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Abstract: We study the existence of solutions to the cubic Schrodinger system

m
—Au; = Zﬁijl/lil/ti + Au; in Q, u; = 0 on 0Q,i=1,...,m,

J=1

when Q is a bounded domain in R*, A; are positive small numbers, 3; ; are real numbers so that 8; > 0
and B;; = Bji, i # j. We assemble the components u; in groups so that all the interaction forces g;;
among components of the same group are attractive, i.e., 8;; > 0, while forces among components of
different groups are repulsive or weakly attractive, i.e., 8;; < B for some 8 small. We find solutions
such that each component within a given group blows-up around the same point and the different
groups blow-up around different points, as all the parameters A;’s approach zero.

Keywords: cubic Schrodinger system; attractive and repulsive forces; blow—up phenomenon;
Ljapunov—Schmidt reduction

1. Introduction
The study of solitary waves @; = exp(tw;t)u; of the nonlinear Schrédinger system

—0,D; = AD; + B, Y Bl & Q- Ci= 1, m,

J=1
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where Q is a smooth domain in R" naturally leads to study the elliptic system

—Aui+wiui:ZB,-ju§u,-, u,:Q->R,i=1,...,m. (1.1)
=1

Here w; and ;; = B; are real numbers and ;; > 0. This type of systems arises in many physical models
such as incoherent wave packets in Kerr medium in nonlinear optics (see [1]) and in Bose—Einstein
condensates for multi-species condensates (see [25]). The coefficient 5;; represents the interaction
force between components u; and u;. The sign of §;; determines whether the interactions between
components are repulsive (or competitive), i.e., B;; < 0, or attractive (or cooperative), i.e., B;; > 0. In
particular, one usually assumes 5; > 0. We observe that system (1.1) has always the trivial solution,
namely when all the components vanish. If one or more components are identically zero, then system
(1.1) reduces to a system with a smaller number of components. Therefore, we are interested in finding
solutions whose all components are not trivial. These are called fully nontrivial solutions.

In low dimensions 1 < N < 4, problem (1.1) has a variational structure: solutions to (1.1) are
critical points of the energy J : H — R defined by

J(u) = %i f(|Vui|2 + wiuiz) - % Zm:ﬁijf”iz”?’
=1

Q L=l g

where the space H is either H'(Q) or Hé (Q), depending on the boundary conditions associated to u; in
(1.1) in the case of not empty 0Q2. Therefore, the existence and multiplicity of solutions can be obtained
using classical methods in critical point theory. However, there is an important difference between the
dimensions 1 < N < 3 and the dimension N = 4. Actually, in dimension N = 4 the nonlinear part
of J has a critical growth and the lack of compactness of the Sobolev embedding H'(Q) — L*(Q)
makes difficult the search for critical points. On the other hand, in dimensions 1 < N < 3 the problem
has a subcritical regime and the variational tools can be successfully applied to get a wide number of
results. We refer to the introduction of the most recent paper [6] for an overview on the topic and for
a complete list of references. Up to our knowledge, the higher dimensional case N > 5 is completely
open, because the problem does not have a variational structure and new ideas are needed.

In this paper, we will focus on problem (1.1) when Q is a smooth bounded domain in R* with
Dirichlet boundary condition. We shall rewrite (1.1) in the form

— AM,‘ = Zﬁi.jl’t?ui + Aju; in Q, u; = OonoQ,i=1,...,m, (12)

=1

where A; are real numbers, as this way it can be seen as a generalization of the celebrated Brezis—
Nirenberg problem [5]
—Au=1’+Auin Q, u = 0 on Q. (1.3)

It is worthwhile to remind that the existence of solutions to (1.3) strongly depends on the geometry of
Q. In particular, if € is a starshaped domain, then Pohozaev’s identity ensures that (1.3) has no solution
when A < 0. On the other hand, Brezis and Nirenberg [5] proved that (1.3) has a positive solution if and
only if 4 € (0, A1(2)) where A, is the first eigenvalue of —A with homogeneous Dirichlet condition
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on 0Q. These solutions are often referred to as least energy solutions, as they can be obtained also by

minimizing the functional
1
zwam—ww ij

restricted to the associated Nehari manifold. Later, Han [12] and Rey [18] studied the asymptotic
behaviour of this solution as 4 — 0 and proved that it blows—up at a point & € Q which is a critical
point of the Robin’s function, whereas far away from & his shape resembles the bubble

0
U(s,é:(X) = a’m, a = 2\/5 (14)
Recall that it is well known (see [2,23]) that {Uss : 6 >0, £ € R*} is the set of all the positive solutions

to the critical problem
—AU = U’ inR". (1.5)

Let us also remind that the Robin’s function is defined by r(x) := H(x, x), x € Q, where H(x,y) is the
regular part of the Green function of —A in £ with Dirichlet boundary condition.

Successively, relying on the profile of the bubble as a first order approximation, the Ljapunov—
Schmidt procedure has been fruitfully used to build both positive and sign—changing solutions to (1.3)
blowing—up at different points in € as the parameter A approaches zero (see for example Rey [18] and
Musso and Pistoia [14]).

