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Sparse `1 and `2 Center Classifiers
Giuseppe Calafiore, Fellow, IEEE, and Giulia Fracastoro, Member, IEEE

Abstract—In this paper we discuss two novel sparse versions
of the classical nearest-centroid classifier. The proposed sparse
classifiers are based on `1 and `2 distance criteria, respectively,
and perform simultaneous feature selection and classification, by
detecting the features that are most relevant for the classification
purpose. We formally prove that the training of the proposed
sparse models, with both distance criteria, can be performed
exactly (i.e., the globally optimal set of features is selected) at
a linear computational cost. Specifically, the proposed sparse
classifiers are trained in O(mn) +O(m log k) operations, where
n is the number of samples, m is the total number of features and
k ≤ m is the number of features to be retained in the classifier.
Further, the complexity of testing and classifying a new sample
is simply O(k) for both methods.

The proposed models can be employed either as stand-
alone sparse classifiers, or as fast feature-selection techniques
for pre-filtering the features to be later fed to other types of
classifiers (e.g., SVMs). The experimental results show that the
proposed methods are competitive in accuracy with state-of-the-
art feature selection and classification techniques, while having
a substantially lower computational cost.

Index Terms—Nearest-centroid classifiers, Machine learning,
Sparse optimization, Feature selection, Text classification.

I. INTRODUCTION

A. Perspective and literature overview

In recent years the technological progress has led to a
massive proliferation of large-scale datasets. The processing
of these large amounts of data poses many new challenges,
and there is a strong need of algorithms that scale mildly
(e.g., linearly or quasi-linearly) with the dataset size. For this
reason, classification methods with a very low computational
cost, such as Naive Bayes [1], [2], linear Support Vector
Machines (SVM) [3], and the nearest-centroid classifier [4],
[5], are still an appealing choice in this endeavour. In many
cases, these methods are the only feasible approaches, since
more sophisticated techniques would be too demanding from
the computational point of view. The cited simple classifiers
have in common a training complexity that scales as O(mn),
where m is the number of features and n is the number of
examples in the training data set. This type of complexity is
usually referred to as linear, since the number of operations
scales proportionally to the overall dimension mn of the
data set. To put things in perspective, for instance, nonlinear
(kernel) SVMs have a much higher training complexity of
O(max(n,m) min(n,m)2), see, e.g., [6], [7].

Even for efficient classifiers, however, a challenge to face
when dealing with large-scale datasets is the so-called curse
of dimensionality. In fact, in numerous applications datasets
may have a very high number of features, which can be
orders of magnitude higher than the number of samples. In
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this situation, traditional classification techniques may perform
poorly, or even break down. For this reason, feature or variable
selection methods and sparse classifiers have been deeply
studied in the literature, see, e.g., [8], [9]. Variable selection
refers to the problem of selecting input variables (features)
that are most predictive of a given outcome. Such selection
can be accomplished by imposing a sparsity constraint on
the classifier, so that only k � m features effectively come
into play in the discrimination function. Appropriate variable
selection can enhance the effectiveness and domain inter-
pretability of an inference model, [10], [11]. Indeed, besides
reducing the dataset size, feature selection has other important
advantages. First, it eliminates noisy, redundant or irrelevant
features, thus reducing the risk of overfitting and improving
the generalization performance of the classifier. Second, a
sparse classifier can lead to a simplified decision rule for
faster prediction in large-scale problems. Thirdly, a small set of
features typically leads to better interpretability of the results.

State-of-the-art feature selection methods are typically
based on heuristics that do not provide any guarantee of global
optimality. Some of them, such as the Lasso [12] or the `1-
regularized logistic regression [13], are based on solving a
convex optimization problem with a `1-norm penalty on the
regression coefficients to promote sparsity. The main drawback
of these techniques is that they are computationally expensive
(i.e., they scale way above linearly in the problem dimension).
Other methods, such as Odds Ratio [14] or Information Gain
[15], propose a different approach that employs a feature
ranking based on their inherent characteristics. These methods
are usually very fast, but often their performance in terms
of accuracy is poor. Moreover, they only perform variable
selection, whereas the actual classification is deferred to a
second-stage algorithm (for instance, a kernel SVM) that
elaborates on the selected features.

Another approach used for mitigating the issue of high
dimensionality consists in directly defining sparse classifiers,
which should be able to deal with a large number of features by
performing simultaneous variable selection and classification.
Several works introduced a sparse decision rule for the SVM
[10], [16], [11]. The main shortcoming of such Sparse SVM
classifiers is that their training involves solving a minimization
problem, which typically requires a high computational cost.
For example, when a `1-norm penalty term is considered in a
linear SVM in order to obtain a sparse classifier, the worst-
case computational complexity grows to O(nmmin(n,m)2),
see [16]. A further type of sparse classifier is the sparse
nearest mean classifier [17], [18], where a weighting factor
for each feature is introduced. However, the feature weights
are obtained by solving a linear program, which again requires
a computational effort that grows way more than linearly in the
problem size. Recently, [19] also presented a sparse version of
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the Naive Bayes classifier. This method provides a sub-optimal
solution in quasi-linear time for multinomial features, and it
is shown in [19] that it may surpasses many state-of-the-art
feature selection methods in terms of accuracy and speed.

Another popular classifier is the k-nearest neighbors clas-
sifier [20] and its variants [21], [22], [23]. However, the
k-nearest neighbors classifier is not designed for obtaining
sparsity or feature selection; it has been shown to be par-
ticularly sensitive to the curse of dimensionality and its
performance might significantly deteriorate as the number
of feature increases [24]. To overcome this issue, several
approximate versions of the k-nearest neighbor classifier have
been proposed, see for instance [25], [26], [27].

B. Paper contribution

The context of the contribution of the present work is that of
efficient methods for joint variable selection and classification.
We propose two types of sparse nearest-center classifiers that
guarantee both global optimality and numerical efficiency. The
proposed discriminative models efficiently perform simulta-
neous feature selection and classification and, different from
Naive Bayes, they are not directly related to a specific genera-
tive statistical model. Specifically, we discuss two models with
different geometry of the underlying discrimination function.
The first model is based on an `2 metric for computing
distances between feature vectors, and it is named the `2-
sparse center classifier. The second model is based on an `1
metric for computing distances between feature vectors, and
it is named the `1-sparse center classifier.

