
→

(
H1

0(Ω)
)m

is defined for every
i ∈ Ih and h = 1, . . . , q as

Li(φ) :=φi − (−∆)−1



3βiici

2 +
∑

j∈Ih
j,i

βi jc j
2

 φi + 2
∑

j∈Ih
j,i

βi jc jciφ j

 (PUδh,ξh)
2

+
∑
k,h

∑
j∈Ik

βi j

(
(c jPUδk ,ξhk)2φi + 2cic jPUδh,ξh PUδk ,ξhkφ j

)
+ λiφi

 ,
(2.10)
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the nonlinear termN(φ) = (N1(φ), . . . ,Nm(φ)) ∈
(
L

4
3 (Ω)

)m
is defined for every i ∈ Ih and h = 1, . . . , q

as

N i(φ) := − (−∆)−1


∑

j∈Ih
j,i

βi j(ciPUδh,ξhφ
2
j + 2c jPUδh,ξhφ jφi + φ2

jφi)

+
∑
k,h

∑
j∈Ik

βi j(ciPUδh,ξhφ
2
j + 2c jPUδk ,ξkφ jφi + φ2

jφi) + βii

(
3ciPUδh,ξhφ

2
i + φ3

i

) ,
(2.11)

and the error term E = (E1, . . . ,Em) ∈
(
L

4
3 (Ω)

)m
is defined for every i ∈ Ih and h = 1, . . . , q as

Ei := − (−∆)−1


∑

j∈Ih

βi jc j
2ci

 [(PUδh,ξh)
3 − (Uδh,ξh)

3
]

+
∑
k,h

∑
j∈Ik

βi j(c jPUδk ,ξk)
2(ciPUδh,ξh) + λiciPUδh,ξh

 .
(2.12)

In the above computation, we used (1.7) and (1.8), so that for every i ∈ Ih and h = 1, . . . , q

ciPUδh,ξh = (−∆)−1


∑

j∈Ih

βi jc j
2ci

 (Uδh,ξh)
3

 .
The proof of our main result consists of two main steps. First, for fixed d = (d1, . . . , dq), and ξ =

(ξ1, . . . , ξq) we solve the system (2.8), finding φ = φ(d, ξ) ∈ K⊥. Plugging this choice of φ into the
second system (2.9), we obtain a finite dimensional problem in the unknowns d and ξ, whose solution
is identified as a critical point of a suitable function.

3. Proof of Theorem 1.2

We briefly sketch the main steps of the proof.

3.1. The linear theory

As a first step, it is important to understand the solvability of the linear problem naturally associated
to (2.8), i.e., given L as in (2.10)

L(φ) = h, with h ∈ K⊥.

Proposition 3.1. For every η > 0 small enough there exist β̄ > 0, λ0 > 0 and C > 0, such that if
λi ∈ (0, λ0), for every i = 1, . . . ,m, and

β∗ := max
(i, j)∈Ih×Ik

h,k

βi j ≤ β , (3.1)

then
‖L(φ)‖(H1

0 (Ω))m ≥ C‖φ‖(H1
0 (Ω))m ∀φ ∈ K⊥ , (3.2)

for every (d, ξ) ∈ Xη. Moreover, L is invertible in K⊥ with continuous inverse.

Proof. It is postponed to Appendix. �
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3.2. The error term

We need to estimate the error term E defined in (2.12).

Lemma 3.2. For every η > 0 small enough there exist λ0 > 0 and C > 0 such that, if λi ∈ (0, λ0) for
every i = 1, . . . ,m, then

‖E‖(H1
0 (Ω))m ≤ C

q∑
h=1

O(δ2
h) + O(λ∗hδh) +

∑
k,h

O(|β∗|δhδk)

 (3.3)

for every (d, ξ) ∈ Xη, where λ∗h := max
i∈Ih

λi and β∗ := max
(i, j)∈Ih×Ik

i,k

βi j.

Proof. We argue as in [17, Lemma A.1–A.3]. Note first that, by the continuity of (−∆)−1, for every
i ∈ Ih

‖Ei‖ ≤C

∑
j∈Ih

|βi j|c j
2ci

 ∣∣∣(PUδh,ξh)
3 − (Uδh,ξh)

3
∣∣∣ 4

3

+C
∑
k,h

∑
j∈Ik

|βi j|cic2
j

∣∣∣PUδh,ξh(PUδk ,ξk)
2
∣∣∣ 4

3
+ λici

∣∣∣PUδh,ξh

∣∣∣ 4
3
.

