
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Quadrotor UAV 3D path planning with optical-flow-based obstacle avoidance / Allasia, G.; Rizzo, A.; Valavanis, K.. -
ELETTRONICO. - (2021). (Intervento presentato al convegno 2021 International Conference on Unmanned Aircraft
Systems (ICUAS) tenutosi a Atene, Greece nel June 15-18, 2021) [10.1109/ICUAS51884.2021.9476762].

Original

Quadrotor UAV 3D path planning with optical-flow-based obstacle avoidance

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICUAS51884.2021.9476762

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2957660 since: 2022-03-08T16:26:33Z

IEEE

Quadrotor UAV 3D Path Planning with Optical-Flow-based Obstacle
Avoidance

Giancarlo Allasia1, Alessandro Rizzo1, Kimon Valavanis2

Abstract— A real-time waypoint-based 3D local path plan-
ning algorithm is proposed for obstacle avoidance using the
optical flow obtained by a frontal monocular camera mounted
on a quadrotor UAV. The algorithm accounts for vertical and
horizontal obstacle avoidance, as well as for avoidance of
frontally approaching obstacles. Implementation and testing
are carried out in the ROS environment and the algorithm
effectiveness is demonstrated via Gazebo simulations. Real-
time algorithm performance is also assessed through software
profiling and in terms of worst case execution time using the
NVIDIA Jetson TX1 and RaspberryPi 4 for hardware-in-the-
loop (HIL) tests.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) in general, and quadro-
tors in particular, have been used in a wide spectrum of
applications due to their versatility, flexibility, and their
ability to fly at very low altitudes. However, a major issue
to be overcome is real-time obstacle avoidance, hence the
path planning strategy used to carry out a specific application
should encompass the ability for the UAV to be aware of its
surroundings. This ability is enabled by the inclusion of mul-
tiple sensors aboard. Sonars, radars, laser scanners (LIDAR),
cameras or any combination of them are being used to deal
with this issue [1]. LIDAR provides the most accurate data
/ information for environment mapping and for determining
an obstacle-free path [2]. Even if LIDAR sensors in last few
years became cheaper, compared to cameras they still have an
economical disadvantage, not to mention their greater weight
and power consumption, making cameras more advantageous
particularly for small-scale UAVs. Information gathered from
cameras, however, needs to be extracted in real-time by
means of computer vision algorithms, already widely used
in robotics for perception. Among the several available
computer vision techniques, the biologically inspired optical
flow algorithm has been investigated widely in literature as
a solution to support UAVs’ local path planning strategy and
endowing UAVs with obstacle avoidance capability by means
of just a monocular camera. The majority of optical flow-
based path planning algorithms, unfortunately, suffer from
some common limitations. Table I shows a classification
of aforementioned limitation found in most recent related
literature.
Therefore, this paper proposes an optical-flow-based local 3D

1G. Allasia and A. Rizzo are with the Department of Electron-
ics and Telecommunications, Corresponding author: Alessandro Rizzo
alessandro.rizzo@polito.it

2Kimon Valavanis is with the Ritchie School of Engineering and
Computer Science, University of Denver, Denver, CO 80210 – USA
kimon.valavanis@du.edu

path planning algorithm for obstacle avoidance, that exploits
also third dimension enabling the avoidance of ground and
floating obstacle and is able to avoid frontally approaching
obstacle by considering the expansion of the 2D optical flow
velocity vector field generated by the obstacles in the field
of view (FOV) of the camera. The algorithm is real-time
implementable on the quadrotor’s on-board hardware, and
a thorough analysis of the algorithm’s worst case execution
time (WCET) is carried out along with code profiling for per-
formance evaluation in a HIL test using NVIDIA Jetson TX1
and RaspberryPi 4 boards. In the problem stated in this paper,
the quadrotor is assumed to navigate based on a provided list
of waypoints and be endowed, beyond standard sensors used
for control purposes, only with a cheap frontal monocular
camera, from which information from surrounding obstacles
is extracted by exploiting optical flow computer vision al-
gorithm. The algorithm is tested in a simulated environment
implemented using Robotic Operating System (ROS) [3] in
combination with Gazebo open source simulator [4] and
OpenCV Python library for optical flow implementation, in
particular Farnebäck’s dense optical flow method [5], [6].
The effectiveness of the obstacle avoidance strategy will be
tested in Gazebo in three scenarios, shown in Figure 1.

