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Abstract

We propose a nonlinear registration-based model reduction procedure for rapid and reliable solution of
parameterized two-dimensional steady conservation laws. This class of problems is challenging for model
reduction techniques due to the presence of nonlinear terms in the equations and also due to the presence
of parameter-dependent discontinuities that cannot be adequately represented through linear approxima-
tion spaces. Our approach builds on a general (i.e., independent of the underlying equation) registration
procedure for the computation of a mapping Φ that tracks moving features of the solution field and on an
hyper-reduced least-squares Petrov-Galerkin reduced-order model for the rapid and reliable computation of
the solution coefficients. The contributions of this work are twofold. First, we investigate the application
of registration-based methods to two-dimensional hyperbolic systems. Second, we propose a multi-fidelity
approach to reduce the offline costs associated with the construction of the parameterized mapping and the
reduced-order model. We discuss the application to an inviscid supersonic flow past a parameterized bump,
to illustrate the many features of our method and to demonstrate its effectiveness.

Keywords: parameterized hyperbolic partial differential equations; model order reduction; registration meth-
ods; nonlinear approximations.

MSC 2010: 65N30; 41A45; 35J57.

1 Introduction

1.1 Model order reduction for steady conservation laws

Despite the recent advances in high-performance computing and numerical analysis, approximation of the
solution to fluid problems remains a formidable task that requires extensive computational resources. The lack
of fast and reliable computational fluid dynamics (CFD) solvers limits the use of high-fidelity (hf) simulations to
perform extensive parametric studies in science and engineering. Parameterized model order reduction (pMOR)
aims at constructing a low-dimensional surrogate (or reduced-order) model (ROM) over a range of parameters,
and ultimately speed up parametric studies. The goal of this paper is to develop a nonlinear registration-
based MOR procedure for steady two-dimensional conservation laws and to demonstrate its effectiveness for
applications in aerodynamics.

We denote by µ the vector of model parameters in the parameter region P ⊂ RP ; we denote by Ω ⊂ R2

the computational domain — to simplify the presentation, in the introduction we assume that the domain does
not depend on the parameters; however, in the numerical examples, we shall consider the case of parameterized
geometries. We denote by U : Ω× P → RD the parametric solution field satisfying the conservation law:

∇ · Fµ(Uµ) = Sµ(Uµ) in Ω, (1)

where F : RD × P → RD,2 is the physical flux and S : RD × P → RD is the source term. The problem
is completed with suitable boundary conditions that depend on the number of incoming characteristics. We
denote by M := {Uµ : µ ∈ P} the solution manifold associated with (1). We further define the Hilbert

space X = [L2(Ω)]D, endowed with the inner product (·, ·) and the induced norm ‖ · ‖ :=
√

(·, ·), such that
(w, v) =

∫
Ω
w · v dx for all w, v ∈ X .

We introduce the finite element (FE) mesh Thf :=
(
{xhf

j }
Nhf,v

j=1 , T
)

where {xhf
j }j ⊂ Ω are the nodes of the

mesh and T ∈ Nnlp,Ne is the connectivity matrix, where nlp is the number of degrees of freedom in each element
and Ne is the total number of elements. We denote by Xhf ⊂ X a FE discretization associated with Thf and we
set Nhf = dim(Xhf). Given w ∈ Xhf , we denote by w ∈ RNhf the vector representation of w with respect to a
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suitable basis: note that the pair mesh-coefficients (Thf , w) uniquely identifies the field w ∈ Xhf . Finally, we
denote by Uhf

µ ∈ Xhf the hf estimate of the solution Uµ ∈ X to (1) for a given µ ∈ P.
Hyperbolic problems with moving fronts are extremely challenging for state-of-the-art model reduction

procedures. First, the vast majority of MOR methods rely on linear approximations: as shown in several studies
(e.g., [41]), linear methods are fundamentally ill-suited to deal with parameter-dependent sharp gradients that
naturally arise in the solutions to hyperbolic conservation laws. Another major issue concerns the construction
of accurate meshes for parametric studies. For advection-dominated problems, adaptive mesh refinement (AMR)
is of paramount importance to reduce the size of the mesh required to achieve a given accuracy. However, if
parametric variations strongly affect the location of sharp-gradient regions, AMR should be applied to each
system configuration and will lead to hf discretizations of intractable size. Effective MOR procedures for
conservation laws should thus embed an effective parametric AMR strategy to track moving structures.