Moreover, ∣∣∣(PUδh,ξh)
3 − (Uδh,ξh)

3
∣∣∣ 4

3
= O(δ2

h),∣∣∣PUδh,ξh PU2
δk ,ξk

∣∣∣ 4
3

= O(δhδk)

and ∣∣∣PUδh,ξh

∣∣∣ 4
3

= O(δh) .

Then the claim follows. �

3.3. Solving (2.8)

We combine all the previous results and a standard contraction mapping argument and we prove the
solvability of the system (2.8).

Proposition 3.3. For every η > 0 small enough there exist β̄ > 0, λ0 > 0 and C > 0 such that, if
λi ∈ (0, λ0) for every i = 1, . . . ,m and (3.1) holds, then for every (d, ξ) ∈ Xη there exists a unique
function φ = φ(d, ξ) ∈ K⊥ solving system (2.8). Moreover,

‖φ‖(H1
0 (Ω))m ≤ C

q∑
h=1

O(δ2
h) + O(λ∗hδh) +

∑
k,h

O(|β∗|δhδk)

 (3.4)

and (d, ξ) 7→ φ(d, ξ) is a C1−function.

Proof. The claim follows by Proposition 3.1 and Lemma 3.2 arguing exactly as in [17, Proposition
3.2 and Lemma 3.3], noting that the nonlinear part N given in (2.11) has a quadratic growth in φ. In
particular (3.4) follows by (3.3). �
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3.4. The reduced problem

Once the first system (2.8) has been solved, we have to find a solution to the second system (2.9)
and so a solution to system (1.2).

Proposition 3.4. For any η > 0 small enough there exist β > 0 and λ0 > 0 such that, if λi ∈ (0, λ0) for
every i = 1, . . . ,m and (3.1) holds, then u = W(d, ξ) + φ(d, ξ) defined in (2.2) solves system (1.2), i.e.,
it is a critical point of the energy

J(u) :=
1
2

m∑
i=1

∫
Ω

|∇ui|
2 −

1
4

m∑
i, j=1

βi j

∫
Ω

u2
i u2

j −
1
2

m∑
i=1

∫
Ω

λiu2
i

if and only if (d, ξ) ∈ Xη is a critical point of the reduced energy

J̃(d, ξ) := J (W + φ) .

Moreover, the following expansion holds true

J̃(δ, ξ) =

q∑
h=1

∑
i∈Ih

c2
i

 (A0 + A1δ
2
hr(ξh) + A2λ

∗
hδ

2
h| ln δh| + o(δ2

h)
)

(3.5)

C1−uniformly in Xη. Here the Ai’s are positive constants, r is the Robin’s function and λ∗h = max
i∈Ih

λi.

Proof. The proof follows by combining the arguments in [17, Section 3 and Section 5] and [16, Section
5]. We remark that in this case the fact that φ(d, ξ) solves (2.8) is equivalent to claim that it solves the
system

L(φ) −N(φ) − E =

 4∑
`=0

a`1e1Pψ`δ1,ξ1
, . . . ,

4∑
`=0

a`hehPψ`δh,ξh

 ,
for some real numbers a`i . Therefore, W(d, ξ) +φ(d, ξ) solves system (2.9) if and only if all the a`i ’s are
zero. We also point out that it is quite standard to prove that J (W + φ) ≈ J (W) and moreover by (1.7)
we deduce

J (W) =

q∑
h=1

∑
i∈Ih

1
2

c2
i

∫
Ω

|∇PUδh,ξh |
2 −

1
4

∑
i, j∈Ih

βi j(cic j)2
∫
Ω

(PUδh,ξh)
4

︸                                                                   ︷︷                                                                   ︸
=

 ∑
i∈Ih

c2
i

 1
2

∫
Ω

|∇PUδh ,ξh |
2− 1

4

∫
Ω

(PUδh ,ξh )4


−

1
2

∑
h,k=1
h,k

βi j

∫
Ω

(ciPUδh,ξh)
2(c jPUδk ,ξk)

2 −

q∑
h=1

∑
i∈Ih

1
2
λi

∫
Ω

(ciPUδh,ξh)
2

so that the claim follows just arguing as in [17].
�
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3.5. Proof of Theorem 1.2: completed

Arguing exactly as in [17, Proof of Theorem 1.3, p. 437], we prove that the reduced energy (3.5)
has a critical point (dλ, ξλ) provided λ = (λ1, . . . , λm) is small enough and ξλ → (ξ0