The `2 model is a natural sparse variant of the nearest-
centroid classifier [4], [28], which is a widely used classifier,
especially in text classification [29], [30]. Instead, the `1 model
is related to the median classifier [31], [32], which has shown
to be more robust to outliers than the `2 version. We prove that
both the proposed methods select the optimal subset of features
for the corresponding classifier, in linear time. Other works
have already proposed feature selection methods targeted for
the nearest-center classifier [33], [28], [34]. However, they
focus only on the `2 case, and most of them cannot provide
any optimality guarantee or, when they have a theoretical
guarantee of optimality, they are computationally expensive.
The experimental results that we report in Section VI show
that the techniques we propose achieve similar performance as
state-of-the-art feature selection methods, but at a substantially
lower computational cost.

The remainder of this paper is organized as follows: Sec-
tion II presents some preliminary notions on center-based clas-
sifiers. In Section III we introduce the proposed sparse center
classifiers. Section IV describes an efficient and exact method
for training the sparse `2-center classifier, while Section V
presents an analogous result for the sparse `1-center classifier.
In Section VI we report numerical experiments comparing
the proposed methods with relevant methods existing in the
literature. Conclusions are finally drawn in Section VII. One
technical result is reported in the appendix Section VIII-A for
better readability of the main text.

II. PRELIMINARIES ON CENTER-BASED CLASSIFIERS

Let
X =

[
x(1) · · · x(n)

]
∈ Rm,n, (1)

be a given data matrix whose columns x(j) ∈ Rm, j =
1, . . . , n, contain feature vectors from n observations, and let
y ∈ Rn be a given response vector such that yj ∈ {−1,+1}
is the class label corresponding to the j-th observation. We
consider a binary classification problem, in which a new
observation vector x ∈ Rm is to be assigned to the positive
class C+ (corresponding to y = +1) or to the negative class
C− (corresponding to y = −1). To this purpose, the nearest
centroid classifier [29], [4], [28] is a well-known classification
model, which works by assigning the class label based on the
least Euclidean distance from x to the centroids of the classes.
The centroids are computed on the basis of the training data
as

x̄+ =
1

n+

∑
j∈J+

x(j), x̄− =
1

n−

∑
j∈J−

x(j), (2)

where J + .
= {j ∈ {1, . . . , n} : yj = +1} contains the

indices of the observations in the positive class, J− .
= {j ∈

{1, . . . , n} : yj = −1} contains the indices of the observations
in the negative class, and n+, n− are the cardinalities of
J + and J−, respectively. A new observation vector x is
classified as positive or negative according to the sign of the
discrimination function

∆2(x) = ‖x− x̄−‖22 − ‖x− x̄+‖22,

that is, x is classified in the positive class if its Euclidean
distance from the positive centroid is smaller that its distance
from the negative centroid, and viceversa for the negative class.
The discrimination function for the centroid classifier is linear
with respect to x, since

∆2(x) = ‖x‖22 + ‖x̄−‖22 − 2x>x̄− − ‖x‖22 − ‖x̄+‖22 + 2x>x̄+

= (‖x̄−‖22 − ‖x̄+‖22) + 2x>(x̄+ − x̄−), (3)

where the coefficient in the linear term of the classifier is given
by vector w .

= x̄+ − x̄−. Notice that, whenever x̄+
i = x̄−i for

some component i (i.e., wi = 0), the corresponding feature xi
in x is irrelevant for the purpose of classification.

Remark 1: We observe that the centroids in (2) can be inter-
preted as the optimal solutions to the following optimization
problem:

min
θ+,θ−∈Rm

1

n+

∑
j∈J+

‖x(j) − θ+‖22 +
1

n−

∑
j∈J−

‖x(j) − θ−‖22.

(4)
That is, the centroids are the points that minimize the average
squared distance to the samples within each class. A proof of
this fact is immediate, by taking the gradient of the objective
in (4) with respect to θ+ and equating it to zero, and then
doing the same thing for θ−. The two problems are actually
decoupled, so the two coefficients 1/n+ and 1/n− play no role
here in terms of the optimal solution. However, they have been
introduced here for balancing the contribution of the residuals
of the two classes. ?
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We shall call (4) the (plain) `2-center classifier training
problem, and ∆2 in (3) the corresponding discrimination
function. The usual centroids in (2) are thus the points that
minimize the average `2 distance from the respective class rep-
resentatives. This interpretation opens the way to considering
different types of metrics for computing centers. In particular,
there exist an extensive literature on the favorable properties
of the `1 norm distance, which is well known to provide center
estimates that are robust to outliers. The natural `1 version of
problem (4) is

min
θ+,θ−∈Rm

1

n+

∑
j∈J+

‖x(j) − θ+‖1 +
1

n−

∑
j∈J−

‖x(j) − θ−‖1,

(5)
which we shall call the (plain) `1-center classifier training
problem. It is known that an optimal solution to problem (5)
is obtained, for each i = 1, . . . ,m, by taking θ+

i to be the
median of the values x(j)

i in the positive class, and θ−i to
be the median of the values x(j)

i in the negative class (see
Proposition 2 for a generalization of this fact). We let

µ+ .
= med({x(j)}j∈J+), µ−

.
= med({x(j)}j∈J−), (6)

where med(·) computes the median of its input vector se-
quence along each component, i.e., for each i = 1, . . . ,m,
µ+
i is the median of {x(j)

i }j∈J+ , and µ−i is the median of
{x(j)

i }j∈J− . The classification in the `1-center classifier is
made by computing the distances from the new datum x and
the `1 centers of the classes, and assigning x to the closest
center, that is, we compute

∆1(x)
.
= ‖x− µ−‖1 − ‖x− µ+‖1,

and assign x to the positive or negative class depending on
the sign of ∆1(x). We observe that, contrary to the `2 case,
the discrimination function ∆1(x) is not linear in x. However,
expressed more explicitly in its components, ∆1(x) is written
as

∆1(x) =

m∑
i=1

(
|xi − µ−i | − |xi − µ

+
i |
)
,

and we observe again, like in the `2 case, that the contribution
to ∆1(x) from the ith feature xi is identically zero when µ−i =
µ+
i .

III. SPARSE `1 AND `2 CENTER CLASSIFIERS

In Section II we observed that, for both the `2 and the
`1 distance criteria, the discrimination is insensitive to the ith
feature whenever θ+

i −θ
−
i = 0, where θ+, θ− are the two class

centers. The sparse classifiers that we introduce in this section
are aimed precisely at computing optimal class centers such
that the center difference (θ+− θ−) is k-sparse, meaning that
‖θ+− θ−‖0 ≤ k, where ‖ · ‖0 denotes the number of nonzero
entries (i.e., the cardinality) of its argument, and k ≤ m is
a given cardinality bound. Such type of sparse classifiers will
thus perform simultaneous classification and feature selection,
by detecting which k out of the total m features are relevant
for the classification purposes. We next formally define the
sparse `2 and `1 center classifier training problems.