1.2 Registration methods for parameterized problems

Registration-based (or Lagrangian) methods for pMOR (e.g., [29, 40, 52, 56, 55] ) rely on the introduction of
a parametric mapping Φ : Ω × P → Ω such that (i) Φµ is a bijection from Ω in itself for all µ ∈ P, and (ii)

the mapped manifold M̃ = {Uµ ◦ Φµ : µ ∈ P} is more amenable for linear compression methods. In the FE
framework, or equivalently in the finite volume context, this corresponds to considering approximations of the
form

µ ∈ P 7→
(

Φµ(Thf), Ûµ = Z α̂µ

)
, with Φµ(Thf) :=

(
{Φµ(xhf

j )}Nhf,v

j=1 , T
)
, Z ∈ RNhf ,N . (2)

Note that the mapped mesh Φµ(Thf) shares with Thf the same connectivity matrix, while Ûµ = Z α̂µ can be
viewed as an approximation of Uµ if paired with the mesh Φµ(Thf), or as an approximation of Uµ ◦Φµ if paired
with the mesh Thf .

Several features of registration methods are attractive for applications to hyperbolic problems with moving
fronts. First, registration methods are effective to track sharp gradients of the solution field, and ultimately
improve performance of linear compression methods in the reference configuration and also reduce the size of
the hf mesh required for a given accuracy. Second, after having built the mapping Φ, Lagrangian methods
reduce to linear methods in parameterized domains: this class of methods has been widely studied in the MOR
literature (see the reviews [33, 50] and also [57]) and is now well-understood. In particular, we can rely on
standard training algorithms to build Z in (2) – in particular, proper orthogonal decomposition (POD, [7, 61])
and the weak-Greedy algorithm [51] — and on effective hyper-reduced projection-based techniques to compute
the solution coefficients α̂µ.

In this work, we consider the registration procedure first proposed in [55] and then extended in [59, 58]
to generate the mapping; then, similarly to [59], we rely on a projection-based least-squares Petrov-Galerkin
(LSPG, [13, 12]) formulation with elementwise empirical quadrature (EQ, [22, 67]) to estimate the coefficients
α̂µ for any new value of the parameters. Furthermore, we rely on the discretize-then-map framework (cf.
[17, 57, 63]) to deal with geometry variations. The contribution of the paper is twofold.

• We show performance of registration-based model reduction for a representative problem in aerodynamics
with shocks: we discuss performance of registration, and we also address the combination with projection-
based MOR techniques. In particular, we investigate in detail the offline-online computational decompo-
sition and we also comment on hyper-reduction, which is key for online efficiency.

• We present work toward the implementation of a multi-fidelity approach for registration-based model
reduction. As explained in [55, 59, 58], a major issue of our registration procedure is the need for extensive
explorations of the parameter domain: in this work, we show that we can rely on a significantly less accurate
hf discretization to generate the snapshots used for registration and ultimately greatly reduce the cost of
offline training. In the numerical results, we further show that multi-fidelity training might help reduce
the size of the hf discretization required to properly track moving features — in effect, spatio-parameter
mesh adaptivity.