1, . . . , ξ
0
q) as λ∗ =

maxi λi → 0. Theorem 1.2 immediately follows by Proposition 3.4. Moreover, if the βi j’s depend on
the λi’s and β∗ satisfies |β∗| = O

(
e

d∗
λ∗

)
with d∗ < minh=1,...,q dh, then for every h = 1, . . . ,m

|β∗|δh . e
d∗
λ∗
−

dh
λ∗h . e

d∗−dh
λ∗ = o(1)

and by estimate (3.4) we can still conclude the validity of (3.5), and so the last part of Theorem 1.2
follows (see also [17, Section 5.3, p.438].
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A. Appendix

Proof of Proposition 3.1

We argue combining ideas of [17, Lemma 3.1] and [16, Lemma 5.4]. We first prove (3.2) by
contradiction. Assume thus that there exist {(dn, ξn)}n ⊂ Xη so that ξn → ξ as n → +∞, λn :=
(λ1,n, . . . , λm,n)→ 0 as n→ +∞, and φn := (φn

1, . . . , φ
n
m) ∈ K⊥ so that ‖φn‖ = 1 for every n ∈ N and

‖L(φn)‖ → 0 as n→ +∞ .
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We recall that the spaces introduced in (2.6) and (2.7) depend on dn and ξn, so for the sake of clarity,
let us introduce the following notation. For every h = 1, . . . , q, let

Kn
h := Kdh,n,ξh,n , (Kn

h)⊥ := K⊥dh,n,ξh,n
,

Un
h := Uδh,n,ξh,n , PUn

h := PUδh,n,ξh,n ,

ψl
h,n := ψl

δh,n,ξh,n
, Pψl

h,n := Pψl
δh,n,ξh,n

, l = 0, . . . , 4 ,

where δh,n := e
−

dh,n
λ∗h,n and λ∗h,n := maxi∈Ih λi,n. Moreover, set hn := L(φn).

By definition of L and the fact that φn ∈ K⊥, we have, for every h = 1, . . . , q and i ∈ Ih

φn
i =(−∆)−1



3µic2

i +
∑

j∈Ih
j,i

βi jc2
j

 φn
i + 2

∑
j∈Ih
j,i

βi jcic jφ
n
j

 (PUn
h
)2

+
∑
k,h

∑
j∈Ik

βi j

[
c2

j(PUn
k )2φn

i + 2cic jPUn
k PUn

hφ
n
j

]
+ λi,nφ

n
i

 + hn
i − wn

i ,

(A.1)

for a suitable wn := (wn
i )i∈Ih ∈ Kn

h . Here µi := βii.

Step 1: ‖wn‖ → 0 as n → +∞. Multiplying (A.1) by δ2
h,nwn

i and recalling the definition of (−∆)−1

yields

δ2
h,n‖w

n
i ‖

2 =δ2
h,n〈h

n
i − φ

n
i ,w

n
i 〉 + δ2

h,n

3µic2
i +

∑
j∈Ih
j,i

βi jc2
j


∫

(PUn
h)2φn

i wn
i

+2δ2
h,n

∑
j∈Ih
j,i

βi jcic j

∫
(PUn

h)2φn
jw

n
i + δ2

h,n

∑
k,h

∑
j∈Ik

βi jc2
j

∫
(PUn

k )2φn
i wn

i

+2δ2
h,nci

∑
k,h

∑
j∈Ik

βi jc j

∫
PUn

k PUn
hφ

n
jw

n
i + δ2

h,nλi,n

∫
φn

i wn
i ,

so that, summing over i ∈ Ih and making use of (φn
i )i∈Ih , (h

n
i )i∈Ih ∈ (Kn

h)⊥,

δ2
h,n

∑
i∈Ih

‖wn
i ‖

2

︸          ︷︷          ︸
I

=δ2
h,n

∑
i∈Ih


3µic2

i +
∑

j∈Ih
j,i

βi jc2
j


∫

(PUn
h)2φn

i wn
i + 2δ2

h,n

∑
j∈Ih
j,i

βi jcic j

∫
(PUn

h)2φn
jw

n
i

︸                                                                                           ︷︷                                                                                           ︸
II

+δ2
h,n

∑
i∈Ih

∑
k,h

∑
j∈Ik

βi jc2
j

∫
(PUn

k )2φn
i wn

i︸                                  ︷︷                                  ︸
III

+2δ2
h,n

∑
i∈Ih

ci

∑
k,h

∑
j∈Ik

βi jc j

∫
PUn

k PUn
hφ

n
jw

n
i︸                                        ︷︷                                        ︸

IV

+δ2
h,n

∑
i∈Ih

λi,n

∫
φn

i wn
i︸             ︷︷             ︸

V

.