Definition 1 (Sparse `2-center classifier): A sparse `2-center
classifier is a model which classifies an input feature vector
x ∈ Rm into a positive or a negative class, according to the
sign of the discrimination function

∆2(x) = ‖x− θ−‖22 − ‖x− θ+‖22
= (‖θ−‖22 − ‖θ+‖22) + 2x>(θ+ − θ−), (7)

where the sparse `2-centers θ+, θ− are learned from a data
batch (1) as the optimal solutions of the problem

min
θ+,θ−∈Rm

1

n+

∑
j∈J+

‖x(j) − θ+‖22 +
1

n−

∑
j∈J−

‖x(j) − θ−‖22

s. t.: ‖θ+ − θ−‖0 ≤ k,
(8)

where k ≤ m is a given upper bound on the cardinality of
θ+ − θ−.

Definition 2 (Sparse `1-center classifier): A sparse `1-center
classifier is a model which classifies an input feature vector
x ∈ Rm into a positive or a negative class, according to the
sign of the discrimination function

∆1(x)
.
= ‖x− θ−‖1 − ‖x− θ+‖1, (9)

where the sparse `1-centers θ+, θ− are learned from a data
batch (1) as the optimal solutions of the problem

min
θ+,θ−∈Rm

1

n+

∑
j∈J+

‖x(j) − θ+‖1 +
1

n−

∑
j∈J−

‖x(j) − θ−‖1

s. t.: ‖θ+ − θ−‖0 ≤ k,
(10)

where k ≤ m is a given upper bound on the cardinality of
θ+ − θ−.

A perhaps notable fact is that both the sparse `2 and the
sparse `1 classifier training problems can be solved exactly
and with almost-linear-time complexity (this fact is proved in
the next sections), which also makes them good candidates for
efficient feature selection methods in two-phase (feature selec-
tion + actual classifier training) classifier training procedures.

Remark 2 (Extension to multi-class classification): The
focus of this paper is on binary classification. The multi-class
case is not treated here directly. However, we mention that the
proposed methods may be adapted to a multi-class context by
reducing the multi-class classification task to multiple binary
classification tasks. Several well-known strategies can be used
for this purpose, such as sequences of one-vs-all comparisons
[35] or decision trees [36], [37]. ?

IV. TRAINING THE SPARSE `2-CENTER CLASSIFIER

We next discuss how to solve the training problem in (8).
Let us denote by J the objective to be minimized in (8). By
expanding the squares and using (2), we have

J =
1

n+

∑
j∈J+

‖x(j)‖22 +
1

n−

∑
j∈J−

‖x(j)‖22 + ‖θ+‖22

+ ‖θ−‖22 − 2x̄+>θ+ − 2x̄−>θ−

= cost. + ‖θ+‖22 + ‖θ−‖22 − 2x̄+>θ+ − 2x̄−>θ−.
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Let now E denote a fixed set of indices of cardinality
m − k, and D denote the complementary set, that is, D =
{1, . . . ,m} \ E . For any vector x ∈ Rm we next use the
notation xD to denote a vector of the same dimension as x
which coincides with x at the locations in D and it is zero
elsewhere. We define analogously xE , so that x = xD + xE .
We then let

θ+ = θ+
D + θ+

E

θ− = θ−D + θ−E .

Suppose that we fixed the set E of the indices where θ+− θ−
is zero (we shall discuss later how to eventually optimize over
this choice of the index set), so that θ+

E − θ
−
E = 0. We can

therefore set
θ+
E = θ−E

.
= θE ,

whence

θ+ = θ+
D + θE

θ− = θ−D + θE .

With such given choice of the zero index set, and using the
above expressions for θ+, θ−, the problem objective becomes

JE = cost. + ‖θ+‖22 + ‖θ−‖22 − 2x̄+>θ+ − 2x̄−>θ−

= cost. + 2‖θE‖22 − 4x̃>θE + ‖θ+
D‖

2
2 + ‖θ−D‖

2
2

− 2x̄+>θ+
D − 2x̄−>θ−D,

where we defined

x̃
.
=
x̄+ + x̄−

2
. (11)

For given zero index set E we can therefore minimize JE with
respect to θE , θ+

D, and θ−D . By simply equating the respective
gradients to zero, we obtain that the optimal parameter values
are

θ∗E = x̃E , θ+∗
D = x̄+

D, θ−∗D = x̄−D.

Substituting these optimal values back into JE we obtain

J∗E = cost.− 2‖x̃E‖22 − ‖x̄+
D‖

2
2 − ‖x̄−D‖

2
2

= cost.− 1

2
‖x̄+
E + x̄−E ‖

2
2 − ‖x̄+

D‖
2
2 − ‖x̄−D‖

2
2

= cost.− 1

2
‖x̄+
E ‖

2
2 −

1

2
‖x̄−E ‖

2
2 − x̄+>

E x̄−E − ‖x̄
+
D‖

2
2 − ‖x̄−D‖

2
2

= cost.− 1

2
(‖x̄+
E ‖

2
2 + ‖x̄+

D‖
2
2)− 1

2
(‖x̄−E ‖

2
2 + ‖x̄−D‖

2
2)

− x̄+>
E x̄−E −

1

2

(
‖x̄+
D‖

2
2 + ‖x̄−D‖

2
2

)
= cost.− 1

2
‖x̄+‖22 −

1

2
‖x̄−‖22 − x̄+>

E x̄−E

− 1

2

(
‖x̄+
D − x̄

−
D‖

2
2 + 2x̄+>

D x̄−D
)

= cost.− 1

2
‖x̄+‖22 −

1

2
‖x̄−‖22 − (x̄+>

E x̄−E + x̄+>
D x̄−D)

− 1

2
‖x̄+
D − x̄

−
D‖

2
2

= cost.− 1

2
‖x̄+‖22 −

1

2
‖x̄−‖22 − x̄+>x̄− − 1

2
‖x̄+
D − x̄

−
D‖

2
2

= cost.− 1

2
‖x̄+ + x̄−‖22 −

1

2
‖x̄+
D − x̄

−
D‖

2
2.

This last expression shows that J∗E depends on the choice of
the zero index set E only via the term ‖x̄+

D − x̄
−
D‖22 involving

the complementary set D. Minimizing J∗E with respect to the
index set E thus amounts to maximizing ‖x̄+

D − x̄−D‖22 with
respect to the complementary index set D, that is

J∗ = cost.′ − 1

2
max
|D|≤k

‖x̄+
D − x̄

−
D‖

2
2.