II. PROPOSED SOLUTION

A. Rationale of proposed solution

Assuming that the overall mission is expressed in terms
of a list of waypoints to follow assigned by a global path
planning algorithm, the strategy consists in computing in real
time an intermediate waypoint to avoid the obstacle based on
the optical flow vector field produced by the frames coming
from the onboard camera, as is shown in Figure 2.

In Figure 3, an example of what the onboard camera
sees and the respective brightness-coded optical flow field
magnitude (the brighter the pixel, the faster the optical
movement of that pixel among subsequent frames) with OSD
superimposed is shown.

Closer objects to the moving observer (i.e. the UAV)
appear to move faster in the FOV with respect to the farthest
ones. Hence, areas in which the OF field is stronger are
considered high collision risk areas, therefore the intermedi-
ate waypoint should be placed away from those areas. For
instance, if obstacles on the right are at a smaller distance
from us they seem to move faster in FOV, appearing as
strong OF field on the right, hence a movement to the left is
required for avoidance, so an intermediate waypoint will be
appropriately placed on the left. The same holds for vertical

TABLE I: Classification of developed monocular optical-flow based obstacle avoidance methods. Columns represent,
respectively, the referenced work with its publication year (Ref.), the type of robot intended for algorithm application (Robot),
the optical flow algorithm used (OF Method), the dimensionality of obstacle avoidance control commands produced (2D/3D),
validation of achieved results (Result) and main limitations (Limitations) classified as follows: A - 2D Obstacle avoidance
(left/right control commands); B - Offboard computation C - restricted applicability (e.g. specifically structured environment,
intrinsically limited); D - real-time implementable (or not specified), E: does not deal with frontal obstacles.

Ref. Robot OF Method 2D/ 3D Results Limitations

A B C D E

[7] Fixed-wing Sparse Pyramidal OF 2D SIM, EXP 7 7

[8] Quadrotor Sparse Pyramidal OF, Visual APF 2D SIM 7 n/a n/a 7

[9] Quadrotor Dense Farnebäck OF - EXP n/a 7 7

[10] Generic Horn and Schunck OF 2D SIM 7 n/a 7 7 7

[11] Quadrotor Horn and Schunck OF 2D SIM 7 n/a 7 n/a 7

[12] Quadrotor Horn and Schunck OF 3D SIM, EXP

[13] Quadrotor Lukas-Kanade OF 2D SIM 7 7 7

[14] Quadrotor Sparse Lukas-Kanade OF 1D EXP 7 7 7 7

[15] Quadrotor Mixed dense and sparse OF 3D EXP 7 7

(a) (b)

(c)

Figure 1: Test scenarios in Gazebo for horizontal avoidance
(1a), vertical avoidance (1c) and frontal avoidance (1b). The
blue circle represents the goal waypoint that the drone has
to reach overcoming obstacles.

Figure 2: Here is shown the strategy’s working principle.
First the UAV is heading towards the next waypoint in the list
(blue). When a lateral obstacle approaches the drone, from
the right in this example, the obstacle’s movement in drone’s
FOV leads to strong optical flow field on the right side of
the FOV, triggering the obstacle avoidance, which computes
an intermediate waypoint (green) that will become the next
waypoint in the list, allowing the UAV to successfully avoid
the obstacle.

obstacle avoidance. To translate this optical motion into a
number, two scalar signals called horizontal and vertical
optical flow unbalance signals are created, where sign and
magnitude at a certain time instant indicate respectively
where optical flow is more intense in the frame (left vs.
right, up vs. down) and how strong is this unbalance. These
signals are used to trigger an emergency situation whether
the obstacle is approaching and avoid it by computing
the intermediate waypoint. As far as frontally approaching

(a)

(b)

Figure 3: Figure 3a shows the onboard view of a lateral
obstacle during forward motion is shown, while Figure 3b
shows the computed OF in that scene with OSD superim-
posed, where brighter pixels correspond to faster moving
points.