(A.2)
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Note first that, since (wn
i )i∈Ih ∈ Kn

h , for l = 0, . . . , 4 there are al
h,n ∈ R for which it holds (see (2.6))

(wn
i )i∈Ih =

n∑
l=0

al
h,nehPψl

h,n ,

so that arguing as in [17, p. 417] and for sufficiently large n we can write

I = δ2
h,n

∑
i∈Ih

n∑
l,p=0

al
h,nap

h,n|ei,h|
2
∫
∇Pψl

h,n · ∇Pψp
h,n =

n∑
l=0

(al
h,n)2σll + o(1)

n∑
l=0

al
h,nap

h,n , (A.3)

for suitable positive constants σll, l = 0, . . . , 4.
Let us thus estimate terms III and IV in (A.2). On the one hand, for every h, k = 1, . . . , q, k , h,

i ∈ Ih and l = 0, . . . , 4,∣∣∣∣∣∫ (PUn
k )2φn

i Pψl
h,n

∣∣∣∣∣ ≤ ∣∣∣∣∣∫ (PUn
k )2φn

i ψ
l
h,n

∣∣∣∣∣ +

∣∣∣∣∣∫ (PUn
k )2φn

i (Pψl
h,n − ψ

l
h,n)

∣∣∣∣∣
≤‖φn

i ‖
∣∣∣(PUk

n)2ψl
h,n

∣∣∣ 4
3

+ ‖φn
i ‖

∣∣∣(PUn
k )2(Pψl

h,n − ψ
l
h,n)

∣∣∣ 4
3
,

(A.4)

where we made use of Hölder and Sobolev inequality. Then, by [17, Lemma A.1] we get

∣∣∣(PUn
k )2(Pψ0

h,n − ψ
0
h,n)

∣∣∣ 4
3
≤ C(δh,n + o(δh,n)

(∫
(PUn

k )
8
3 H(·, ξk,n)

4
3

) 3
4

≤ C′δh,n + o(δh,n) (A.5)

and ∣∣∣(PUn
k )2(Pψl

h,n − ψ
l
h,n)

∣∣∣ 4
3
≤ C(δ2

h,n + o(δ2
h,n))

(∫
(PUn

k )
8
3
∂H
∂ξ

(·, ξk,n)
4
3

)
≤ C′δ2

h,n + o(δ2
h,n) (A.6)

for every l = 1, . . . , 4. Moreover, since direct calculations show

|ψ0
δ,ξ | ≤

C
δ

Uδ,ξ

|ψl
δ,ξ | ≤

C
δ

U2
δ,ξ |xl − ξl|, l = 1, . . . , 4 ,

recalling that 0 ≤ PUn
k ≤ Un

k by the maximum principle and making use of [17, Lemma A.2–A.4], we
also have ∣∣∣(PUn

k )ψ0
h,n

∣∣∣ 4
3
≤

C
δh,n

∣∣∣(PUn
k )2Un

h

∣∣∣ 4
3
≤

C
δh,n

∣∣∣(Un
k )2Un

h

∣∣∣ 4
3

≤
C′

δh,n

(
O(δh,nδk,n) + O(δ2

k,nδh,n)
)

= O(δk,n)

and, for l = 1, . . . , 4,∣∣∣(PUn
k )ψl

h,n

∣∣∣ 4
3
≤

C
δh,n

∣∣∣(Un
k )2(Un

h)2
∣∣∣ 4

3
≤

C′

δh,n

(
O(δ2

k,nδh,n) + O(δk,nδ
2
h,n)

)
= o(δk,n) .
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Combining the previous estimates with (A.4) and the fact that ‖φn‖ = 1 thus leads to

δ2
h,n|III| ≤ o(δ2

h,n)
n∑

l=0

|al
h,n| . (A.7)

Similarly, by Hölder and Sobolev inequality, ‖φn‖ = 1 and [17, Lemma A.5],∣∣∣∣∣∫ PUn
k PUn

hφ
n
j Pψ

l
h,n

∣∣∣∣∣ ≤ C
∣∣∣PUn

k PUn
h Pψl

h,n

∣∣∣ 4
3

= O(δk,nδh,n) ,

for every k, h = 1, . . . , q, k , h, j ∈ Ik and l = 0, . . . , 4, so that

δ2
h,n|IV | ≤ o(δ2

h,n)
n∑

l=0

|al
h,n| . (A.8)