The solution to this problem is immediate: we construct the
difference vector δ .

= x̄+− x̄− and let D∗ contain the indices
of the k largest elements of |δ|. We have therefore proved the
following

Proposition 1: The optimal solution of problem (8) is
obtained as follows:

1) Compute the standard class centroids x̄+, x̄− according
to (2);

2) Compute the centroids midpoint x̃ according to (11), and
the centroids difference δ .

= x̄+ − x̄−;
3) Let D be the set of the indices of the k largest absolute

value elements in vector δ, and let E be the complemen-
tary index set;

4) The optimal parameters θ+, θ− are given by

θ+ = x̄+
D + x̃E

θ− = x̄−D + x̃E .

This procedure is summarized in Algorithm 1.

Algorithm 1 Training the sparse `2-center classifier

1: Input: x(j) ∈ Rm: training data, j = 1, ..., n; y ∈ Rn:
class labels.

2: Compute the standard class centroids:
x̄+ = 1

n+

∑
j∈J+ x(j), x̄− = 1

n−

∑
j∈J− x(j);

3: Compute the centroids midpoint and the centroids differ-
ence: x̃ = x̄++x̄−

2 , δ = x̄+ − x̄−;
4: Define the set D of the indices corresponding to the k

largest absolute value elements in δ, and the complemen-
tary index set E ;

5: Return the optimal sparse centroids:
θ+ = x̄+

D + x̃E , θ− = x̄−D + x̃E .

Remark 3 (Numerical complexity for training the sparse
`2 classifier): Steps 1-2 in Proposition 1 essentially require
computing mn sums. Finding the k largest elements in Step 3
takes O(m log k) operations (using, e.g., min-heap sorting),
whence the whole procedure takes O(mn) + O(m log k)
operations. Thus, while training a plain centroid classifier takes
O(mn) operations (which, incidentally, is also the complexity
figure for training a classical Naive Bayes classifier or a linear
SVM), adding exact sparsity comes at the quite moderate extra
cost of O(m log k) operations. ?

Remark 4 (Comparison with SVM training complexity): As
discussed in Section I, one of the most popular classification
methods is the SVM. Training a kernel SVM requires solving
a quadratic problem: modern SVM solvers use various decom-
position techniques that essentially require O(mn2) operations
(assuming m > n), see, e.g., [6]. When both m and n are
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large, this complexity figure can be dramatically higher than
the one of the sparse `2 classifier. In the case of a linear SVM
classifier, the computational complexity can indeed be reduced
to O(mn), but it is important to observe that neither the
linear nor the kernel SVM alone can provide sparsity, which
is the key property we are after in this work. Sparsification in
nonlinear SVMs is generally considered unaffordable from the
computational point of view. For linear SVM, instead, there
are several works that aim to include sparsity as an additional
property of the classifier, typically by adding an `1 penalty
term to the SVM objective, see, e.g., [10], [38], [16]. In this
case, however, the addition of the sparsification term worsens
significantly the computational figure to O(nmmin(n,m)2),
see, e.g., [16]. ?

Remark 5 (Online recursive training): The sparse `2 center
classifier training procedure is amenable to efficient online
implementation, since the class centers are easily updatable as
soon as new data comes in. Denote by x̄(ν) the centroid of one
of the two classes when ν observations ξ(1), . . . , ξ(ν) in that
class are present: x̄(ν) = 1

ν

∑ν
j=1 ξ

(j). If a new observation
ξ(ν+1) in the same class becomes available, the new centroid
will be

x̄(ν + 1) =
1

ν + 1

ν+1∑
j=1

ξ(j) =
1

ν + 1

 ν∑
j=1

ξ(j) + ξ(ν+1)


=

ν

ν + 1
x̄(ν) +

1

ν + 1
ξ(ν+1).

This latter formula gives the new centroid as a weighted linear
combination of the previous centroid and of the new observa-
tion. An online version of the procedure in Proposition 1 is
thus readily obtained, in which only the current centroids are
kept into memory and, as soon as a new datum is available, the
corresponding centroid is updated (this takes O(m) operations,
or less if the datum is sparse) and the feature ranking is
recomputed (this takes O(m log k) operations). A sparse `2
center classifier can therefore be trained online with O(m)
memory storage and O(m log k) operations per update. ?

Remark 6 (Sparsity-accuracy tradeoff): As it is customary
with sparse methods, in practice a whole sequence of training
problems is solved at different levels of sparsity, say from
k = 1 (only one feature selected) to k = m (all features
selected), accuracy is evaluated for each model via cross
validation, and then the resulting sparsity-accuracy tradeoff
curve is examined for the purpose of selection of the most
suitable k level. Most feature selection methods, including
sparse SVM, the Lasso [12], and the sparse Naive Bayes
method [19], require repeatedly solving the training problem
for each k, albeit typically warm-starting the optimization
procedure with the solution from the previous k value. In the
sparse `2 classifier, instead, one can fully order the vector
|x̄+− x̄−| only once, at a computational cost of O(m logm),
and then all the optimal solutions are obtained, for any k, by
simply selecting in Step 3 of Proposition 1 the first k elements
of the ordered vector. ?

A. Mahalanobis distance classifier

A variant of the `2 centroid classifier is obtained by con-
sidering the Mahalanobis distance instead of the Euclidean
distance. Letting S denote an estimated data covariance matrix,
the Mahalanobis distance from a point z to a center θ± is
defined by

distS(z, θ±) = (z − θ±)>S−1(z − θ±).

This leads to the Mahalanobis training problem

min
θ+,θ−∈Rm

1
n+

∑
j∈J+

(x(j) − θ+)>S−1(x(j) − θ+)

+ 1
n−

∑
j∈J−

(x(j) − θ−)>S−1(x(j) − θ−)

Classification of a new observation x in this setting is per-
formed according to the sign of

∆M (x) = (x− θ−)>S−1(x− θ−)− (x− θ+)>S−1(x− θ+)

= (θ−S−1θ− − θ+S−1θ+) + 2(θ+ − θ−)>S−1x.