obstacles are concerned, given that these seem expanding
in the FOV as they approach the observer, an appropriate
signal called Expansion of Optical Flow (EOF) is defined,
which is related to the divergence of the OF vector field.
When one of these signals exceeds a threshold the obstacle
avoidance strategy is triggered, with higher priority for
frontal avoidance, and an intermediate waypoint is computed
by using these signals to appropriately place it, by exploiting
the spherical coordinates representation of the point to be
computed in the vehicle reference frame. The produced
waypoint is then prepended to the waypoint’s list and the
quadrotor heads to it. Once reached, the waypoint is deleted
from the list and the quadrotor heads to the next one. The
mathematical formalism of the algorithm is explained in the
following sections with a bottom-up approach. After defining
optical flow vector field in Section II-B, how horizontal and
vertical optical flow unbalance and EOF signals are built
is explained respectively in Section II-C and Section II-D.
Then coordinates of the intermediate waypoint starting from
aforementioned signals are derived in Section II-E. Software
implementation is finally covered in Section II-G.

B. Optical flow

Optical flow in computer vision can be generally defined
as the motion of objects in images between subsequent
frames of image sequences. Such a motion is caused by
the relative movement between the object and the camera
expressed as a 2D velocity field, representing for each pixel

its displacement between the two consecutive frames. Figure
4 shows how optical flow is defined.

Figure 4: The displacement of a pixel obtained among
subsequent frame defines the optical flow vector for that
specific pixel. Image adapted from [12].

I(x, y, t − 1) and I(x, y, t) are the gray scale versions
of the two subsequent frames sampled from the camera,
modeled as 2D matrix containing the brightness of pixels
(x, y) respectively at time t − 1 and t. These are matrices
with dimensions H ×W , where H = 240 and W = 320
are respectively the height and width of the image. Given
that the gray scale values are sampled over 8 bits, pixel
brightness is an integer number ranging from 0 to 255.
Time t ∈ N is discretized, with a sample rate of 10 Hz
in the case of simulated onboard camera. Considering a
single pixel (xi, yi), by solving an optimization problem
that takes into account also the behaviour of that pixel’s
neighborhood among frames, it is possible to estimate its
displacement from time t− 1 to time t as a velocity vector
OF(xi, yi, t) = uîi + vîj. The solution to that optimization
problem extended to all the pixels in the frame outputs a 2D
velocity vector field, which represents the optical flow vector
field and can be expressed as in Equation 1.

OF(x, y, t) = u(x, y, t)̂i+ v(x, y, t)̂j (1)

Optical flow algorithms can be divided in sparse and
dense, depending on whether flow is computed only for a
subset of pixels (sparse), usually corresponding to feature
detected by corner detecting methods or similar feature
detection algorithms, or for all pixels in the image (dense).
Sparse methods are computationally lighter but less accurate,
while dense ones require more computation but manage to
estimate the flow more correctly. In this paper the Gunnar
Farnebäck dense optical flow method is used, implemented
by OpenCV Python library. Farnebäck’s method is not only
more accurate than classic Lukas-Kanade method, as proved
by results in [6] from a test on Yosemite sequence, but it
gets faster on smaller images as tested in [16]. This last
feature becomes important given that this algorithm applies
the pyramid method, i.e. the optical flow computation is

applied at different levels of frames’ downsizing to capture
larger optical movement, improving robustness.

C. Optical flow unbalance computation

In order to obtain a measure of which areas in the FOV
experience a stronger optical flow, the frames sampled from
the onboard camera are divided into different templates, as
can be seen in Figure 5, of which dimensions are determined
by a trial and error procedure.

Figure 5: Templates geometry notation.

Not the whole frame area may be considered important
for triggering collision avoidance. For instance, optical flow
contributions from corners can be considered negligible for
that purpose, as well as the most external strip, because,
based on the assumption that that the camera is always
facing forward motion direction, objects in those areas won’t
likely enter in collision trajectory. This is why a region of
interest (ROI) smaller than frame’s dimensions is defined,
and templates are defined inside ROI. Templates are designed
to cover a vertical strip (VU and VD) and an horizontal
strip (HL and HR) for vertical and horizontal unbalance
computation and obstacle avoidance, respectively. The same
reasoning holds for the central template (FR) used for EOF
computation. Vertical and horizontal optical flow unbalance
signals are defined as:

eV (t) = σV D(t)− σV U (t) (2a)

eH(t) = σHR(t)− σHL(t) (2b)

where the signal σT (t) associated to generic template T
is the sum of compensated OF field magnitude for all pixels
in T, defined as:

σT (t) =
∑

(x,y)∈T

‖OFC(x, y, t)‖ (3)

OFC is the field OF computed from the camera with
adequate compensation for self-motion produced OF (more
about this in Section II-F). In order to smooth the noisy
unbalance signals and avoiding peaks that could trigger
avoidance unnecessarily, a Moving Mean Filter (MMF) is
applied. Filtered versions of unbalance signals are produced:

eV (t) =
1

M

M−1∑
i=0

eV (t− i), M = 3 (4a)

eH(t) =
1

M

M−1∑
i=0

eH(t− i), M = 3 (4b)

Length of filter’s memory M has been set by trial and error
procedure.

D. Expansion of Optical Flow (EOF) computation

When an object is approaching frontally, it seems for
perspective reasons expanding in the FOV. In order to
quantify this expansion, the concept of Expansion of Optical
Flow is introduced. First, the Focus Of Expansion (FOE),
that is the fixed point of the expansion, is considered. It
is the point through which (theoretically) all directions of
the vectors in a purely expanding field pass. Usually is not
the case and its coordinates are obtained by solving an LSE
problem, that leads to unreliable estimation. In this paper,
FOE is assumed fixed in frame’s center. Given that, ideally,
FOE indicates the direction in which the observer is moving
and in the presented work the drone always moves forward
straight toward next waypoint, this assumption is reasonable.
Then, for each pixel in the frontal template, the divergent
component of OF from FOE is computed and divided by its
distance from FOE to give more importance to points directly
in front of the quadrotor, as shown in following equations
and in Figure 6. Finally, all contributions from template’s
pixels are summed up to obtain the EOF signal.

OFDIV,i(t) = OFi(t) · ûr,i, ûr,i =
ri
‖ri‖

(5a)

EOFi(t) =
OFDIV,i(t)

‖ri‖
=

OFi · ri
‖ri‖2

(5b)

EOF (t) =

N∑
i

EOFi(t) (5c)

Figure 6: Computation of OF divergence component
OFDIV,i for the ith pixel.

E. Intermediate waypoint computation

By means of the obtained signals, the situation can be
evaluated and action can be taken. Thresholds are defined
and if any of the three signals exceeds them the obstacle
avoidance strategy is triggered and the adequate intermediate
waypoint is computed. This is done by using the signals to
compute the spherical coordinates in the mobile (vehicle)
reference frame and then translating it in cartesian coordinate
in the fixed (world) reference frame, as shown in Figure 7.

Figure 7: Intermediate waypoint computation for obstacle
avoidance.

Vertical and horizontal unbalance signals and EOF signal
are compared to respective thresholds τV , τH , τF to trigger
the obstacle avoidance strategy. Depending on which kind if
avoidance is required, horizontal/vertical or frontal, different
equations for computing spherical coordinates in vehicle
reference frame are used. The frontal avoidance has priority
over horizontal and vertical avoidance. For instance, if both
EOF (t) > τF and eV (t) > τV at a certain time instant
t, only the frontal avoidance is applied and the second set
of equations will be used. As far as horizontal or vertical
avoidance is concerned, when EOF (t) ≤ τF , the Equations
6 for computing r, θ and ψ at time instant t are applied:

r = rV,H (6a)

θ(t) =

{
KP,V eV (t), if |eV (t)| > τV

0, if |eV (t)| ≤ τV
(6b)

ψ(t) =

{
KP,H eH(t), if |eH(t)| > τH

0, if |eH(t)| ≤ τH
(6c)

Angles are then saturated to ±π2 in case the values exceed
the range. For frontal avoidance instead, i.e. EOF (t) > τF ,
a right angle turn to be avoided is required. Equations 7
are used for computing intermediate waypoint’s spherical
coordinates.

r = rF (7a)

θ(t) = 0 (7b)

ψ(t) =

{
−π2 , eH(t) ≤ 0

+π
2 , eH(t) > 0

(7c)