The outline of the paper is as follows. In section 2, we introduce the model problem; in section 3, we
present the methodology: first, we introduce the registration algorithm proposed in [58], then, we discuss the
projection-based scheme and finally we present the offline/online computational decomposition based on a two-
fidelity sampling. In section 4, we present extensive numerical investigations to illustrate the performance of
our proposal. In the remainder of this section, we discuss relation to previous works (cf. section 1.3), we briefly
comment on the many nonlinear approximation methods appeared in the literature to better clarify the interest
for registration-based methods (cf. section 1.4), and we present relevant notation (cf. section 1.5).
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1.3 Relation to previous works

Several authors have applied MOR techniques to aerodynamics problems including inviscid flows: we refer
to [68] for a review; we further refer to the early work by Zimmermann et al, [23] and to the more recent
work by Carlberg et al, [8] for application to aerodynamics of techniques based on nonlinear approximations.
Simultaneous adaptivity in space — via AMR — and in parameter — via Greedy sampling — has been
considered by Yano in [66] and more recently in [54]. Methods in [54, 66] rely on h-refinement to adapt the
spatial mesh, while we exploit a solution-aware parameterized mapping to deform the mesh without changing
its topology (r-adaptivity): we thus envision that the two strategies might be combined with mutual benefits.

Multifidelity methods have been extensively studied in the MOR literature: we refer to [43] for a thorough
review and also to the more recent work by Kast et al. [31]. As explicitly stated in section 1.2, the present study
offers a proof of concept of the application of multifidelity schemes in combination with registration methods;
it also shows the importance of multifidelity schemes for spatio-parameter adaptivity.

As discussed in [55, 59, 58], the fundamental building block of our registration procedure is a nonlinear
non-convex optimization statement for the computation of the mapping Φ for the parameters in the training
set. Our optimization statement minimizes an L2 reconstruction error plus a number of terms that control the
smoothness of the map and the mesh distortion: minimization of the L2 reconstruction error has been previously
considered in several works (e.g., [38, 47, 49, 53]); on the other hand, penalization of mesh distortion has been
considered in [70] in a related context.

For completeness, as already discussed in [58], we remark that registration-based methods are tightly linked
to a number of techniques in related fields. First, registration is central in image processing: in this field,
registration refers to the process of transforming different sets of data into one coordinate system, [73]. In
computational mechanics, Persson and Zahr have proposed in [70] an r-adaptive optimization-based high-order
discretization method to deal with shocks/sharp gradients of the solutions to advection-dominated problems.
In uncertainty quantification, several authors (see, e.g., [35]) have proposed measure transport approaches to
sampling: transport maps are used to “push forward” samples from a reference configuration and ultimately
facilitate sampling from non-Gaussian distributions. Finally, the notion of registration is also at the core of
diffeomorphic dimensionality reduction ([62]) in the field of machine learning.

1.4 Methods based on nonlinear approximations: expressivity and learnability

In recent years, there has been a growing interest in nonlinear model reduction techniques, particularly for CFD
applications. A first class of methods relies on adaptive partitioning of the parameter domain, [19]. Another class
of methods relies on online basis update and/or refinement: relevant works that fit in this category might rely on
low-rank updates (e.g., [11, 21, 42]), or might rely on Grasmannian learning to construct parameter-dependent
reduced-order bases [1, 72]. A third class of methods relies on the introduction in the offline/online workflow
of a preprocessing stage to reformulate the problem in a form that is more amenable for linear approximations:
representative methods in this category are the the approach in [25] based on approximate Lax pairs, and the
method of freezing in [40]. We remark that such preprocessing stage might be performed once during the offline
stage, at the beginning of the online stage for any new µ ∈ P, or at each time step in combination with a suitable
time-marching scheme. A fourth class of methods considers directly nonlinear approximations in combination
with specialized methods to compute the solution during the online stage: to provide concrete references, we
refer to the approaches based on convolutional autoencoders, [24, 30, 32, 34], and to the approach in [20] based
on optimal transport and nonlinear interpolation. As explained below (cf. (3b)), Lagrangian methods lead

to predictions Û that are linear in the solution coefficients α̂µ and nonlinear in the mapping coefficients âµ:
depending on the way mapping coefficients are computed, Lagrangian methods fit in the third category (e.g.,
[55, 59] and this work) or in the fourth category (e.g., [37]).

To analyze the many nonlinear proposals and ultimately perform an informed decision for the specific
problem of interest, we shall interpret pMOR techniques as the combination of two fundamental blocks: a
low-rank parameter-independent operator Z : A ⊂ RQ → X and a ROM for the reduced coefficients β̂ : P → A.
To build Z, we first identify a class of approximations (see (3) below) and then we proceed to use offline data to
identify the proper (quasi-optimal) approximation within that class; after having built Z, we rely on intrusive

(projection-based) or non-intrusive (data-fitted) methods to rapidly find the coefficients β̂µ ∈ A for any new
value of the parameters in P. Examples of approximation classes include the aforementioned linear methods,
Lagrangian methods, convolutional methods, and transported methods.

• Linear methods can be written as

Ûµ = Z(β̂µ = α̂µ) =

N∑
n=1

(α̂µ)nζn, (3a)

with N = Q, A = RN , and ζ1, . . . , ζN ∈ X .
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• Lagrangian (or registration-based) methods can be written as

Ûµ = Z(β̂µ = [α̂µ, âµ]) =

N∑
n=1

(α̂µ)nζn ◦ N(âµ)−1 (3b)

where ζ1, . . . , ζN ∈ X , A = RN × Abj, N : RM → Lip(Ω;R2) such that N(a) is a bijection in Ω for all
a ∈ Abj, Q = N +M .

• Convolutional approximations ([24, 30, 32, 34]) with L > 0 layers can be stated as

Z(β̂µ = [α̂1,µ, . . . , α̂L,µ]) = NL (NL−1 (. . . , αL−1,µ) ,αL,µ) (3c)

where N` : RD` × RN` → RD`+1 with D1 = 2 (number of spatial dimensions) and DL+1 = D (number of

state variables), Q =
∑L
`=1N` and A = RQ.

• Finally, transported (or transformed) snapshot methods ([10, 39, 48, 64]) with N > 0 terms can be stated
as

Z(β̂µ = [α̂µ, â1,µ, . . . , âN,µ]) =

N∑
n=1

(α̂µ)nζn ◦ Nn(ân,µ) (3d)

where N1, . . . , NN : RM → Lip(Ω : R2), ζ1, . . . , ζN ∈ Xext := {v ∈ L2(R2) : v|Ω ∈ X}.

Note that, while in Lagrangian methods we require that N is bijective, transformed methods do not explicitly
require bijectivity of N1, . . . , NN . Note also that linear methods are a subset of Lagrangian methods — in the
sense that they reduce to linear methods for N = id, id(x) = x. Similarly, Lagrangian methods are a subset of
convolutional and transported methods.

The choice of the class of approximations should be a compromise between expressivity and learnability. In
statistical learning, expressivity (or expressive power) of a network refers to the approximation properties for a
given class of functions, [27]. Given the class of approximations C ⊂ C(A;X ) for some Q > 0 — C(A;X ) is the
space of continuous applications from A ⊂ RQ to X — we measure the expressivity of C for M in terms of the
nonlinear width ([18]):

inf
Z∈C

sup
w∈M

inf
β∈A

‖Z(β)− w‖. (4)

On the other hand, learnability depends on two distinct factors: (i) the performance of available training
algorithms to identify an approximation map Z in C that approximately realizes the optimum of (4); and (ii)

the performance of available methods to rapidly and reliably compute the coefficients β̂µ during the online
stage. Note that the training algorithm in (i) is fed with a finite set of snapshots fromM: due to the large cost
of hf CFD simulations, reduction of the number of required offline simulations is key for practical applications.

Since expressivity depends on the particular manifold of interest, while learnability depends on the PDE
model under consideration, it seems difficult to offer a definitive answer concerning the optimal choice of the
approximation class C. The aim of this work is to show that Lagrangian approximations have high expressive
power for a representative problem in aerodynamics and that they can be learned effectively based on sparse
datasets: further theoretical and numerical investigations are needed to clarify the scope of the present class of
methods and ultimately offer guidelines for the choice of the class of approximations.

1.5 Notation

We estimate the solution to (1) using a nodal-based discontinuous Galerkin (DG) finite element (FE) discretiza-
tion of degree p. Similarly to [58], we resort to a FE isoparametric discretization. We define the reference

element D̂ = {X ∈ [0, 1]2 :
∑2
d=1Xd < 1} and the Lagrangian basis {`i}

nlp

i=1 of the polynomial space Pp(D̂)
associated with the nodes {Xi}

nlp

i=1; then, recalling the definition of Thf in section 1.1, we define the elemental

mappings {Ψhf
k }

Ne

k=1 such that

Ψhf
k (X) =

nlp∑
i=1

xhf
Ti,k

`i(X), (5)

and the elements of the mesh {Dk := Ψk(D̂)}k. We further define the basis functions `i,k : Ω → R such that
`i,k(x) = 0 for all x /∈ Dk and `i,k = `i ◦Ψ−1

k (x) for x ∈ Dk, i = 1, . . . , nlp, k = 1, . . . , Ne.
We define the FE space Xhf = span{`i,ked : i = 1, . . . , nlp, k = 1, . . . , Ne, d = 1, . . . , D} where e1, . . . , eD are

the canonical basis of RD. Given w ∈ Xhf , we denote by w ∈ RNhf , Nhf = nlp ·Ne ·D, the corresponding vector
of coefficients such that

w(x) =

Ne∑
k=1

nlp∑
i=1

D∑
d=1

(w)i+nlp(k−1)+nlpNe(d−1) `i,k(x) ed, ∀ x ∈ Ω. (6)
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Note that (6) introduces an isomorphism between RNhf and Xhf . Following the discussion in [57], we can extend
the previous definitions to the mapped mesh and mapped FE space. We omit the details.

In view of the FE approximation, it is important that the deformed mesh Φµ(Thf) (cf. (2)) does not have
inverted elements. In this respect, we say that the mapping Φ : Ω × P → R2 is bijective with respect to Thf

(discrete bijectivity, [58, Definition 2.2]) if the elemental mappings of the deformed mesh are invertible.

2 Model problem

We consider the problem of approximating the solution to the parameterized compressible Euler equations.
The compressible Euler equations are a widely-used model to study aerodynamic flows: we refer to [60] for a
thorough discussion; we here consider the non-dimensional form of the equations. We denote by ρ the density
of the fluid, by u = [u1, u2] the velocity field, by E the total energy and by p the pressure; we further define
the vector of conserved variables U = [ρ, ρu,E] : Ω → RD=4. In this work, we consider the case of ideal gases
for which we have the following relationship between pressure and conserved variables U :

p = (γ − 1)

(
E − 1

2
ρ‖u‖22

)
, (7a)

where γ is the ratio of specific heats, which is here set equal to γ = 1.4. We further introduce the speed of
sound a and the Mach number Ma with respect to the channel axis such that

a =

√
γ
p

ρ
, Ma =

u1

a
. (7b)

Finally, we introduce the Euler physical flux and source term:

F (U) =

 ρuT

ρuuT + p1
uT (E + p)

 , S(U) = 0. (7c)

We consider a parametric channel flow past a circular bump: the parameters are the free-stream Mach
number Ma∞ and the central angle α associated with the bump — cf. Figures 1(a),

µ = [α,Ma∞] ∈ P = [0.75, 0.8]× [1.7, 1.8]. (8)

The horizontal length of the bump and the height of the channel are set to one. We impose wall conditions at
the lower and upper boundaries, transmissive boundary conditions at the outflow and we set U = U∞ at the
inflow with

ρ∞ =
p∞
T∞

, u∞ =
√
γT∞

[
Ma∞
0

]
, p∞ =

1

(1 + γ−1
2 Ma2

∞)
γ
γ−1

, and T∞ =
1

1 + γ−1
2 Ma2

∞
.

Figure 1(b) shows an horizontal slice of the Mach number at x2 = 0.6 for three parameters µmin = [0.75, 1.7],
µ̄ = [0.775, 1.75] µmax = [0.8, 1.8]; Figures 1(c) and (d) show the contour lines of the Mach number for µmin and
µmax: the red dots in the Figures denote salient points of the flow for µ = µmin and are intended to simplify
the comparisons between the two flows.

We resort to a DG discretization based on artificial viscosity. We use the local Lax-Friedrichs flux for the
advection term, and the BR2 flux (cf. [6]) for the diffusion term. We consider the piecewise-constant viscosity

(ν(U))k = cvisc

(
hk
p

)2
1

|Dk|

∫
Dk

|∇ · u|dx (9)

where hk =
√
|Dk| is the characteristic size of the k-th element of the mesh and cvisc > 0 is a constant set equal

to cvisc = 10 in the numerical simulations. Note that (9) is an example of dilation-based model for the viscosity:
we refer to the recent review [69] for alternative viscosity models and for extensive comparisons.

To estimate the hf solution Uhf
µ ∈ Xhf , we resort to the pseudo-time continuation strategy proposed in [4].

More in detail, if we denote by Rµ : Xhf → RNhf and by Jµ : Xhf → RNhf ,Nhf the hf residual and the hf Jacobian
and by M ∈ RNhf ,Nhf the mass matrix, we consider the iterative scheme:

Uhf,k+1
µ = Uhf

µ + ∆tkδU
hf,k+1
µ , with

(
M + ∆tkJµ(Uhf,k

µ )
)
δUhf,k+1

µ = −Rµ(Uhf,k
µ ) k = 1, 2, . . . , (10)

where ∆tk is chosen adaptively based on the strategy detailed in [16, Chapter 4]. Note that (10) can be
interpreted as a Newton solver with an adaptive relaxation factor.

5



α

Ω

(a) (b)

(c) (d)

Figure 1: flow past a circular bump. (a) geometric configuration. (b) horizontal slices of the Mach number at
x2 = 0.6 for µmin = [0.75, 1.7], µ̄ = [0.775, 1.75] µmax = [0.8, 1.8]. (c)-(d) contour lines of the Mach number for
µmin and µmax.

We conclude this section by introducing the purely-geometric map used to deform the mesh in absence of
a priori information about the solution: in section 3.1, we introduce a generalization of this map that takes
into account the parametric field of interest. Towards this end, we define Ω̂ = (0, 1)2 and we introduce the
parameterized Gordon-Hall map (cf. [26]) as

Ψµ(x) = (1− x2)cbtm,µ(x1) + x2ctop(x1) + (1− x1)cleft(x2) + x1cright(x2)

− ((1− x1)(1− x2)cbtm,µ(0) + x1x2ctop(1) + x1(1− x2)cbtm,µ(1) + (1− x1)x2ctop(0)) ,
(11)

where cbtm, ctop, cleft, cright are parameterizations of the bottom, top, left and right boundaries of the domain,
respectively. Note that cbtm depends on the parameter µ through the angle α (cf. Figure 1(a)): we build cbtm

so that the jump discontinuities of its derivative c′btm — which correspond to the extrema of the bump — are

located at x1 = 0.2 and x1 = 0.6 for all parameters. We further define the inverse map Λµ = Ψ−1
µ : Ωµ → Ω̂.

We have now the elements to introduce the parametric mapping Φgeo such that

Φgeo
µ = Ψµ ◦ Λµ̄, (12)

where µ̄ is the centroid of P. Given the mesh Thf , we compute the reference points {xhf,ref
j = Λµ̄(xhf

j )}Nhf,v

j=1 ;
then, for any new value of the parameter, we compute the deformed points of the mesh using the identity
Φgeo
µ (xhf

j ) = Ψµ(xhf,ref
j ) for j = 1, . . . , Nhf,v.

3 Methodology

In this section, we present the methodology through the vehicle of the model problem introduced in section 2. In
section 3.1, we present the registration procedure, while in section 3.2, we discuss in detail the projection-based
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MOR scheme. Finally, in section 3.3, we illustrate the multifidelity approach to reduce offline costs. We state
upfront that the two building blocks of our formulation, registration and LSPG formulation in parameterized
geometries, have been extensively discussed in [58] and [57].

3.1 Registration

The registration procedure takes as input a mesh Thf of Ω, a set of snapshots {(µk, Uk = Uhf
µk)}ntrain

k=1 , and returns

a parameterized mapping Φ : Ω× P → R2,

Φ = param registration
(
Thf , {(µk, