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Open-loop Model-free Dynamic Control of a Soft Manipulator
for Tracking Tasks

Andrea Centurelli, Alessandro Rizzo, Silvia Tolu, Egidio Falotico

can be categorized either as model-based or model-free. A
data-driven model-based approach relying on the Koop-
man operator has been presented in [7] to implement
model predictive control on a soft robotic arm in static
conditions. The first fully model-free implementation
based on neural networks used a feed-forward neural
network to approximate the inverse static model of a
non-redundant soft robot [8]. This was further extended
in [9][10] to account for redundancies inspired by the
work proposed in [11]. An example of a model-free data-
driven dynamic controller is given by [12], where a se-
quential quadratic programming optimization is applied
to generate actuators trajectories. Since this method is
too computationally expensive to be applied online, this
is used to generate a dataset for a feed-forward neural
network which is then employed as a control policy in
point-reaching tasks. A comprehensive review on the
control of soft manipulators can be found here [13].

In this work we aim to provide an easily applicable
method that accomplishes excellent open-loop dynamic
tracking performances without the need for an explicit
parametrization which is often complex to achieve for
certain types of soft robots. These include, but are not
limited to, elastic and pneumatically actuated continuum
manipulators whose dynamics are sensitive to construc-
tion uncertainties and working conditions and are hence
highly nonlinear and time-variant. Data-driven methods
offer a far simpler solution which, as will be shown in
this paper, attain results that are just as accurate as
their model-based counterparts. For the reasons above
we present a data-driven method embedded in an open-
loop controller capable of trajectory tracking for soft
manipulators. The controller relies on the learning of
the inverse static model. This is then used as a baseline
controller for trajectory tracking tasks. Data gathered
from this task are used for learning the inverse dynamics
model using a long-short term memory (LSTM) network.
This is then used as an open-loop controller in tracking
tasks. We implement this on the I-Support robot, a soft
manipulator pneumatically actuated, and on a simulated
soft robot. We demonstrate that, in both cases, the pro-
posed controller can achieve precise and timely tracking
of trajectories whose points span in the workspace of the
two robots.

II. Experimental setup
The control strategy described in this paper was tested

first on a simulator called Elastica [14][15], and then on

Abstract— This paper presents a novel controller 
for soft arms to be employed in dynamic tracking 
tasks. Creating dynamic controllers for continuum 
soft robots has been among the most important ob-
jectives for this field. This is because relying on the 
steady-state assumption of static controllers greatly 
limits the capabilities of these robotic platforms, 
whose advantageous compliance and flexibility is paid 
with dynamics that are highly non-linear and hard to 
model. For this reason, a data-driven solution based 
on long-short term memory networks is introduced. 
The methodology is then tested both on simulated 
and real continuum robots. The results show that the 
controller allows to accurately follow trajectories in 
the task-space with an average error lower than 4mm.

I. INTRODUCTION
The hard limitations that rigid robots show in tasks

that include the interaction with humans has led to the
surge of the field of soft robots: this is due to their soft
and lightweight bodies which generally do not pose any
harm to users. Despite both traditional and data-driven
control paradigms have been explored by researchers in
the past years, the design of controllers for this type of
manipulator is still an open topic in this fast-evolving
community.
The models for these flexible robots are most com-
monly obtained through constant curvature approaches
[1]. The evolution of the aforementioned technique,
which exploits a decomposition of the manipulator’s
body structure in sections, is the piecewise constant-
curvature models, that have been used for designing soft
robot controllers [2] [3]. Yet another deeply explored and
well-performing modelling method involves the usage of
Cosserat rod theory [4], [5], [6].
The complexity of designing robust control systems for
soft manipulators lays in the nonlinearity and mutability
of their forward models; this has led to an interest in
exploring the capabilities of data-driven controllers which
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(a) Spline interpola-
tion of the torque
magnitudes along the
rod’s body

(b) Simulator plot. The normal d1 and
binormal d2 are relative to the rod’s
body

Fig. 1: PyElastica simulated soft robot

a pneumatically actuated soft robotic platform named
I-Support [16].

A. Elastica
Elastica is a recently developed open-source software

for the simulation of soft and slender structures. Based on
Cosserat rods, it accounts for objects bend, twist, stretch,
and shear. For the experiments, we used the Python
version of Elastica (PyElastica), following the example
given by the authors of [17] who used this library to
simulate soft robots, allowing a quick interface with the
simulator through an add-on library which includes an
OpenAI gym environment.
The soft robot simulated is composed of a single module
(a Cosserat rod), fixed to a ceiling and actuated through
the application of internal torques continually distributed
along the module body. These were defined by interpo-
lating the torque magnitudes of three equispaced points
on the arm through a spline, as shown in Fig. 1a. The
direction of the torques is defined with the structure
of the arm; in our case, two different directions were
selected: the normal direction d1, perpendicular to the
body, and the binormal direction d2 perpendicular to
both d1 and the body. This particular setting does not
allow the module to twist, as there is always null torque
in the orthonormal direction.
The inputs to the simulator are hence three torque
magnitudes in the range [−1,+1] for each direction of
movement, for a total of 6 actuations, whereas its length
is 1 m. A lightweight representation of the simulated arm
can be seen in Fig. 1b, where the directions of the torques
are shown.

B. I-Support robot
The manipulator, as seen in Fig.2a, is made of only

one module, composed of three pairs of McKibben-
based actuators and three cables which are alternately
displaced at an angle of 60◦ along a circle of radius 3
cm, and kept together with a set of perforated plastic

(a) I-Support
robot

(b) Actuation box

Fig. 2: Experimental setup

rings. The total length of the manipulator is L0 ≈ 20
cm while the total weight is 160 g. In this work, we only
use pneumatic actuation to validate our controller. The
pneumatic chambers are McKibben actuators, a type of
pneumatic artificial muscles (PAMs), each composed of
an external chamber, consisting of a polyester braided
sheath, and an internal chamber, consisting of a latex
balloon. The insertion of the internal chamber in the
external one allows it to expand only longitudinally and
not radially, producing an elongation of the actuator
whenever pressure is applied to it. The robot is controlled
through an actuation box (Fig.2b) made up of 3 pro-
portional pressure micro-regulators which map a voltage
in the range of 0-10V to a pressure in the range of 0-3
bar, and the control unit composed of an Arduino Due,
a DAC, and an amplifier to manage the pressure micro-
regulators.
To input the actuations to the manipulator, the Arduino
is interfaced with MATLAB through serial communica-
tion. The inputs are given from MATLAB in the form of
digits from 0 to 255, which are then converted to Volts
(from 0-5V) to be fed to the pressure regulators that hold
a range of 0-1.2bar. The setup also includes a VICON
motion tracking system, composed of 8 infrared cameras
that get the spatial position of the 3 markers, seen in
Fig.2a, so that the end-effector position can be calculated
as the centroid of the triangle that they form.

III. Methodology
The first step towards obtaining the controller is to

collect a static dataset through pseudorandom motor
babbling, which will then serve as training data for an
artificial neural network (ANN) that approximates the
inverse static (IS) model of the robot. Once the IS model
is obtained, trajectories are generated by randomly sam-
pling points in the task-space of the manipulator and
then interpolating them with a spline. These trajectories
in the task-space are mapped into the actuation-space
using the IS network just trained.
After that, actuation values are given as input to the
robot at a frequency that does not allow a steady-state
assumption (10Hz) while recording the corresponding



task-space positions. The trajectories outlined by the
end-effector end up being significantly different from the
desired ones by virtue of the non-zero velocity of the end-
effector while moving from one point of the path to the
next one. For this reason, the dataset collected at 10Hz
is used in a second training of a neural network. The
result is an open-loop dynamic controller that achieves
very good precision in trajectory tracking tasks.

A. Static Dataset Collection
The collection of a training dataset is the initial step

towards obtaining the final controller. To achieve a good
exploration of the task space, we used pseudo-random
actuations after each of which a pause of two seconds was
required to allow the soft manipulator to stop oscillating;
once the oscillations come to an end, the position of the
end-effector is recorded with the corresponding actuation
in the dataset.
The dataset is comprised of 4000 entries, which makes
the process to obtain it slightly longer than two hours;
scattering all the end-effector positions reached during
the babbling on the I-Support produces Figure 3.

B. Inverse Static Model
The only difference in the methodologies used for the

simulator and the real manipulator lies in the procedure
we used to obtain the inverse statics (IS) of the platform
at hand. This is due to the fact that the static model of a
robot can be directly inverted only if the forward function
that maps the actuation-space τ ⊂ Rn to the task-space
x ⊂ Rm is injective, meaning n ≤ m. For this reason,
the IS model of the I-Support is easily obtainable with a
simple artificial neural network, whereas the same cannot
be said for the simulated arm, which has an actuation-
space of dimension 6 and a task-space of dimension 3. To
solve the inversion problem for this latter case, there are
a few possibilities that were explored in the literature: the
first would be to include the orientation in the task-space
variables, hence increasing the task-space dimension to
6 and allowing direct inversion. Another option [10]
could be to invert the approximated Jacobian J that
maps discrete intervals in the actuation-space to discrete
intervals in the task-space ∆x ≈ J(τ0)∆τ , which have to
be small enough to make the linearization possible. We

(a) 3D (b) 2D with heatmap

Fig. 3: Task Space of the I-Support robot

opted for an approach based on reinforcement learning
(RL), which eliminates the problem on a non-injective
forward static model by learning the IS in an iterative
way.