As far as we know, few results are available about existence and multiplicity of solutions to the
critical system (1.2). The first result is due to Chen and Zou [9], who considered (1.2) with 2
components only

—Auy = ,uluf +,8u1u§ + Qiu; inQ
— Auy = o1 + Butuy + Lu,  in Q (1.6)
uy = uy = 0 onoQ.

When 0 < 23,4 < Ai(Q), they proved the existence of a least energy positive solution in the
competitive case (i.e., 8 < 0) and in the cooperative case (i.e., 8 > 0) if 8 € (0, é] U [B, +00), for some

B > max{u, o} > min{uy, up} > B > 0. In the cooperative case, when 4; = A, the least energy
solution is synchronized, i.e., (uy,u,) = (ciu, cou) where u is the least energy positive solution of the
Eq (1.3) and (cy, ¢,) is a positive solution to the algebraic system

1= puct +Be
1 = ppc5 + e

In the competitive case, the authors studied also the limit profile of the components of the least energy
solution and proved that the following alternative occurs: either one of the components vanishes and
the other one converges to a least energy positive solution of the Eq (1.3), or both components survive
and their limits separate in different regions of the domain Q, i.e., a phase separation phenomenon
takes place. In the subcritical regime such a phenomenon has been studied by Noris, Tavares, Terracini
and Verzini [15].

Afterwards, Chen and Lin [8] studied the asymptotic behavior of the least energy solution of (1.6) in
the cooperative case as max{4;, 4,} — 0 and found that both components blow—up at the same critical
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point of the Robin’s function, in the same spirit of the result by Han and Rey for the single equation
(1.3).

The existence of blowing—up solutions for system (1.2) with an arbitrary number of components has
been studied by Pistoia and Tavares [17]. Using a Ljapunov—Schmidt procedure, they built solutions
to (1.2) whose m components blow—up at m different non—degenerate critical points of the Robin’s
function as A" := max{A4,,...,4,,} — 0, provided the interaction forces are either negative or not
too large, namely §* := max;;§;; < B for some B > 0. For example, their result holds in dumbbell
shaped domains which are obtained by connecting m mutually disjoint connected domains Dy, ..., D,
by thin handles. In this case the Robin’s function has m distinct local minimum points which are non—
degenerate for a generic choice of the domain as proved by Micheletti and Pistoia [13]. Moreover,
if, as 4" — 0, we let §* := max; ; §;; approach —co with a sufficiently low velocity (depending on 1),
then it is still possible to show that all the components blow—up at different points and a segregation
phenomen occurs.

To conclude the state of the art, we would like to mention some recent results obtained by exploiting
a variational point of view. Guo, Luo and Zou [11] proved the existence of a least energy solution to
(1.2) in the purely cooperative regime (i.e., min;;3;; > 0) when A; = --- = A, and showed that such
a solution is synchronized under some additional technical conditions on the coupling coefficients.
Tavares and You [24] generalized the previous result to a mixed competitive/weakly cooperative regime
(i.e., max;,;B;; not too large). Clapp and Szulkin [10] found a least energy solution in the purely
competitive regime (i.e., max;.;B;; < 0), which is not synchronized when the coupling terms ;; diverge
to —oo.

Now, let us go back to the result obtained by Pistoia and Tavares [17] concerning the existence
of solutions to (1.2) with all the components blowing—up around different points in 2 when all the
mixed forces are repulsive or weakly attractive. It is natural to ask what happens for more general
mixed repulsive and attractive forces. Our idea is to assemble the components u; in groups so that
all the interaction forces §;; among components of the same group are attractive, while forces among
components of different groups are repulsive or weakly attractive. In this setting, we address the
following question:

(Q) is it possible to find solutions such that each component within a given group concentrates around
the same point and different groups concentrate around different points?

Taking the notation introduced in [16], given 1 < g < m, let us introduce a g—decomposition of m,
namely a vector (y, . .., 1,) € N**! such that

O=h<li<--<lpy <ly=m.

Given a g—decomposition of m, we set, for h = 1,...,q,

I, = {lG {1,,m} . lh—l < iSlh}.
In this way, we have partitioned the set {1, ...,m} into g groups Iy, ...,I,, and we can consequently
split the components of our system into g groups {; : i € I,}. Notice that if I, — [,_; = 1, then I,
reduces to the singleton {i}, for some i € {1,...,m}. We will assume that forevery h = 1,...,q.
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(A1) the algebraic system
1= Byct, icl, (1.7)
J€In
has a solution ¢;, = (¢;);e;, With ¢; > O for every i € I;

(A2) the matrix (,8,- j)‘ . is invertible and all the entries are positive.
L, )€1}

We observe that (A1) is satisfied for instance if for every i # j (see [3])
Bij =: B > max B for every i € I,
1€l

Remark 1.1. Assumptions (A1) and (A2) are necessary to build the solutions to (1.2) using the
classical Ljapunov-Schmidt procedure, namely (A1) allows to find a good ansatz which is
non-degenerate because of (A2). Let us be more precise.
From a PDE point of view, assumption (A1) is equivalent to require that the nonlinear PDE sub-
system
—AW; =W, ) BW; inR', iel, (1.8)
JEI

has a synchronized solution W; = c;U, i € I, where the positive function

1
U(x) i= a———, a =2V2,
= E e

solves the critical Eq (1.5). The first key point in the reduction procedure is done: the main order term
of the components u; with i € I, is nothing but the syncronized solution of the sub-system (1.8).

Assumption (A2) ensures that such a synchronized solution of (1.8) is non—degenerate (see [16,
Proposition 1.4]), in the sense that the linear system (obtained by linearizing system (1.8) around the
synchronized solution)

—AV,' = U2 3ﬁiicl'2 + Zﬁ,jci vi+22ﬁijcicjvj in Rn, i€l (19)
jel, Jel,
i i

has a 5—dimensional set of solutions
[Zn
(vis....vigy) € span ey’ [ £=0,1,....4} ¢ (HyQ)" (1.10)

where ¢, € R/ is a suitable vector (see [16, Lemma 6.1]) and the functions

oy = L=bP
O = e

Lo — e _
and lﬂ(y)—m,f—l,...,él-,

solve the linear equation
-Ay =3U% inR*.

The non-degeneracy of the building block is ensured and the second key point in the reduction
procedure is also done.
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We are now in position to state our main result.

Theorem 1.2. Assume (Al) and (A2). Assume furthermore that the Robin’s function has q distint non—
degenerate critical points f(f, e ,52. There exist § > 0 and Ay > 0 such that, if B* := maxawjey<; Bij <
h#k ’

B then, for every (4;)", with A; € (0,40), i = 1,...,m, there exists a solution (ui,...,u,) to (1.2)
such that, for every h = 1,...,q, each group of components {u; : i € I} blows—up at §2 as 1" :=
max;—;_a A = 0.

.....

Moreover, if, as A* — 0, B* approaches —co slowly enough (depending on %), i.e.,
8%l = O(e%*) for some d* sufficiently small, then all the components belonging to different groups
blow—up at different points and segregate, while the components belonging to the same group
blow—up at the same point and aggregate.

Remark 1.3. We remind that in dumbbell shaped domains which are obtained by connecting ¢
mutually disjoint connected domains by thin handles, the Robin’s function has ¢ distinct critical
points and in a domain with holes the Robin’s function has at least 2 critical points (see Pistoia and
Tavares [17, Examples 1.5 and 1.6]). All these critical points are non—degenerate for a generic choice
of the domain as proved by Micheletti and Pistoia [13].

Remark 1.4. Theorem 1.2 deals with systems with mixed aggregating and segregating forces (i.e.,
some g;;’s are positive, and some others are negative). This is particularly interesting since there are
few results about systems with mixed terms. The subcritical regime has been recently investigated by
Byeon, Kwon and Seok [6], Byeon, Sato and Wang [7], Sato and Wang [19, 20], Soave and Tavares
[22], Soave [21] and Wei and Wu [26]. As far as we know, there are only a couple of results concerning
the critical regime. The first one has been obtained by Pistoia and Soave in [16], where the authors
studied system (1.2) when all the A;’s are zero and the domain has some holes whose size approaches
zero. The second one is due to Tavares and You, who in [24] found a least energy solution to system
(1.2) provided all the parameters A; are equal. It would be interesting to compare this least energy
solution with the blowing-up solutions found in the present paper.

Remark 1.5. We strongly believe that the solutions found in Theorem 1.2 are positive, because they
are constructed as the superposition of positive function and small perturbation term. This is true for
sure if the attractive forces §;; are small, as proved in [17]. In the general case, the proof does not
work and some refined L™ —estimates of the small terms are needed. We will not afford this issue in
the present paper, because the study of the invertibility of the linear operator naturally associated to
the problem (see Proposition 3.1) should be performed in spaces equipped with different norms (i.e.,
L*—weighted norms) that may deserve further investigations.

The proof of Theorem 1.2 relies on the well known Ljapunov—Schmidt reduction. The main steps
are described in Section 3, where the details of the proof are omitted whenever it can be obtained,
up to minor modifications, by combining the arguments in Pistoia and Tavares [17] and in Pistoia and
Soave [16]. Here we limit ourselves to give a detailed proof of the first step of the scheme, as it suggests
how to adapt the ideas of [16, 17] to the present setting. The technical details of this part are developed
in the Appendix. Before getting to this, in Section 2 we recall some well known results that are needed
in the following.
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2. Preliminaries

We denote the standard inner product and norm in H}(€) by

1
(V)i = f Vu- Vv, lullgye = (W wmw)
Q

and the L?-norm (g > 1) by | - |14q). Whenever the domain of integration € is out of question, we also
make use of the shorthand notation ||u|| for ||u|| HI(©Q) and |ul, for |u|sq)-

Leti : Hé (Q) — L*Q) be the canonical Sobolev embedding. We consider the adjoint operator
(—=A)": L3(Q) — HL(Q) characterized by

-Av=u in Q

— -1 —
A" (w)=v {veH&(Q)

It is well known that (—A)~! is a continuous operator, and relying on it we can rewrite (1.2) as
u; = (=) {Zﬁijuﬁui +/l,-u,-], i=1,...,m 2.1)
=1

From now on, we will focus on problem (2.1).

We are going to build a solution u = (uy,...,u,) to (2.1), whose main term, as the parameters A;
approach zero, is defined in terms of the bubbles U, given in (1.4). More precisely, let us consider the
projection PUs, of Uy, into Hé(Q), 1.e., the unique solution to

~A(PUs¢) = ~AUs = U, in Q, PUs; = 0 on 6Q.