Finally, the translation in cartesian coordinates in the world
reference frame is needed in order to feed this point as a
reference in position to the quadrotor’s controller. Defining
η(t) as the heading of the quadrotor with respect to world
reference frame’s x axis, pI as the intermediate waypoint in
world reference frame and pQ as the quadrotor’s position,
coordinates of pI are defined by Equations 8.

xI(t) = r cos θ(t) cos(ψ(t) + η(t)) + xQ(t) (8a)

yI(t) = r cos θ(t) sin(ψ(t) + η(t)) + yQ(t) (8b)

zI(t) = r sin θ(t) + zQ(t) (8c)

The computed waypoint is now prepended to the stored
waypoints list and will be used as the next reference in order
to avoid the obstacle. The values for thresholds, gains and
radii working for the simulation environment used in this
work has been found by trial and error procedure.

F. Self-motion generated optical flow compensation

Given that the OF field generated is the result of the
relative motion between the camera fixed to the UAV and
the surrounding environment, quadrotor’s tilting movements
are influencing the generated optical motion. Given that only
the OF generated by forward motion is useful to avoid obsta-
cles, these unwanted OF must be compensated. To compute
signals the compensated OF field OFC is therefore taken
into account, where compensation is operated by multiplying
OF horizontal and vertical components for a time-varying
coefficient as shown in Equations 9.

OFC(x, y, t) = uC(x, y, t)̂i+ vC(x, y, t)̂j (9a)

uC(x, y, t) = u(x, y, t)
1

1 +KC,yaw|ψ̇(t)|
(9b)

vC(x, y, t) = v(x, y, t)
1

1 +KC,lin z|ḣ(t)|+KC,pitch|q(t)|
(9c)

where ψ̇(t) is yaw rate at time t, ḣ(t) is the climbing
rate and q(t) is the pitch rate. Coefficients’ values have been
tuned by means of a trial and error procedure as well.

G. Software implementation

To implement and test the algorithm, ROS/Gazebo quadro-
tor simulator package hector quadrotor is used [17]. The
algorithm is implemented as a node in ROS Melodic (Ubuntu
18.04 LTS) and set to run at a fixed rate of 5 Hz, even if
higher rates can be achieved, as shown in Section III. In
Figure 8, main topics used by the node are shown.

The algorithm at each iteration passes through three main
phases: Status Evaluation, Control Command Computation,

Figure 8: Graph of inputs and outputs for node
/ofoa manager implementing optical-flow-based obstacle
avoidance (OFOA) strategy.

Outputs Publication. In Status Evaluation OF field is com-
puted as well as OF unbalances and EOF in order to
compare signal to thresholds and set flags. In the Control
Command Computation the previously evaluated flags are
used to decide if and which kind of avoidance is required.
In the last phase, Outputs Publication, produced outputs are
published over respective topics.

III. RESULTS

A. Obstacle avoidance effectiveness in simulated test sce-
narios

For each scenario in Figure 1, 20 simulations are run
with randomly generated starting points in the plane of
interest according to a 2D Gaussian distribution; a further
one with the origin (0, 0, 0) as starting point is considered.
Two kind of plots are produced. First one is a plot of all
simulations’ trajectories with obstacle profiles. An ellipse
which principal semi-axes are 3σ of the randomly distributed
starting point displacement along that direction is drawn. In
the second plot, the minimum distance of the drone from
the nearest obstacle for each run is shown. In order to
compute success rate, the size of the quadrotor is considered.
A certain threshold distance (dashed line) is set as the half
of the size of the quadrotor along x or y in horizontal plane
avoidance scenarios or along z in vertical plane avoidance
scenarios, incremented of 30% as safety clearance. If the
nearest obstacle is below aforementioned threshold, that run
is labeled as a fail. Result plots for each scenario are shown
in Figures 9, 10 and 11 and performance measurements in
Table II. As can be seen from results, success rate is 100%
for both horizontal and vertical avoidance and 95.2% for
frontal avoidance.

B. HIL simulations

To prove that the algorithm can run in real-time on
onboard integrable hardware, two boards are tested in a
HIL setup, the NVIDIA Jetson TX1 and RaspberryPi 4. The
experimental setup is shown in Figure 12 with Jetson TX1
as an example.

1) Worst Case Execution Time (WCET) analysis for real-
time performances: To estimate WCET, a statistical analysis
of algorithm’s execution time is carried out on both platforms
. In order to produce the measurements, a timer starts at
the beginning of main algorithm function and it’s stopped
at the end of its execution, evaluating elapsed time and, by

(a) Trajectories of all simulations.

(b) Minimum distance form nearest obstacle.

Figure 9: Plots of results obtained from simulations run in
lateral obstacle avoidance scenario in horizontal plane.

(a) Trajectories of all simulations.

(b) Minimum distance from nearest obstacle.

Figure 10: Plots of results obtained from simulations run in
vertical obstacle avoidance scenario in vertical plane.

its inverse, the frequency of execution ideally achieved in
that iteration. Here operating system time is considered, not
simulation time. Measurements are collected over 60 seconds
of simulation. The algorithm execution rate is fixed to 5 Hz,
hence 200 ms period, that is a safe enough value in order to
let all the operations be executed without excessively com-
promising obstacle avoidance reactivity. Results are shown
in Table III.

As shown, both boards are able to run the algorithm in
real-time keeping up with the requested 5 Hz rate. Jetson
TX1 shows a WCET of 159.4 ms (average 124.8 ms)
corresponding to a theoretical minimum guaranteed rate of
6.27 Hz, while RaspberryPi 4 shows better performances
with WCET of 78.4 ms (average 66.8 Hz), corresponding
to a minimum guaranteed rate of 12.75 Hz, being more than
double the NVIDIA board’s rate. Furthermore, RaspberryPi
4 weights around 52% of Jetson TX1’s weight and its
maximum consumption is around 41.7% in comparison. In

TABLE II: Summary of results from simulations run.

Horizontal Vertical Frontal

Starting point X ∼ N (0, 0.52) m X ∼ N (0, 0.32) m X ∼ N (0, 0.32) m
Y ∼ N (0, 0.52) m Z ∼ N (1.5, 0.32) m Y ∼ N (0, 0.32) m

Minimum distance 0.54 m 0.31 m 0.59 m
Average minimum distance 0.66 m 0.53 m 0.73 m
Standard deviation 0.06 m 0.12 m 0.14 m
Success rate 100 % 100 % 95.2 %

(a) Trajectories of all simulations.

(b) Minimum distance form nearest obstacle.

Figure 11: Plots of results obtained from simulations run in
frontal obstacle avoidance scenario in horizontal plane.

Figure 12: Setup for HIL simulation. On the left, the Jetson
TX1 Development Kit is running Ubuntu 14.04 and OFOA
ROS node. On the right, the laptop with virtualized Ubuntu
18.04 which hosts ROS master node and Gazebo simulator.
The Jetson TX1 and the PC are connected by means of the
WiFi router acting as a gateway, in the middle.

conclusion, the RaspberryPi 4 board not only can handle the
real-time requirement better than the Jetson TX1 module, but
it is more power efficient and lighter in weight, making it
suitable to be mounted onboard on a quadrotor.

2) Code profiling: An analysis of where in the code the
most part of execution time is spent to identify bottlenecks
and try to optimize slower parts of code has to be carried
out by means of Yappi profiler and results are visualized as

TABLE III: Statistics of main algorithm computation time
performance run on NVIDIA Jetson TX1 and RaspberryPi
4 embedded systems. The equivalent rate is obtained as the
inverse of execution time.

Jetson TX1 RaspberryPi 4

Time [ms] Rate [Hz] Time [ms] Rate [Hz]

Minimum 97.7 6.27 58.7 12.75
Maximum 159.4 10.24 78.4 17.02
Average 124.8 8.07 66.8 15.00

Standard deviation 11.9 0.78 2.9 0.63

treemaps in KCacheGrind. Experiment is carried out as HIL
simulation with NVIDIA Jetson TX1 and results are shown
in Figure 13.

Figure 13: Treemap profiling representation by means of
KCacheGrind of algorithm run on NVIDIA Jetson TX1.

What can be noticed is that the majority of time is spent
in OF field computation, actually 84.79% of the overall time
spent in caller function OFOAMainAlgorithm, making it the
real bottleneck of the whole algorithm. OF field computation
is implemented by an OpenCV function that recalls an
optimized compiled function in C++, therefore cannot be
optimized anymore. The second most expensive function
with a time cost of 6.16% of main function execution time,
hence already negligible, is the one used to publish outputs
by means of standard non optimizable ROS Python library’s
functions. The remaining functions have a negligible impact
and contain already optimized or non-optimizable operations.

IV. CONCLUSIONS

Effectiveness of proposed real-time waypoint-based 3D
local path planning strategy in avoiding lateral, floating,
ground and frontal obstacles has been demonstrated with
high success rate. Capability of running in real-time at a
rate of at least 5 Hz on onboard integrable embedded
hardware has been shown. The proposed algorithm, even if
proved effective, has some limitations such as dependence
on visibility (e.g. dark environment, poorly textured objects,
limited FOV angle not perceiving obstacles on the sides such
as wall corners) and lack of depth information due to the use
of a monocular camera.

ACKNOWLEDGMENT

This work is partially supported by Amazon Science
through a 2019 Amazon Research Award granted to Dr. A.
Rizzo.

REFERENCES

[1] J. N. Yasin, S. A. S. Mohamed, M. Haghbayan, J. Heikkonen, H. Ten-
hunen, and J. Plosila, “Unmanned aerial vehicles (uavs): Collision
avoidance systems and approaches,” IEEE Access, vol. 8, pp. 105 139–
105 155, 2020.

[2] Lidar wikipedia page. [Online]. Available:
https://en.wikipedia.org/wiki/Lidar

[3] Robotic operating system (ros). [Online]. Available:
https://www.ros.org/

[4] Gazebo simulator tool. [Online]. Available: http://gazebosim.org/
[5] Opencv: an open source computer vision library. [Online]. Available:

https://opencv.org/
[6] G. Farnebäck, “Two-frame motion estimation based on polynomial

expansion,” vol. 2749, 06 2003, pp. 363–370.
[7] B. Richards, S. Bhandari, M. Gan, J. Dayton, M. Enriquez,

J. Liu, and J. Quintana, Obstacle Avoidance System for
UAVs using Computer Vision, 2015. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0986

[8] H. Miao and Y. Wang, “Optical flow based obstacle avoidance and
path planning for quadrotor flight,” 06 2018, pp. 631–638.

[9] P. Gao, D. Zhang, Q. Fang, and S. Jin, “Obstacle avoidance for micro
quadrotor based on optical flow,” in 2017 29th Chinese Control And
Decision Conference (CCDC), 2017, pp. 4033–4037.

[10] P. Agrawal, A. Ratnoo, and D. Ghose, “A composite
guidance strategy for optical flow based uav navigation,” IFAC
Proceedings Volumes, vol. 47, no. 1, pp. 1099 – 1103, 2014,
3rd International Conference on Advances in Control and
Optimization of Dynamical Systems (2014). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016327914

[11] A. Eresen, N. imamoğlu, and M. Efe, “Autonomous quadrotor flight
with vision-based obstacle avoidance in virtual environment,” Expert
Systems with Applications, vol. 39, pp. 894–905, 01 2012.

[12] G. Cho, J. Kim, and H. Oh, “Vision-based obstacle avoidance strate-
gies for mavs using optical flows in 3-d textured environments,”
Sensors(Basel), 6 2019.

[13] D.-W. Yoo, D.-Y. Won, and M.-J. Tahk, “Optical flow based collision
avoidance of multi-rotor uavs in urban environments,” 2011.

[14] W. Aguilar, L. Álvarez, S. Grijalva, and I. Rojas, Monocular Vision-
Based Dynamic Moving Obstacles Detection and Avoidance, 08 2019,
pp. 386–398.

[15] C. Wang, W. Liu, and M. Q. . Meng, “Obstacle avoidance for
quadrotor using improved method based on optical flow,” in 2015
IEEE International Conference on Information and Automation, 2015,
pp. 1674–1679.

[16] J. de Boer and M. Kalksma, “Choosing between optical flow algo-
rithms for uav position change measurement,” 2015.

[17] Hector quadrotor ros wiki page. [Online]. Available:
http://wiki.ros.org/hectorquadrotor