Furthermore, by Hölder inequality and recalling that λn → 0 as n→ +∞ and ‖φn‖ = 1, we also have

δ2
h,n|V | ≤ o(δ2

h,n)‖(wn
i )i∈Ih‖ . (A.9)

We are thus left to estimate the term II in (A.2). To this purpose, we set, for every i, j ∈ Ih,

αii := 3µic2
i +

∑
j∈Ih
j,i

βi jc2
j , αi j := 2βi jcic j ,

so that

II =
∑
i∈Ih

∫ αiiφ
n
i +

∑
j∈Ih
j,i

αi jφ
n
j

 (PUn
h)2wn

i

=
∑
i∈Ih

∫ αiiφ
n
i +

∑
j∈Ih
j,i

αi jφ
n
j

 ((PUn
h)2 − (Un

h)2
)

wn
i

︸                                                       ︷︷                                                       ︸
II.1

+
∑
i∈Ih

∫ αiiφ
n
i +

∑
j∈Ih
j,i

αi jφ
n
j

 (Un
h)2wn

i

︸                                      ︷︷                                      ︸
II.2

.

As for II.1, we have, for every i, j ∈ Ih∣∣∣∣∣∫ (
(PUn

h)2 − (Un
h)2

)
φn

jw
n
i

∣∣∣∣∣ ≤ ∣∣∣(PUn
h)2 − (Un

h)2
∣∣∣
2
|φn

j |4|w
n
i |4 ≤

∣∣∣(PUn
h)2 − (Un

h)2
∣∣∣
2
‖wn

i ‖

by Hölder and Sobolev inequality and ‖φn‖ = 1. Furthermore, by [17, Lemma A.3] and 0 ≤ PUn
h ≤ Un

h∣∣∣(PUn
h)2 − (Un

h)2
∣∣∣
2
≤ C

(∣∣∣Un
h(PUn

h − Un
h)
∣∣∣
2

+
∣∣∣(PUn

h − Un
h)2

∣∣∣
2

)
≤ C′

∣∣∣Un
h(PUn

h − Un
h)
∣∣∣
2
,
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and by [17, Lemma A.1–A.2]

∣∣∣Un
h(PUn

h − Un
h)
∣∣∣
2

=

(∫
(Un

h)2(PUn
h − Un

h)2
) 1

2

=

(∫
(Un

h)2(δh,nAH(·, ξh,n) + o(δh,n))2
) 1

2

≤(Cδh,n + o(δh,n))
(∫

(Un
h)2

) 1
2

≤ C′δ2
h,n| ln δh,n|

1
2 + o(δ2

h,n) ,

in turn yielding

|II.1| ≤ C
∑
i, j∈Ih

∣∣∣∣∣∫ (
(PUn

h)2 − (Un
h)2

)
φn

jw
n
i

∣∣∣∣∣ ≤ C′(δ2
h,n| ln δh,n| + o(δ2

h,n))‖(wn
i )i∈Ih‖ . (A.10)

To estimate II.2, note first that

II.2 =
∑
i∈Ih

∫ αiiφ
n
i +

∑
j∈Ih
j,i

αi jφ
n
j

 (Un
h)2

n∑
l=0

al
h,nei,hPψl

h,n

=

n∑
l=0

al
h,n

∫
(Un

h)2Pψl
h,n

∑
i∈Ih

αiiei,hφ
n
i + ei,h

∑
j∈Ih
j,i

αi jφ
n
j


=

n∑
l=0

al
h,n

∫
(Un

h)2Pψl
h,n

∑
i∈Ih

φn
i

αiiei,h +
∑

j∈Ih
j,i

αi je j,h


=3

n∑
l=0

al
h,n

∫
(Un

h)2Pψl
h,n

∑
i∈Ih

φn
i ei,h ,

(A.11)

since by construction eh is an eigenvector of the matrix (αi j)i, j∈Ih corresponding to the eigenvalue Λ1 = 3
(see [16, Lemma 6.1]). Recalling that (φn

i )i∈Ih ∈ (Kn
h)⊥, so that by (2.5) and (2.6)

0 =
∑
i∈Ih

∫
ei,h∇Pψl

h,n · ∇φ
n
i = 3

∑
i∈Ih

∫
(Un

h)2
ei,hψ

l
h,nφ

n
i

for every l = 0, . . . , 4, we can then rewrite (A.11) as

II.2 = 3
n∑

l=0

∑
i∈Ih

al
h,nei,h

∫
(Un

h)2(Pψl
h,n − ψ

l
h,n)φn

i .