C. Reinforcement learning in PyElastica
The idea of using RL to learn the inverse statics of

a soft manipulator has already been explored in the
literature [18] [19]. In this paper, we used TRPO (Trust
Region Policy Optimization [20]) a state-of-the-art algo-
rithm that belongs to the branch of online learning. The
novelty of this algorithm is the presence of a trust region
that avoids updates of the policy network that might
cause a fall in the gradient ascent. The optimization can
be seen as the maximization of the difference between
the expected sum of discounted rewards with the new
policy, and the old policy, as follows:

maximize
π′

η (π′)− η(π)

with η(π)− Eτ∼π

[
T∑
t=0

γtrt

]
limited by a constraint, the trust region, which consists
in the Kullback-Leibler divergence between the new and
the old policy:

s.t. E
τ∼dπ

[DKL (π′‖π) [s]] ≤ δ

with τ being the trajectory of the RL agent (the suc-
cession of states, actions, and rewards) sampled using
the old policy, and delta is a hyperparameter of the
algorithm, which decides the conservativeness of the
policy update.
The RL agent is given as observation the target position
xtar to be reached, and produces as action an actuation
which brings the end-effector in a position xee. The scope
of the agent is to maximize a reward that is simply the
opposite of the distance between the desired target and
the actual end-effector position as: r = −‖xtar − xee‖2.
After 100 000 epochs of training the rewards stop increas-
ing and the resulting inverse static network achieves an
average error of 1.2 cm.

D. Feedforward neural network on I-Support
Once the dataset is collected, it becomes training data

for the IS network, which is a simple artificial neural
network with the three end-effector coordinates xee ∈ R3

as inputs, and the three actuations xtar ∈ R3 as outputs.
The ANN is composed of a hidden layer of 64 neurons
with a hyperbolic tangent (tanh) activation function and
an output layer with linear activation. Trying different
network architectures by modifying hyperparameters,
such as the activation functions, the number of neurons,
and the gradient descent type, has proven to make a very
small difference; this is to be expected considering the
relative simplicity of the IS model of this manipulator.

Two strategies that increased the accuracy of the net-
work were instead the optimization of the batch size fed



to the network during the training and the expansion and
normalization of the dataset. The batch size that proved
to be most effective without extending the training time
excessively is 64.
Linearizing the IS model for very small segments of the
task-space proved to be an acceptable simplification in
case the actuation deltas between two consecutive inputs.
We used ∆τ < 0.1 ·max (τ ). After having expanded the
dataset to a length of 8000, we normalized the inputs
to the network (i.e. the end-effector positions) using a
standard scaler.
The training was done on 80% of the dataset, while the
remaining 20% was dedicated to the validation and test
set. After 500 epochs of training using Adam gradient
descent with a mean square error (MSE) loss function,
the error on each actuation was:

|τ i − τ̂i| ≈ 1.5%± 1% with i = 1, 2, 3

where the percentage is over the total actuation span.

E. Controller
We generate a dataset of dynamic trajectories, that are

used to train the open-loop controller. To do this, n = 5
points are randomly sampled from the task-space of the
manipulator; these and the resting position of the end-
effector are then interpolated to create the trajectories.
The interpolation is performed by using a cubic spline
and the resulting trajectory is saved only if it satisfies
the task-space boundaries as the interpolation might fall
outside. The dataset x ∈ Ttar

x is made of 240 trajectories,
composed either of 60 or 90 points to ensure that it
comprises a sufficiently large diversity of step sizes ∆x.
Then, the IS network previously trained is used to map
the trajectories from the task-space to the actuation-
space, generating another dataset Tτ that is used as
inputs to the soft manipulator controlled at a frequency
of 10Hz.
The entries in the actuations dataset [τ1, τ2, τ3] ∈ Tτ are
used as target values for the training of the controller
network, which receive as inputs the positions obtained
feeding the actuation values to the manipulator (x ∈
Tee

x ), as the overview in Fig. 4 shows.
The controller, being open-loop, coincides with an ap-
proximation of the manipulator inverse dynamic (ID)
model.
Considering that an assumption over the degree of de-
pendency of the dynamics with the past is very dubious
with this type of robot, we approached the problem of
choosing the inputs to the model in an empirical way;
more precisely, the key parameter to be chosen is the
length of the horizon over the past end-effector positions.
The inputs have the form:

[xt+1,xt, ...,xt−T ]

with xt+1 being the next target position, xt, ...,xt−T
being the past end-effector positions inside the horizon
length T .

We tried two different types of neural networks: an ANN
like the one used for the inverse statics approximation,
and an LSTM network. In fact, the choice of architecture
is not obvious: LSTMs should fare better in the task
at hand considering the predisposition of said networks
to predict outputs belonging to a time series; at the
same time, considering the limited length of the hori-
zon, ANNs present a limited number of parameters to
optimize. To compare the two architectures, we used the
same number of epochs (N=1000), the same batch size
(b=128), and the same activation function (tanh). The
dataset Tee

x is divided in windows of the same length as
the horizon length T , to produce inputs of dimensions
[∼ 170 000, T + 2, 3] for the LSTM, and of dimension
[∼ 170 000, (T + 2) ·3] for the ANN. This means that the
horizon length is implemented in the LSTM by returning
its hidden state only at timestep T + 2, whereas in the
ANN the T+2 inputs are fed at once. The dataset is then
split into distinct training and testing datasets, the latter
including 15 trajectories that will not be seen during
training.
The index used to evaluate the performance of the
networks is the average of the errors µ(∆e) and their
standard deviation σ(∆e) where:

∆e = {∆eit : ∆eit = |τ̂ it − τ it | i = 1, 2, 3;
t = 1, ..., |dataset|}

The results of the model selection show that the LSTM
outperforms the ANN for any horizon length T , achieving
the lowest error of just above 1% of the total actuation
range for T=2 (i.e input=[xt+1,xt,xt−1,xt−2] ).
The choice for the model to be used as a controller
coincided with the best performing network.

IV. Results
The way the trained controller is deployed is shown in

Figure 5, where the test trajectory is either one of the
generic trajectories in the test dataset, not seen during
training.

A. Results on the simulator
The trained controller achieves very low tracking er-

rors, with an average error on the test trajectories of
3.3 mm, which is an ample improvement with respect to
the errors given by the inverse statics that are almost 10
times bigger, averaging at around 3.1 cm.
Figure 6 shows the performances of the dynamic con-
troller (left) next to the inverse static one (right) for two
generic trajectories. The refinement of the execution is
immediately evident when looking at the error, which is
calculated as the euclidean norm between the desired and
reached trajectory at each time instant.

B. Results on the I-Support
To test the dynamic controller, the LSTM network

was first transferred to MATLAB, from which the soft
manipulator is controlled.



Fig. 4: Open-loop controller training overview

Controller
Test

trajectory

LSTM

Fig. 5: Open-loop configuration of the controller when applied to the manipulator

Fig. 6: Trajectories in PyElastica, with the dynamic (left) and the static controller (right)

The test on these had the IS producing an average error
µ(∆XIS) ≈ 10.6mm, with ∆XIS being:

∆XIS = {∆xit : ∆xit = ‖x̂it,IS − xit‖2 i = 1, 2, 3;
t = 1, ..., |trajectory|; xit ∈ Ttar(TEST )

x }

whereas the dynamic controller has an average error,
calculated as above, of µ(∆XID) ≈ 3.2mm.
To be more precise, the average absolute errors in three
dimensions x, y, z, are shown in Table I. In Figure 7
we show four generic trajectories followed by the I-
Support’s end-effector and the error in the cartesian

TABLE I: Open-loop errors on x,y,z, generic trajectory
IS Dynamic controller

µ(∆x) 6.8 mm 2.6 mm

µ(∆y) 6.5 mm 1.8 mm

µ(∆z) 1.1 mm 1.1 mm

space. The average velocity for these are between 4.5cm/s
and 3.5cm/s.



Fig. 7: Trajectory examples on the I-Support robot

V. Conclusions

The result of this paper is a controller that can
track trajectories dynamically with marginal errors. The
biggest advantage of the method discussed is that it does
not rely on a parametrization of either the static or the
dynamic model of the platform to be used, which makes
it applicable to any soft robot.
Further work in the future will include the development
of a closed-loop version of the controller, as well as
considering orientation in complex 3D movements which
involve also twist of the soft robotic arm.
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