By introducing a change of variables of the type

ξ(j) .
= S−1/2x(j), j = 1, . . . , n; ω±

.
= S−1/2θ±,

where S−1/2 is the matrix square root of S−1, we see that the
Mahalanobis training problem, in the new variables, becomes

min
ω+,ω−∈Rm

1

n+

∑
j∈J+

‖ξ(j) − ω+‖22 +
1

n−

∑
j∈J−

‖ξ(j) − ω−‖22

(12)
and the discrimination function, for ξ = S−1/2x, becomes

∆M (ξ) = (‖ω−‖22 − ‖ω+‖22) + 2(ω+ − ω−)>ξ.

Problem (12) is now a standard `2 center classifier problem,
hence its sparse version can be readily solved by means of
the Algorithm 1. It should however be observed that in this
case one obtains sparsity in the transformed center difference
ω+−ω−, which implies a selection of the transformed features
in ξ = S−1/2x. One relevant special case arises when S =
diag(σ2

1 , . . . , σ
2
m), in which case the data transformation ξ =

S−1/2x simply amounts to normalizing each feature xi by its
standard deviation σi, that is ξi = xi/σi, i = 1, . . . ,m.

V. TRAINING THE SPARSE `1-CENTER CLASSIFIER

We next present an efficient and exact method for training
a sparse `1-center classifier. We start by stating a preliminary
instrumental result, whose proof is reported in the appendix
Section VIII-A, and an ensuing definition.

Proposition 2 (Weighted `1 center): Given a real vector z =
(z1, z2, . . . , zp) and a nonnegative vector w = (w1, . . . , wp),
consider the weighted `1 centering problem

dw(z)
.
= min

ϑ∈R

p∑
i=1

wi|zi − ϑ|. (13)

Let

W (ζ)
.
=

∑
{i: zi≤ζ}

wi, W̄
.
=

p∑
i=1

wi,

and
ζ̄
.
= inf{ζ : W (ζ) ≥ W̄/2}. (14)
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Then, an optimal solution for problem (13) is given by

ϑ∗ = medw(z)
.
=

 ζ̄ if W (ζ̄) > W̄
2

1
2 (ζ̄ + ζ̄+) if W (ζ̄) = W̄

2 ,

(15)

where ζ̄+
.
= min{zi, i = 1, . . . , p : zi > ζ̄} is the smallest

element in z that is strictly larger than ζ̄. ?
Definition 3 (Weighted median and dispersion): Given a row

vector z and a nonnegative vector w of the same size, we
define as the weighted median of z the optimal solution of
problem (13) given in (15), and we denote it by medw(z). We
define as the weighted median dispersion the optimal value
dw(z) of problem (13). We extend this notation to matrices,
so that for a matrix X ∈ Rm,n we denote by medw(X) ∈ Rm
a vector whose ith component is medw(Xi,:), where Xi,: is
the ith row of X , and we denote by dw(X) ∈ Rm the vector
of corresponding dispersions. ?

We now let E and D be defined as in Section IV, and we
use the same notation as before for θ±D , θ±E , xD, xE . Let then J
denote the objective to be minimized in (10). For fixed index
set D, we have that J = JD, where

JD =
1

n+

∑
j∈J+

‖x(j) − θ+
D − θE‖1

+
1

n−

∑
j∈J−

‖x(j) − θ−D − θE‖1

=
1

n+

∑
j∈J+

‖(x(j)
D − θ

+
D) + (x

(j)
E − θE)‖1

+
1

n−

∑
j∈J−

‖(x(j)
D − θ

−
D) + (x

(j)
E − θE)‖1

=
1

n+

∑
j∈J+

‖x(j)
D − θ

+
D‖1 +

1

n+

∑
j∈J+

‖x(j)
E − θE‖1

+
1

n−

∑
j∈J−

‖x(j)
D − θ

−
D‖1 +

1

n−

∑
j∈J−

‖x(j)
E − θE‖1

=
1

n+

∑
j∈J+

‖x(j)
D − θ

+
D‖1 +

1

n−

∑
j∈J−

‖x(j)
D − θ

−
D‖1

+

n∑
j=1

wj‖x(j)
E − θE‖1,

where

wj =

{
1
n+

if j ∈ J +

1
n−

if j ∈ J− , j = 1, . . . , n.

We will next find the minimum of JD with respect to θ+
D,

θ−D and θE . To this end, we observe that JD decouples as
JD =

∑m
i=1 JD,i, where for i = 1, . . . ,m,

JD,i
.
=


1

n+

∑
j∈J+

|x(j)
i − θ

+
i |+

1

n−

∑
j∈J−

|x(j)
i − θ

−
i |, if i ∈ D

n∑
j=1

wj |x(j)
i − θi|, if i 6∈ D.

(16)
The minimum of JD is hence obtained by minimizing sep-
arately each component JD,i. For i ∈ D, we have that the

optimal θ+
i , θ−i are given by the (plain) medians of the x(j)

i

values in the positive and in the negative class, respectively,
that is, recalling (6),

i ∈ D ⇒ θ+∗
i = µ+

i
.
= med({x(j)

i }j∈J+)

θ−∗i = µ−i
.
= med({x(j)

i }j∈J−)
⇒ J∗D,i = d+

i +d−i ,

where d+, d− are the vectors of median dispersions in the
positive and negative class, respectively, whose components
are, for i = 1, . . . ,m,

d+
i

.
= 1

n+

∑
j∈J+ |x(j)

i − µ
+
i |

d−i
.
= 1

n−

∑
j∈J− |x(j)

i − µ
−
i |.

(17)

For i 6∈ D, instead, by observing that the entries of w in
(16) are nonnegative, and applying Proposition 2, we obtain
that the optimal solution is the weighted median of all the
observations, that is

i 6∈ D ⇒ θ∗i = µi
.
= medw({x(j)

i }j=1,...,n) ⇒ J∗D,i = di,

where d is the vector of weighted median dispersions over all
the observations, whose components are, for i = 1, . . . ,m,

di
.
=

n∑
j=1

wj |x(j)
i − µi|

=
1

n+

∑
j∈J+

|x(j)
i − µi|+

1

n−

∑
j∈J−

|x(j)
i − µi|. (18)

We are now in position to discuss how to optimize over the
choice of the set D, that is how to decide which are the k
indices that should belong to D. First observe that (d+

i +d−i ) ≤
di, for all i = 1, . . . ,m, since di is the optimal value of a
minimization that constrains θ+

i to be equal to θ−i , whereas
d+
i +d−i is the optimal value of the same minimization without

such constraint, and therefore its optimal objective value is no
larger than di. Consider then the vector of differences

e
.
= (d+ + d−)− d ≤ 0.