Arguing as in (A.4)–(A.5)–(A.6) above we get∣∣∣∣∣∫ (Un
h)2(Pψl

h,n − ψ
l
h,n)φn

i

∣∣∣∣∣ ≤ Cδh,n + o(δh,n)

for every l = 0, . . . , 4, h = 1, . . . , q and i ∈ Ih, thus implying

|II.2| ≤ (Cδh,n + o(δh,n))
n∑

l=0

|al
h,n| . (A.12)
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Coupling (A.10)–(A.12) then gives

|II| ≤ C′(δ2
h,n| ln δh,n| + o(δ2

h,n))‖wn‖ + (Cδh,n + o(δh,n))
n∑

l=0

|al
h,n| ,

and combining with (A.2),(A.7),(A.8),(A.9) we finally obtain

δ2
h,n‖(w

n
i )‖2i∈Ih

≤ o(δ2
h,n)‖(wn

i )‖i∈Ih + o(δ2
h,n)

n∑
l=0

|al
h,n| .

Together with (A.3), this ensures that ‖(wn
i )‖i∈Ih‖ → 0 as n→ +∞, and repeating the argument for every

h = 1, . . . , q, gives ‖wn‖ → 0 as desired.

Step 2. For every h = 1, . . . , q and i ∈ Ih, we set

φ̃n
i (y) :=

δh,nφ
n
i
(
ξh,n + δh,ny

)
if y ∈ Ω̃h,n := Ω−ξh,n

δh,n

0 if y ∈ Rn \ Ω̃h,n .

By definition, ‖φ̃n
i ‖H1

0 (Rn) = ‖φn
i ‖H1

0 (Ω), so that φ̃n
i ⇀ φ̃i in D1,2(Rn) as n → +∞, for some φ̃i. Let us thus

show that φ̃i ≡ 0 for every i = 1, . . . ,m. To this aim, note first that (A.1) can be rewritten as∫
Ω̃h,n

∇φ̃n
i · ∇ϕ

= δ2
h,n

∫
Ω̃h,n


3µic2

i +
∑

j∈Ih
j,i

βi jc2
j

 φ̃n
i + 2

∑
j∈Ih
j,i

βi jcic jφ̃
n
j

 (PUn
h
)2 (ξh,n + δh,ny)ϕ

︸                                                                                        ︷︷                                                                                        ︸
An

+ δ2
h,n

∫
Ω̃h,n

∑
k,h

∑
j∈Ik

βi jc2
j(PUn

k )2(ξh,n + δh,ny)φ̃n
i ϕ︸                                                    ︷︷                                                    ︸

Bn

+ 2δ3
h,n

∫
Ω̃h,n

∑
k,h

∑
j∈Ik

cic jPUn
k (ξh,n + δh,ny)PUn

h(ξh,n + δh,ny)φn
j(ξh,n + δh,ny)ϕ︸                                                                                         ︷︷                                                                                         ︸

Cn

+δ2
h,n

∫
Ω̃h,n

λi,nφ̃
n
i ϕ +

∫
Ω̃h,n

∇(̃hn
i − w̃n

i ) · ∇ϕ,

for every ϕ ∈ C∞C (Rn), where

h̃n
i (y) :=

δh,nhn
i (ξh,n + δh,ny) if y ∈ Ω̃h,n

0 if y ∈ Rn \ Ω̃h,n

w̃n
i (y) :=

δh,nwn
i (ξh,n + δh,ny) if y ∈ Ω̃h,n

0 if y ∈ Rn \ Ω̃h,n .
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Let now ϕ be so that Kϕ := suppϕ ⊂ Ω̃h,n, which is always true for any given ϕ ∈ C∞c (Rn) and n large
enough. On the one hand, it is readily seen that

δ2
h,n

∫
Ω̃h,n

λi,nφ̃
n
i ϕ→ 0∫

Ω̃h,n

∇(̃hn
i − w̃n

i ) · ∇ϕ→ 0

as n→ +∞, since λn → 0, ‖hn‖ → 0 and ‖wn‖ → 0.
On the other hand, for every i ∈ Ih, j ∈ Ik, h , k∫

Ω̃h,n

(PUn
k )2(ξh,n+δh,ny)φ̃n

i (y)ϕ(y) =

∫
Ω̃h,n

(Un
k )2(ξh,n + δh,ny)φ̃n

i (y)ϕ(y) + o(1)