We shall use many times the fact that 0 < PUs¢ < Usg, which is a simple consequence of the maximum
principle. Moreover it is well known that

PUs¢(x) = Use(x) — adH(x,£) + O (&%),

Here G(x,y) is the Green function of —A with Dirichlet boundary condition in Q and H(x,y) is its
regular part.
Now, we search for a solution u := (uy,...,u,) to (2.1) as

u=W+g, where W= ((PUs 4., PUs,¢,) € (Hy(@)" x - x (H)Q)',  (2.2)

dp

where each vector ¢, € R is defined in (1.7), the concentration parameters 6, = e “ with A, =
max;es, A;, and the concentration points &, € Q are such that (d, &) = (dy,...,d,. &,..., &) € X;, with

[n

X, :={(d.&) eRIXQT: p<dy <y, dist(,00Q) 2y, & — &l 27 if h# k], (2.3)

for some 17 € (0, 1). Recall that |/;| + - - - +|I,| = m. The higher order term ¢ = (¢y,...,¢,) € (Hg(Q))m
belongs to the space K whose definition involves the solutions of the linear equation

- Ay =3U;p inRY, ye DR (2.4)
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More precisely, we know that the set of solutions to (2.4) is a S—dimensional space, which is generated
by (see [4])

AU ¢ |x — &2 - 62

— . .
9% (8 +Ix-&P)
ou, -
W= D a8 gy
T 0% (& + lx = &P)

It is necessary to introduce the projections ow;’f of lﬁg,g (€=0,...,N)into H}(Q), i.e.,

— A(PY,.) = A5, = 3Us 05, in Q, Pys, =0 onoQ, (2.5)
and it is useful to recall that
Py (x) =y (x) - aH(x,&) + O(5%),
Py (x) = Y5 (x) — @00, H(x,6) + O(8°), =1,....4.
Now, we define the space K* as
K:=K; x---xK, and K" = Kj x---x K, (2.6)
where (see (1.10))
Ky := span e, Py, o 0 €=0,....4) c (HY@)", h=1,....q. 2.7)

The unknowns in (2.2) are the rates of the concentration parameters d;,’s, the concentration points &,’s
and the remainder terms ¢;’s. To identify them, we will use a Ljapunov—Schmidt reduction method.
First, we rewrite system (2.1) as a couple of systems. Let us introduce the orthogonal projections

= (0, T1,) « (Hy(@)" x - x Hy(@) — K
and
.= Jr,... ,H;) : (Hé(g))lhl X eee X H(l)(Q))llql - K-,

1Al 23] ..
where 11, : (H(l)(Q)) " > K, and IL; - (Hé(Q)) . K;- denote the orthogonal projections, for every

h=1,...,q.
It is not difficult to check that (2.1) is equivalent to the couple of systems

I [L®)+ N(@) +E] =0 (2.8)
and

[ L(p)+ N(¢)+E] =0, (2.9)

where the linear operator L(¢) = (L' (¢),..., L)) : (Hé(Q))m — (Hé(Q))m is defined for every
ielbandh=1,...,qas

Li(@) =i — (=) |[3Bic + D Bie)? |9 +2 D Biyccid;|(PUs, )

i g (2.10)
+ Z Zﬂij ((CjPUék,ghk)2¢i + ZCiCjPUah,ghPUﬁk,ghkfﬁj) + /li¢i} .
k#h jely
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the nonlinear term N (¢) = (N (@), ..., N"(§)) € (L%(Q))m is defined forevery i€ I and h =1,...,¢q
as

N(@) := = (=8) ' Bii(ciPUs, .8} + 20,PUs, 6,66 + $30)

(2.11)
£ 3 BiciPUs, 5,87 + 2¢;PUs, .66 + 6380) + i (3¢iPUs, 6,67 + ¢?)} ,
k#h jel

and the error term & = (&',...,8M) € (L%(Q))m is defined foreveryi € [and h=1,...,q as

& i=-(-A)" {[ZﬁijchCi) I:(PUéhyé:h)?’ - (Uéh,fh)3]
Jel

2.12)
+ Z Zﬂz/(CjP Us.e)*(¢iPUs, ) + iciP Uéh,fh}-

k#h jely

In the above computation, we used (1.7) and (1.8), so that foreveryie€ I, andh=1,...,q

[Z Bijci’ci

J€l

CiPUéh,fh = (_A)_l (Ufsh»fh)3 :

The proof of our main result consists of two main steps. First, for fixed d = (d,...,d,), and § =
(&1, ...,&,) we solve the system (2.8), finding ¢ = ¢(d,§) € K*. Plugging this choice of ¢ into the
second system (2.9), we obtain a finite dimensional problem in the unknowns d and &, whose solution
is identified as a critical point of a suitable function.

3. Proof of Theorem 1.2

We briefly sketch the main steps of the proof.

3.1. The linear theory

As a first step, it is important to understand the solvability of the linear problem naturally associated
to (2.8), i.e., given L as in (2.10)

L(p)=h, with heK".

Proposition 3.1. For every n > 0 small enough there exist § > 0, g > 0 and C > 0, such that if
A; € (0, ), foreveryi=1,...,m, and

B = max B, <p, (3.1)
@@, )elpXIy,
h#k
then
L@z = ClIdll sy V¢ e K*, (3.2)

for every (d,€) € X,,. Moreover, L is invertible in K+ with continuous inverse.

Proof. It is postponed to Appendix. O
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3.2. The error term

We need to estimate the error term & defined in (2.12).

Lemma 3.2. For every n > 0 small enough there exist 1y > 0 and C > 0 such that, if A; € (0, Ay) for
everyi=1,...,m, then

q
Il < C ) [owi) + 080 + ) 0<L8*|5h6k)] (3.3)

h=1 k#h

or every (d,€) € X,, where A7 := max A; and B* := max f;;.
ry " h j
i€l (/8%
ik

Proof. We argue as in [17, Lemma A.1-A.3]. Note first that, by the continuity of (=A)~!, for every
i€l

[Se [Z wmcfci] |(PUs,.)° = (Us,)'s

JEIn

+C Z Z |ﬁij|cic? |PU5h’§h(PU5k’§k)2|% + A;c; |PU§h’§h|% .

k#h jeli
Moreover,
|(PUs,,)* = (Us,6)’]s = 06},
|PU6/1»,611PU§](,§]<|% = 0(61’!6]()
and
|PUs,&|s = 0@
Then the claim follows. m]

3.3. Solving (2.8)

We combine all the previous results and a standard contraction mapping argument and we prove the
solvability of the system (2.8).

Proposition 3.3. For every n > 0 small enough there exist § > 0, g > 0 and C > 0 such that, if
Ai € (0,4) for every i = 1,...,m and (3.1) holds, then for every (d,&) € X, there exists a unique
function ¢ = ¢(d, &) € K+ solving system (2.8). Moreover,

q
Bl @y" < € Z 0(5;) + O(A;6p) + Z O(B"1010x) (3.4)
h=1 k#h
and (d,&) — ¢(d, &) is a C'—function.

Proof. The claim follows by Proposition 3.1 and Lemma 3.2 arguing exactly as in [17, Proposition
3.2 and Lemma 3.3], noting that the nonlinear part N given in (2.11) has a quadratic growth in ¢. In
particular (3.4) follows by (3.3). O
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3.4. The reduced problem

Once the first system (2.8) has been solved, we have to find a solution to the second system (2.9)
and so a solution to system (1.2).

Proposition 3.4. For any > 0 small enough there exist B > 0 and Ay > 0 such that, if A; € (0, ) for
everyi=1,...,mand (3.1) holds, then u = W(d, &) + ¢(d, €) defined in (2.2) solves system (1.2), i.e.,
it is a critical point of the energy

J(u) ::%iflvuiz—%iﬁi,’f”?“?‘%i]‘ﬂi”?

Q
if and only if (d, ) € X, is a critical point of the reduced energy
J(d,€):=J(W+¢).
Moreover, the following expansion holds true
. q
J(6,&) = Z [Z )(AO + A167T(&) + A ;07 In 6yl + 0(67)) (3.5)
h=1 iEl/l

* = max A;.

C'—uniformly in X,,. Here the A;’s are positive constants, t is the Robin’s function and A,
i€l

Proof. The proof follows by combining the arguments in [17, Section 3 and Section 5] and [16, Section
5]. We remark that in this case the fact that ¢(d, &) solves (2.8) is equivalent to claim that it solves the
system

4 4
£(¢) - N(¢) -&= (Z a{elpwgl,fl’ et Z aflehpwghfh] >

=0 t=0

for some real numbers af. Therefore, W(d, €) + ¢(d, &) solves system (2.9) if and only if all the af’s are
zero. We also point out that it is quite standard to prove that J (W + ¢) ~ J (W) and moreover by (1.7)
we deduce

ZIBIJ(C CJ) f(PUfSh fh

i,jely

J(W) = [ —C flVPU(;h &n
lE[}l

(Z 62][| f'VPUﬁhf/ P-3z f(PUffhfh) ]

i€ly,

ZIBU f(c PUs, fh) (CJPUék fk Z Z f(c PUs, fh

hk=1 h=1 i€l
h#k

so that the claim follows just arguing as in [17].
m]
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3.5. Proof of Theorem 1.2: completed

Arguing exactly as in [17, Proof of Theorem 1.3, p. 437], we prove that the reduced energy (3.5)
has a critical point (d,, &,) provided 4 = (4,,...,4,,) is small enough and &, — (£, ..., 2) as A" =
max; 4; — 0. Theorem 1.2 immediately follows by Proposition 3.4. Moreover, if the §;;’s depend on

.....

d
b d*—dy,

Bl se” h ge T =o(l)

‘&
E3

and by estimate (3.4) we can still conclude the validity of (3.5), and so the last part of Theorem 1.2
follows (see also [17, Section 5.3, p.438].
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Appendix

Proof of Proposition 3.1

We argue combining ideas of [17, Lemma 3.1] and [16, Lemma 5.4]. We first prove (3.2) by

contradiction. Assume thus that there exist {(d,,&,)}, C X, sothat {, — fasn — +oo0, 4, :=
(At s Amp) = 0asn — +oo, and ¢" := (&7, ..., @) € K+ so that ||¢"|| = 1 for every n € N and

L@ —0  asn— +co.
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We recall that the spaces introduced in (2.6) and (2.7) depend on d,, and &, so for the sake of clarity,
let us introduce the following notation. Forevery h =1, ..., ¢, let

KZ = th,m-fh,na (KZ)J_ = KLJi;,,mfh,n’

UZ = Ulsh,n,é:h,n’ PUZ = PUdh,nafh,n’

I .l . l —
wh,n T wéh,nafh,n’ Pwh,n T Pwéh’”’fh’”’ l - O’ Y 4 ’

_d/Ln
where 6, := e " and Ay, = maXey, A; ,,. Moreover, set h, := L(¢").
By definition of £ and the fact that ¢" € K+, we have, foreveryh=1, ..., gandi € I,

¢! =(=A) " || 3pic + Zﬁijci ¢; + ZZ,Gijcicjfﬁ’} (PU;Y?

T T (A.1)
+ Z Z’BU [ci(PUZ)Zgb;' + ZCichU,’fPUZgb;f] + /ll-,nqb?} +h - w,
k#h jely

for a suitable w, := (W});c;, € K}. Here y; := B;;.
Step 1: |Wall = 0 as n — +co. Multiplying (A.1) by 6; w/ and recalling the definition of (—=A)™'
yields

2 2 _ 0 2 2 2 2
OnalWill” =6, KR = @i, Wiy + 65, | Bpaci + E Bijc; f(PUZ) oiwy
Jely
J#

267, Y Bijcic; f (PUDY W, +61, > Bijc} f (PU}Y !

Jely, k#h jE]k
Jj#i
2 n ngn. n 2 n,.n
¥26% 01 Y > Bige f PUIPUIS'W! + 82, i f R
k#h jel

so that, summing over i € I, and making use of (¢)ie;,, (h!)ie, € (K,’Z’)L,

2 2
S D, WS

i€l
————
1

=50 3|3t + 33| [ PRt 268, Y pucie, [ PUp o

i€l J€lp Jely
JEL JEI
4§ (A.2)
2 2 n\2 gn. n 2 n ngn. n
#85, 0 Buc f(PUk) i +267, > ci - B,-jcijUkPUh "W,
i€ly k#h jely i€l k#h jely
11 v
+67 Ain | ™!
h,n Ln i
i€l
—————
14
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Note first that, since (w!);, € K}, for 1 =0, ..., 4 there are afw € R for which it holds (see (2.6))

n

1 1
(W?)ielh = Z ah,nehpwh’n ’

1=0
so that arguing as in [17, p. 417] and for sufficiently large n we can write
1=6,> > a,a lesl f VPY, - VPy,, = > (@, Yoy +o(l) ) dah,,  (A3)
icly 1,p=0 1=0 1=0

for suitable positive constants o, [ =0, ..., 4.
Let us thus estimate terms /// and IV in (A.2). On the one hand, for every h,k = 1, ...,q, k # h,
iel,and[ =0, ...,4,

Lﬁ?@ydwmﬂsbﬂwaw%m+LﬂPwvawu—wu> A
<61 [(PUD Wi, s + IS |(PUD P, = 03,
where we made use of Holder and Sobolev inequality. Then, by [17, Lemma A.1] we get
%
|((PUD* Y, = 3]s < Chn + 0(6h) ( f (PUz)gH(-,gk,n)é) <C'Gp+061)  (AS)

and

OH
0&

forevery [ =1, ..., 4. Moreover, since direct calculations show

|((PUD P, = )]s

, < CO2, +0(52,) ( f (PUD? (-,fk,n)g) < C'62, +0(o%,) (A.6)

C
Wiel < < Use
) C 2
W5l < EU6,§|XZ =&, I=1,...,4,

recalling that 0 < PU}! < U} by the maximum principle and making use of [17, Lemma A.2-A.4], we
also have

((PUDW,

C
| <—|eUprU;
3 6h,n

C n n
1 S |(Uk)2Uh
3 6h,n

4
3

’

<

(OGhnSin) + O}, 0nn)) = OGr)

h.n

and, for/ =1, ..., 4,

C
(06 ,010) + OB1u6},)) = 0(Bkn)

’
h,n

((PUYY,,

C
< —|wprpy, <
3 Onn 3
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Combining the previous estimates with (A.4) and the fact that ||@,|| = 1 thus leads to
83N < 06F,) D lai,, .
1=0

Similarly, by Holder and Sobolev inequality, ||¢,|| = 1 and [17, Lemma A.5],

< C|PU;PU;PY,,

'fPUI?PUZ¢7Pw§1n % = 0(6k,n5h,n) )

foreveryk,h=1,...,q,k#h, jelyand [ =0, ..., 4, so that

SpalIVI < 057,) > la, .
=0

(A.7)

(A.8)

Furthermore, by Holder inequality and recalling that 4, — 0 asn — +c0 and ||@,|| = 1, we also have

S alVI < 0(S, IOV ie I

(A9)

We are thus left to estimate the term /7 in (A.2). To this purpose, we set, for every i, j € I,

._ 2 2
@;; = 3pic; + § Biic
jely
JEI

@;j = 2Pjjcic;
so that

@i} + Z @;j$; (PUZ)ZW?

Jely
J#

(PUp? = W) wy

— n n

= f @;ip; + E @;j¢;
JEly

J#E

11.1

2
f @iy + § @@ |(Up) wy
Jely,
#

i€l

112

As for I1.1, we have, for every i, j € I,

< |PUp? - (Up?

[ (o - wip)om:

L@t awils < |(PURY = (U

LIl

by Holder and Sobolev inequality and ||, || = 1. Furthermore, by [17, Lemma A.3] and 0 < PU; < U}

(PU? - W, < C(|UpPU; - Up)

Mathematics in Engineering

, +|eup - up?|,) < ¢ lupeu; -

U]’:)za
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and by [17, Lemma A.1-A.2]

\uiPUy - U

> Z(f(UZ)Z(PUZ - UZ)Z) = (f(UZ)z(éh,nAH("fh,n) + 0(63,0))*

1
2 1
S((j(sh,n + 0(6h,n)) (f(U]r;)z) < Cléi,nl In 6h,n|§ + 0(6%”1) s

in turn yielding

msc Y| [ (eopt-wpp) e

i.jeln

< C'(85,1 10 830l + 0(S MW Yier, I - (A.10)

To estimate /1.2, note first that

112 = Z f ;P! + Z @’ (UN? an aZ,nei,hP%,n

i€l J€lp =0
Jj#i

n
I 2p 1
= Z Ay n f(UZ) Py, Z @iiind] + €ip Z @;jd;
1=0

e —
< g (A.11)
n
! 2p1
= Z Ay f(UZ) Py, Z o} | aiieipn + Z a;jein
=0 icl) Jely
i
n
_3 l Un 2P [ n .
= a,, | (U, Py, b ein,
=0 icT,

since by construction ¢, is an eigenvector of the matrix (a;;); jes, corresponding to the eigenvalue A; = 3
(see [16, Lemma 6.1]). Recalling that (¢!);c;, € (K})*, so that by (2.5) and (2.6)

0= Z fei,hvplﬁﬁl,n V¢! =3 Z f(UZ)zei,h%,n¢?
i€l i€l
forevery [ =0, ..., 4, we can then rewrite (A.11) as
12=3) Y e [(WDPU, - 01,000
1=0 iel)

Arguing as in (A.4)—(A.5)—(A.6) above we get

' f (UN(PY,, — Uy, )8]| < Cpn + 0(S1n)

forevery[=0,...,4,h=1,...,qand i € I}, thus implying

I1.2] < (Cy + 0(01)) ) la}, . (A.12)

=0
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Coupling (A.10)—(A.12) then gives
11| < C'(6;,,| I 6l + 0S5 NNIWall + (Ch + 0(5.0)) Z |
1=0
and combining with (A.2),(A.7),(A.8),(A.9) we finally obtain
SrllOVDIy, < 06 NWllics, + 0(5,) i )l -
1=0

Together with (A.3), this ensures that |[(W!)||ie;,|l = 0 as n — +oc0, and repeating the argument for every
h=1,...,q,gives ||w,|| = 0 as desired.

Step 2. Forevery h=1,...,qand i € I}, we set

En(y) — 5h,n¢? ('fh,n + 5h,ny) lfy € ﬁh,n = Qgh_fi,n
i . 0 inyRn\ﬁh,n.

By definition, [[¢7 |5z = 11671l c» 50 that ¢ —= ¢; in D'2(R") as n — +oo, for some ¢;. Let us thus

show that 5,- = (0 for every i = 1,...,m. To this aim, note first that (A.1) can be rewritten as

f Vol - Vo
ﬁh,n

n “n n\2
= 512“1[_ Buici + Zﬁi/‘c? ¢ +2 Zﬁijcicj¢j (PUL) (Epn + Onay)p
Qh,n J€ly Jely,
i i

Ap

+ 63 fﬁ Z Z:Bijcﬁ(P U (Enn + Onay) B0

hon k+h ,iEIk

B,

+ 25}3”1 '[; Z Z CiCjPUZ(é‘:h,n + 6h,ny)PUZ(‘fh,n + 5h,ny)¢';(§h,n + 5h,ny)¢

Qnn kel jely

Cﬂ

+65, f dinBlo + f V(I - W) - Ve,
Qh,n

Qh,n

for every ¢ € CZ(R"), where

Tn . 5h,nh?(§h,n + 5h,ny) lfy € ﬁh,n
hi (y) = ) _
0 ify e R"\ Q,

—~n . 6h,nwlr'l(‘fh,n + 6h,ny) lfy € ﬁh,n
wi(y) :=

0 ify e R"\ Q.
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Let now ¢ be so that K, := suppy C ﬁh,n, which is always true for any given ¢ € C°(R") and n large
enough. On the one hand, it is readily seen that

G, [ Al =0
Qh,n
ﬁ V(I - W) - Vo — 0
Qh,n

asn — +oo, since 4, — 0, ||h,|| = 0 and ||w,|| — O.
On the other hand, foreveryie I, je I, h # k

PUD €0t 60T o) = fﬁ UV Enn + GBI + 0(1)

Qh,n

2
[0 —_
=5}, f - F:0)e() +o(1) = 0
“ Jann, (62, + 10haY + Enn — Ecal?)?

and

S f_ PU(Epn + 6nny)PU}Epn + 6nnY)P i (Enn + 0nny)p(y)
Qh n

() @40
=G f ’ &)(Enn + 1y + 0(1) = 0
" S, 14D G, + 1000y + Enn — €l

as 'y € K,, which is fixed and bounded, and |&,, — &k ,| > 1 by assumption. Hence,
B,—-0, C,—>0 asn— +o0,

Furthermore, for every j € I,,

S fﬁ (PULY (&t 0n0)B ()0 (y)

_6in f (Uh) (é‘:hn + 6h ny)¢ (Y)SD(Y) + 0(1)

a’ %
= \fg;h”nK (1 +| |2)2¢ (}’)SO(V) + 0(1) - (1 +| |2)2¢J(y)90(y)
= fR ) UL s0);(0)e()

since ¢ — @, in D'*(R") and U, ¢ € L"(R"). Therefore,

) |~ — 2
An - 3/11"61‘ + E IBijCj ¢,‘ +2 E ﬁijcicj¢j (ULO) () asn — +oo
R? Jely Jel,
JEI J#

that is, for every i € I,

~A¢; = || 3uic} + Zﬁijci ¢ + 2Zﬁijci6j5j (Ul,o)2 inR", ¢ € DR
7 7
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Therefore, the weak limit (51-),-61,1 solves the linearized system (1.9) for every h = 1,...
(D)ier, € span{eht//ll’o : 1=0,...,4}. However, since (¢")c;, € (K})* for every n, then it follows

0 (5hn<((]5 )tEImethhn 326hnf(Un) e,h',[/hn(p

lE[h
|)’| -1 ~, f ,
=3 f thCl’3 =3 U (ﬁ elh
; Qs 4(1+|y|2)” ; Lo¥i0
and, for every /= 1.....4,

0 =61n (@] esPY},) =3 ) O f Uit} 8!

i€l

= f €120 =3 f U? W jeindl.
Z O st |y|2)"¢ Z G Lo¥i08ind

iely i€l

Passing to the limit as n — +co and making use of 5’.’ — ¢;, we obtain

3Zf U geindi =0,  1=0,....4.

i€l

,q. Thus,

This shows that (5,-),-61,1 € (span{eh://ll’o : 1 =0,...,4)*, thus implying 5,- = 0 for every i € I, and

concluding Step 2.

Step 3. We now prove that ¢" — 0 strongly in Hy(Q) for every i = 1,...,m, which in turn

concludes the proof of (3.2) as it contradicts the assumption [|¢,|| = 1 for every n.
To this aim, let us test (A.1) with ¢, so to have

1P = 3pic? + D Bisc f (PULY @) +2 ) Bycic; f (PU;Y 19

Jely, Jely,
J#I J#

+ Z Zﬁuc f (PUD (47 + Z Z 2B;jcic; f PUPU,¢"¢"

kth jel k#h jel

I v

+ il 1P + ChY — Wi, ).
Since A4, — 0, [|h,|[ — O, [|w,|| — 0 and ¢, is bounded in Hé(Q) uniformly on n,
Al + (R —wh @'y > 0 asn — +oo.

Moreover, recalling that 0 < PU} < U forevery h = 1,...,q, we have

f (PUIY (¢ < f (U (@1 = f U24(@) — 0
Q Q Qpp
fg (PUL) ¢4 = f WP + o) = [ (W02 FF + (1) — 0

Qh,n

(A.13)

(A.14)
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as n — +oo and for every i, j € I, since 57,5;’ — 0in D"2(R") and Uio e L*(R"), so that

7] >0 and |II]>0 asn— +oo. (A.15)
As for term IV, for every i € I, j € I, h # k, by Holder and Sobolev inequalities and by [17, Lemma
A.2-A 4]
! % !
[ o] <( [wureuy) ( [@rer) <l [wpwr)
Q Q Q Q

<C’ (0(6}‘;,,,) f (UL + O, f (U + 0<5i,n5in))
Q Q
SC” (0(6h,n)5k,n \Y I ln 6k,n| + 0(6k,n)6h,n \Y | 11’1 6hn| + 0(6hn5kn)) >

thus ensuring
lIV| - 0 asn — 4oo. (A.16)

We are left to discuss term III. On the one hand, if for every h = 1,..., g it holds

max B;; <0
el Xl ﬁ Y ’
h#k

then we simply have
111 <0.

On the other hand, if there exist i € 1, j € I, with 8;; > 0, then

n 2 n 2 n
7). |UR[, < CBillI1P -

b | eup@y <py
Q
Let then 8 > 0 be a positive constant so that, whenever

max f;; <
(@, ))elp X1y, 1 ﬁ >
h#k

we have 1
1 <€ Y > ByciIdlP < SIIsIP (A.17)
k#h jely
Summing up, coupling (A.14), (A.15), (A.16) and (A.17) with (A.13), we conclude that ||¢"| — O as
n — +oo, foreveryi=1,...,m.

Step 4: invertibility. Note first that (-A)~! : L%(Q) - Hé(Q) is a compact operator, so that £
restricted to K+ is a compact perturbation of the identity. Furthermore, (3.2) implies that £ is injective,
and thus surjective by Fredholm alternative. Henceforth, it is invertible, and the continuity of the
inverse operator is guaranteed by (3.2).
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