The smallest (i.e., most negative) entry in e corresponds to
an index i for which it is maximally convenient (in terms of
objective J decrease) choosing i ∈ D rather than i 6∈ D;
the second smallest entry in e corresponds to the second best
choice, and so on. The best k indices to be included in D
are therefore those corresponding to the k smallest entries of
vector e. We have therefore proved the following

Proposition 3: The optimal solution of problem (10) is
obtained as follows:

1) Compute the plain class medians

µ+ .
= med({x(j)}j∈J+)

µ−
.
= med({x(j)}j∈J−)

and the weighted median of all observations

µ
.
= medw({x(j)}j=1,...,n),

where the weight vector w is such that, for j = 1, . . . , n,
wj = 1/n+ if j ∈ J +, and wj = 1/n− if j ∈ J−.
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2) Compute the median dispersion vectors d+, d− accord-
ing to (17), and the weighted median dispersion vector
d according to (18), and compute the difference vector

e
.
= (d+ + d−)− d.

3) Let D be the set of the indices of the k smallest elements
in vector e, and let E be the complementary index set.

4) The optimal parameters θ+, θ− are given by

θ+ = µ+
D + µE

θ− = µ−D + µE .

The above procedure is next summarized in Algorithm 2.

Algorithm 2 Training the sparse `2 center classifier

1: Input: x(j) ∈ Rm: training data, j = 1, ..., n; y ∈ Rn:
class label.

2: Compute the plain class medians:
µ+ = med({x(j)}j∈J+), µ− = med({x(j)}j∈J−);

3: Compute the weighted median of all training data:
µ = medw({x(j)}j=1,...,n);

4: Compute the median dispersion vectors: d+ =
1
n+

∑
j∈J+ |x(j) − µ+|, d− = 1

n−

∑
j∈J− |x(j) − µ−|;

5: Compute the weighted median dispersion vector:
d = 1

n+

∑
j∈J+|x(j) − µ|+ 1

n−

∑
j∈J−|x(j) − µ|;

6: Compute the difference vector: e = (d+ + d−)− d;
7: Define the set D of the indices corresponding to the k

largest absolute value elements in e and the complemen-
tary index set E ;

8: Compute the optimal sparse centers:
θ+ = µ+

D + µE , θ− = µ−D + µE .

Remark 7 (Numerical complexity for training the sparse `1
classifier): Computation of the medians in Step 1 of Proposi-
tion 3 can be performed with in O(m) operations, see, e.g.,
[39]. Computation of the median dispersions requires O(mn)
operations, and finding the k smallest elements in vector e can
be performed in O(m log k) operations, hence the whole pro-
cedure in Proposition 3 is performed in O(mn) +O(m log k)
operations. Similar to the case discussed in Remark 6, also
in the sparse `1 center classifier one needs to perform a full
ordering of an m-vector only once in order to obtain all the
sparse classifiers, for any requested sparsity level k. ?

Remark 8 (Complexity of the testing phase): We have seen
that both the sparse `2-center and the sparse `1-center classifier
have a training complexity of O(mn) +O(m log k). We next
discuss about the complexity of testing and classifying a new
sample x ∈ Rm. By simply looking at the form of the
discrimination function ∆2 in (7) and ∆1 in (9) we see that the
m−k entries of x corresponding to the zero entries of θ+−θ−
give zero contribution to the function value, hence it suffices
to compute the norms difference for the entries corresponding
to the k nonzero entries of θ+ − θ−. Overall, we evaluate the
discrimination function in O(k) arithmetic operations. ?

TABLE I
TEXT DATASET SIZES

TWTR MPQA SST
Number of features 273779 6208 16599
Number of samples 1600000 10606 79654

VI. NUMERICAL EXPERIMENTS

In this section we document an experimental evaluation of
the proposed methods. Since these methods perform simulta-
neous feature selection and classification, they have a twofold
application: they can be used as a nearest-center classifier
with an integrated preprocessing step that performs feature
selection, or they can be used as a mere feature selection
method that acts as a preprocessing stage for a subsequent and
perhaps more sophisticated classifier. We therefore evaluated
the proposed methods both in terms of feature selection
capability and of overall classification performance. We first
considered the proposed methods as feature selection tech-
niques, and we compared them with other feature selection
methods. Then, we considered the proposed methods as full
classifiers and we evaluated their classification performance.

A. Feature selection performance

We here evaluate the performance of the proposed methods
for the feature selection task. The sparse `2-center classifier
is tested in the context of sentiment classification on textual
datasets. This is one of the most common application fields
of the nearest centroid classifier. Instead, the sparse `1-center
classifier is evaluated on gene expression datasets. Since this
type of data is usually affected by the presence of many
outliers, in this application the classifier with the `1 distance
criteria can be preferred over the `2 version, see, e.g., [31].

1) Sparse `2-center classifier: We here compare the pro-
posed sparse `2-center classifier with other feature selection
methods for sentiment classification on text datasets. We
considered three different datasets: the TwitterSentiment140
(TWTR) dataset [40], the MPQA Opinion Corpus Dataset
[41], and the Stanford Sentiment Treebank (SST) [42]. Dataset
sizes are given in Table I. Before classification, the datasets are
normalized by dividing each feature by its standard deviation.
Each dataset is then randomly split in a training (80% of the
dataset) and test (20% of the dataset) set. The results reported
in this section are an average of 50 different random splits
of the dataset. For each dataset, we performed a two-stage
classification procedure. In the first stage, we applied a feature
selection method in order to reduce the number of features.
Then, in the second stage we trained a classifier method, by
employing only the selected features. In order to have a fair
comparison, we used the same classifier in the second stage
for all experiments, namely a linear support vector machine
classifier.

We compared different feature selection methods: sparse
`2-centers (`2-SC), sparse multinomial naive Bayes (SMNB),
logistic regression with recursive feature selection (Logistic-
RFE), `1-regularized logistic regression (Logistic-`1), Lasso,
and Odds Ratio. We remark that the results of Logistic-RFE,
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TABLE II
RNA GENE EXPRESSION DATASET SIZES

Chowdary Chin Singh
(Breast Cancer) (Breast Cancer) (Prostate Cancer)

N. features 22283 22215 12600
N. samples 104 118 102

Logistic-`1 and Lasso are not reported on some datasets, since
their computing time resulted to be too high. Figure 1 shows
the classification accuracy and the average run time of the
different feature selection methods. In all plots, the vertical
bars represent the variation intervals over the 50 random tests
within plus or minus one standard deviation. These plots show
that the sparse `2-centers is competitive with other feature
selection methods in terms of accuracy performance of the
classifier, while its run time is significantly lower than most
of the other feature selection methods. The only method that
has a comparable computational time is Odds Ratio, but its
performance is poorer in terms of accuracy.

2) Sparse `1-center classifiers: We compared the proposed
sparse `1-center classifier (`1-SC) with other feature selection
methods for RNA gene expression classification. We used
the same two-stage procedure described for the `2 case in
the previous section. In the first stage, we compared the
sparse `1-center classifier with the same feature selection
methods considered in the previous section. Then, in the
second stage we used a linear SVM classifier, as done in
the `2 case. We considered three datasets: Chin dataset [43],
Chowdary dataset [44], and Singh dataset [45]. The details
of the datasets are summarized in Table II. Before feature
selection, we normalized the datasets by dividing each feature
by its standard deviation. In addition, since some features
have negative values and the SMNB method is defined only
for positive features, we shifted all the features in order to
have only positive values. As done in the `2 case, we split
each dataset in a training (80% of the dataset) and test (20%
of the dataset) set, and we tested 50 of such random splits.
Figure 2 shows the balanced accuracy of the classifier and the
average run time of the feature selection methods considered
in the evaluation. In this experiment we observe again that
the proposed method provides an accuracy performance which
is similar to that of state-of-the-art techniques, but with a
computational time which can be orders of magnitude lower.

B. Overall classification performance

In the previous experiments we evaluated the performance
of the proposed methods only in terms of feature selection,
that is, in a setup where the proposed methods are used as
a variable selection first stage, to be followed by a second
stage constituted by a plain classifier (a linear SVM, in the
considered examples). In this section we consider instead the
proposed methods as full-fledged classifiers, which can si-
multaneously perform feature selection and classification. We
first evaluate the performance gain provided by the proposed
methods compared with a nearest-center classifier without any
feature selection or combined with other feature selection
methods. Then, we also perform a comparison between the

two variants of the sparse center classifiers, highlighting their
respective strengths.

1) Sparse `2-center classifier: We compare the proposed
sparse `2-center classifier with a `2-center classifier trained on
all the features or combined with one of the feature selection
methods introduced in the previous section. We tested the
classifiers in the context of sentiment classification on textual
datasets and we preprocessed the data as explained previously
in the experiments on feature selection. Figure 3 shows the
results obtained on the SST dataset. The results show that
the proposed method provided the best overall performance,
being competitive at all sparsity levels. Moreover, we observe
that, when the feature cardinality is high, the accuracy of
the best classifiers, namely `2-SC, Logistic-RFE and SMNB,
remains constant or slightly decreases as the feature cardinality
increases.

Next, we compare the sparse `2 center classifier against
the linear SVM, at various feature cardinality levels. Since
linear SVM does not perform feature selection natively, we
used the proposed `2 center classifier as feature selector for
the linear SVM. Figure 4 shows the classification accuracy and
the average run time of the two methods. We observe that the
proposed classifier has competitive classification performance,
but with a significantly lower run time. In addition, it is
worth noting that the classification performance of linear SVM
degrades as the number of features increases. This highlights
again the importance of feature selection to avoid the curse of
dimensionality.

2) Sparse `1-center classifier: Analogously to the `2 case,
in this experiment we compared the proposed sparse `1-center
classifier with a `1-center classifier without any feature selec-
tion or combined with one of the feature selection methods
previously considered. We tested the classifiers on RNA gene
expression datasets, preprocessing the data with the same
procedure described in the experiments on feature selection.
Figure 5 shows the results obtained on the Singh dataset. We
observe that the classifiers provide the best performance at
very high sparsity levels, and then the accuracy significantly
decreases as the feature cardinality increases. This shows again
the importance of feature selection, especially when the dataset
is very noisy. Moreover, we observe that Logistic-RFE and
Logistic-`1 are the only two feature selection methods that,
combined with a standard nearest-center classifier, outperform
the proposed method. However, as we have already shown in
the previous section, these two methods are very computa-
tionally expensive and may not be viable on large datasets.

3) Comparison between the two sparse center classifiers:
We next compare the classification performance of the two
proposed sparse center classifiers (`2 and `1 based). In order
to better appreciate the differences between the two classifiers,
we first considered a synthetic example. In this example, each
observation x(j) of the dataset is obtained as:

x(j) ∼
{
N (µ, σI), with probality 1− p
U(0, b), with probality p,

where we set σ = 1, b = 5, µ = µ+ if j ∈ J + and
µ = µ− if j ∈ J−, and µ+, µ− ∈ Rm are samples of a
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Fig. 1. Comparison of feature selection methods + second stage linear SVM classifier. Panels show the resulting classification accuracy of the linear SVM
and average run time of the various feature selection methods on different datasets, as a function of the cardinality of the considered features.
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Fig. 2. Comparison of feature selection methods + second stage linear SVM classifier. Panels show the resulting balanced classification accuracy of the linear
SVM and average run time of the various feature selection methods on different datasets, as a function of the cardinality of the considered features.
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Fig. 3. Comparison between `2 sparse center classifier and feature selection
methods + second stage (plain) `2-center classifier. The performance of the
various methods are evaluated computing the classification accuracy on the
SST dataset as a function of the feature cardinality. The case with feature
cardinality 100% corresponds to a plain nearest center classifier without any
feature selection.

uniform distribution U(0, 1). The parameter p represents the
probability of outliers. Figure 6 shows the performance of
the two sparse center classifiers as function of p. The results
show that if p is zero or close to zero the classifier with
the `2 distance provides slightly better performance, but, as
p increases, the accuracy of the sparse `1-center classifier
degrades more slowly, outperforming the `2 version. This
shows that the sparse `1-center classifier is more robust to
outliers. In addition to this experiment on synthetic data, we
also show a comparison on a real dataset. We considered a
gene expression dataset, since these type of data are known
to be usually affected by the presence of many outliers.
Figure 7 shows the balanced accuracy of the two sparse center
classifiers on the Singh dataset and we observe that the sparse
`1-center classifier outperforms the `2 variant.

VII. CONCLUSIONS

In this paper we proposed two types of sparse center clas-
sifiers, based respectively on `1 and the `2 distance metrics.
The proposed methods perform efficient simultaneous feature
selection and classification, and we formally proved that, for
both cases, the training algorithm selects the globally optimal
set of features and computes the ensuing sparse classifier in
O(mn) +O(m log k) operations. Testing and classification of
a new sample is also performed extremely efficiently in O(k)
operations. The experimental results show that the proposed
methods achieve accuracy levels that are on par with state-
of-the-art feature selection methods, while being substantially
faster.

VIII. APPENDIX

A. Proof of Proposition 2
Let w̃ .

= w/W̄ . Since w̃ ≥ 0 and
∑p
i=1 w̃i = 1, it can be

interpreted as the probability distribution of a discrete random
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Fig. 4. Classification accuracy and average run time on MPQA dataset.

variable Z with support in z1, . . . , zp, and corresponding
probability mass w̃1, . . . , w̃p. Note that values in vector z may
be repeated, in which case the probability mass relative to a
repeated support point is the sum of the corresponding proba-
bility values in vector w̃. With such stochastic interpretation,
the objective in (13) can be written in terms of the expectation
E{|Z − ϑ|}, and then the problem becomes

dw(z) = W̄ min
ϑ∈R

E{|Z − ϑ|}. (19)

When Z has an absolutely continuous distribution, it is well
known (see, e.g., [46]) that the value ϑ∗ that minimizes
the absolute expected loss is the median of the probability
distribution of Z, that is, the 0.5 quantile of the distribution.
In the case of a discrete probability distribution, the definition
of median is any value µ such that

Prob{Z ≤ µ} ≥ 1

2
, and Prob{Z ≥ µ} ≥ 1

2
. (20)

Now, suppose that µ is a median for our discrete random
variable Z, and consider any given ϑ > µ. If Z ≤ µ, then
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Fig. 5. Comparison between `1 sparse center classifier and feature selection
methods + second stage (plain) `1-center classifier. The performance of the
various methods are evaluated computing the balanced classification accuracy
on the Singh dataset as a function of the feature cardinality. The case with
feature cardinality equals to 100% corresponds to a plain nearest center
classifier without any feature selection.

0.0 2.5 5.0 7.5 10.0 15.0 20.0 25.0
0.4

0.5

0.6

0.7

0.8

0.9

1

ba
la

nc
ed

 a
cc

ur
ac

y

Fig. 6. Classification accuracy on synthetic data (feature cardinality = 2%).
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Fig. 7. Classification accuracy on Singh dataset.

|Z − µ| = µ − Z and since µ < ϑ we also have Z < ϑ
whence |Z − ϑ| = ϑ− Z, and therefore

|Z−ϑ|− |Z−µ| = (ϑ−Z)− (µ−Z) = ϑ−µ, for Z ≤ µ.

If instead Z > µ, then

|Z − ϑ| − |Z − µ| = |Z − ϑ| − (Z − µ)

= |Z − µ+ µ− ϑ| − (Z − µ)

≥ |Z − µ| − |µ− ϑ| − (Z − µ)

= (Z − µ)− (ϑ− µ)− (Z − µ)

= −(ϑ− µ), for Z > µ.

Therefore, for any given ϑ > µ, we have that

E{|Z − ϑ| − |Z − µ|} ≥ (ϑ− µ)Prob{Z ≤ µ}
− (ϑ− µ)Prob{Z > µ}
= (ϑ− µ)(Prob{Z ≤ µ}
− Prob{Z > µ})
= (ϑ− µ) (2Prob{Z ≤ µ} − 1})
≥ 0, for all ϑ > µ.

where the last inequality follows from the fact that µ is a
distribution median and hence from the definition in (20) it
holds that Prob{Z ≤ µ} ≥ 1/2. The whole reasoning can be
repeated symmetrically for any given ϑ < µ, obtaining

|Z − ϑ| − |Z − µ| ≥ −(µ− ϑ), for Z < µ,

|Z − ϑ| − |Z − µ| = (µ− ϑ), for Z ≥ µ.

Then again

E{|Z − ϑ| − |Z − µ|} ≥ −(µ− ϑ)Prob{Z < µ}
+ (µ− ϑ)Prob{Z ≥ µ}
= (µ− ϑ)(Prob{Z ≥ µ}
− Prob{Z < µ})
= (µ− ϑ) (2Prob{Z ≥ µ} − 1})
≥ 0, for all ϑ < µ,

where the last inequality follows from the fact that µ is a
distribution median and hence from the definition in (20) it
holds that Prob{Z ≥ µ} ≥ 1/2. Putting things together, we
have that, for all ϑ,

E{|Z − ϑ|} − E{|Z − µ|} = E{|Z − ϑ| − |Z − µ|} ≥ 0,

which implies that the minimum of E{|Z − µ|} is attained at
ϑ = µ, where µ is a median of the distribution.

We next conclude the proof by showing that ϑ∗ in (15) is
indeed a median, in the sense of definition (20). Observe first
that W (ζ)

.
=
∑
i:zi≤ζ wi is proportional to the cumulative

distribution function of Z, that is W (ζ) = W̄W̃ (ζ), W̃ (ζ)
.
=

Prob{Z ≤ ζ}, and that (14) implies that W̃ (ζ̄) ≥ 1/2, and
W̃ (ζ) < 1/2 for all ζ < ζ̄. Also, since by definition of ζ̄+ no
probability mass is present in the interior of the interval [ζ̄, ζ̄+],
we have from (15) that W̃ (ϑ∗) ≡ W̃ (ζ̄). Then, from (15) it
follows immediately that Prob{Z ≤ ϑ∗} = W̃ (ϑ∗) ≡ W̃ (ζ̄) ≥
1/2, which shows that ϑ∗ satisfies the condition on the left in
(20). We next analyze the condition on the right in (20), which
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concerns verifying that Prob{Z ≥ ϑ∗} ≥ 1/2. To this purpose,
we distinguish two cases: case (a), where W̃ (ϑ∗) > 1/2, and
case (b), where W̃ (ϑ∗) = 1/2. In case (a), we have ϑ∗ ≡ ζ̄
and hence, as discussed above, W̃ (ζ) < 1/2 for all ζ < ϑ∗,
which implies that Prob{Z < ϑ∗} < 1/2 (while Prob{Z ≤
ϑ∗} ≥ 1/2, since there is a positive probability mass at ϑ∗),
and therefore Prob{Z ≥ ϑ∗} = 1− Prob{Z < ϑ∗} > 1/2. In
case (b), we have instead

Prob{Z ≥ ϑ∗} = Prob{Z = ϑ∗}+ Prob{Z > ϑ∗}
= Prob{Z = ϑ∗}+ 1− Prob{Z ≤ ϑ∗}
= Prob{Z = ϑ∗}+ 1/2

= 1/2,

where the last equality follows from the fact that in case (b)
we have Prob{Z = ϑ∗} = 0, since ϑ∗ is the mid point of the
interval [ζ̄, ζ̄+], in the interior of which there is no probability
mass, by construction. �
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