=δ2
k,n

∫
Ω̃h,n∩Kϕ

α2
4

(δ2
k,n + |δh,ny + ξh,n − ξk,n|

2)2
φ̃n

i (y)ϕ(y) + o(1)→ 0

and

δ3
h,n

∫
Ω̃h,n

PUn
k (ξh,n + δh,ny)PUn

h(ξh,n + δh,ny)φn
j(ξh,n + δh,ny)ϕ(y)

=δ2
h,n

∫
Ω̃h,n∩Kϕ

ϕ(y)
1 + |y|2

α4δk,n

δ2
k,n + |δh,ny + ξh,n − ξk,n|

2
φn

j(ξh,n + δh,ny) + o(1)→ 0

as y ∈ Kϕ, which is fixed and bounded, and |ξh,n − ξk,n| ≥ η by assumption. Hence,

Bn → 0, Cn → 0 as n→ +∞ .

Furthermore, for every j ∈ Ih,

δ2
h,n

∫
Ω̃h,n

(
PUn

h
)2 (ξh,n+δh,ny)φ̃n

j(y)ϕ(y)

=δ2
h,n

∫
Ω̃h,n

(
Un

h
)2 (ξh,n + δh,ny)φ̃n

j(y)ϕ(y) + o(1)

=

∫
Ω̃h,n∩Kϕ

α2
4

(1 + |y|2)2 φ̃
n
j(y)ϕ(y) + o(1)→

∫
Rn

α2
4

(1 + |y|2)2 φ̃ j(y)ϕ(y)

=

∫
Rn

U2
1,0(y)φ̃ j(y)ϕ(y)

since φ̃n
j ⇀ φ̃ j inD1,2(Rn) and U1,0 ∈ Ln(Rn). Therefore,

An →

∫
Rn


3µic2

i +
∑

j∈Ih
j,i

βi jc2
j

 φ̃i + 2
∑

j∈Ih
j,i

βi jcic jφ̃ j

 (U1,0
)2 ϕ as n→ +∞

that is, for every i ∈ Ih

−∆φ̃i =


3µic2

i +
∑

j∈Ih
j,i

βi jc2
j

 φ̃i + 2
∑

j∈Ih
j,i

βi jcic jφ̃ j

 (U1,0
)2 in Rn, φ̃i ∈ D

1,2(Rn).
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Therefore, the weak limit (φ̃i)i∈Ih solves the linearized system (1.9) for every h = 1, . . . , q. Thus,
(φ̃i)i∈Ih ∈ span{ehψl

1,0 : l = 0, . . . , 4}. However, since (φn
i )i∈Ih ∈ (Kn

h)⊥ for every n, then it follows

0 =δh,n〈(φn
i )i∈Ih , ehPψ0

h,n〉 = 3
∑
i∈Ih

δh,n

∫
Ω

(Un
h)2
ei,hψ

0
h,nφ

n
i

=3
∑
i∈Ih

∫
Ω̃h,n

ei,hα
3
4
|y|2 − 1

(1 + |y|2)n φ̃
n
i = 3

∑
i∈Ih

∫
Ω̃h,n

U2
1,0ψ

0
1,0ei,hφ̃

n
i

and, for every l = 1, . . . , 4,

0 =δh,n〈(φn
i )i∈Ih , ehPψl

h,n〉 = 3
∑
i∈Ih

δh,n

∫
Ω

(Un
h)2
ei,hψ

l
h,nφ

n
i

=3
∑
i∈Ih

∫
Ω̃h,n

ei,h2α3
4

yl

(1 + |y|2)n φ̃
n
i = 3

∑
i∈Ih

∫
Ω̃h,n

U2
1,0ψ

l
1,0ei,hφ̃

n
i .

Passing to the limit as n→ +∞ and making use of φ̃n
i ⇀ φ̃i, we obtain

3
∑
i∈Ih

∫
Rn

U2
1,0ψ

l
1,0ei,hφ̃i = 0, l = 0, . . . , 4 .

This shows that (φ̃i)i∈Ih ∈ (span{ehψl
1,0 : l = 0, . . . , 4})⊥, thus implying φ̃i ≡ 0 for every i ∈ Ih and

concluding Step 2.
Step 3. We now prove that φn

i → 0 strongly in H1
0(Ω) for every i = 1, . . . ,m, which in turn

concludes the proof of (3.2) as it contradicts the assumption ‖φn‖ = 1 for every n.
To this aim, let us test (A.1) with φn

i , so to have

‖φn
i ‖

2 =

3µic2
i +

∑
j∈Ih
j,i

βi jc2
j


∫

Ω

(
PUn

h
)2 (φn

i )2

︸                                       ︷︷                                       ︸
I

+2
∑

j∈Ih
j,i

βi jcic j

∫
Ω

(
PUn

h
)2 φn

jφ
n
i

︸                           ︷︷                           ︸
II

+
∑
k,h

∑
j∈Ik

βi jc2
j

∫
Ω

(PUn
k )2(φn

i )2

︸                              ︷︷                              ︸
III

+
∑
k,h

∑
j∈Ik

2βi jcic j

∫
Ω

PUn
k PUn

hφ
n
jφ

n
i︸                                    ︷︷                                    ︸

IV

+λi,n‖φ
n
i ‖

2 + 〈hn
i − wn

i , φ
n
i 〉 .

(A.13)

Since λn → 0, ‖hn‖ → 0, ‖wn‖ → 0 and φn is bounded in H1
0(Ω) uniformly on n,

λi,n‖φ
n
i ‖

2 + 〈hn
i − wn

i , φ
n
i 〉 → 0 as n→ +∞ . (A.14)

Moreover, recalling that 0 ≤ PUn
h ≤ Un

h for every h = 1, . . . , q, we have∫
Ω

(
PUn

h
)2 (φn

i )2 ≤

∫
Ω

(
Un

h
)2 (φn

i )2 =

∫
Ω̃h,n

U2
1,0(φ̃n

i )2 → 0∫
Ω

(
PUn

h
)2 φn

jφ
n
i =

∫
Ω

(
Un

h
)2 φn

jφ
n
i + o(1) =

∫
Ω̃h,n

(U1,0)2φ̃n
j φ̃

n
i + o(1)→ 0
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as n→ +∞ and for every i, j ∈ Ih, since φ̃n
i , φ̃

n
j ⇀ 0 inD1,2(Rn) and U2

1,0 ∈ L2(Rn), so that

|I| → 0 and |II| → 0 as n→ +∞ . (A.15)

As for term IV , for every i ∈ Ih, j ∈ Ik, h , k, by Hölder and Sobolev inequalities and by [17, Lemma
A.2–A.4] ∣∣∣∣∣∫

Ω

PUn
k PUn

hφ
n
jφ

n
i

∣∣∣∣∣ ≤ (∫
Ω

(PUn
k )2(PUn

h)2
) 1

2
(∫

Ω

(φn
j)

2(φn
i )2

) 1
2

≤ C
(∫

Ω

(Un
k )2(Un

h)2
) 1

2

≤C′
(
O(δ2

h,n)
∫

Ω

(Un
k )2 + O(δ2

k,n)
∫

Ω

(Un
k )2 + O(δ2

h,nδ
2
k,n)

) 1
2

≤C′′
(
O(δh,n)δk,n

√
| ln δk,n| + O(δk,n)δh,n

√
| ln δh,n| + O(δh,nδk,n)

)
,

thus ensuring
|IV | → 0 as n→ +∞ . (A.16)

We are left to discuss term III. On the one hand, if for every h = 1, . . . , q it holds

max
(i, j)∈Ih×Ik

h,k

βi j ≤ 0 ,

then we simply have
III ≤ 0.

On the other hand, if there exist i ∈ Ih, j ∈ Ik with βi j > 0, then

βi j

∫
Ω

(PUn
k )2(φn

i )2 ≤ βi j

∣∣∣φn
i

∣∣∣2
4

∣∣∣Un
k

∣∣∣2
4
≤ Cβi j‖φ

n
i ‖

2 .

Let then β > 0 be a positive constant so that, whenever

max
(i, j)∈Ih×Ik

h,k

βi j ≤ β ,

we have
|III| ≤ C

∑
k,h

∑
j∈Ik

βi jc2
j‖φ

n
i ‖

2 ≤
1
2
‖φn

i ‖
2 . (A.17)

Summing up, coupling (A.14), (A.15), (A.16) and (A.17) with (A.13), we conclude that ‖φn
i ‖ → 0 as

n→ +∞, for every i = 1, . . . ,m.
Step 4: invertibility. Note first that (−∆)−1 : L

4
3 (Ω) → H1

0(Ω) is a compact operator, so that L
restricted to K⊥ is a compact perturbation of the identity. Furthermore, (3.2) implies thatL is injective,
and thus surjective by Fredholm alternative. Henceforth, it is invertible, and the continuity of the
inverse operator is guaranteed by (3.2).
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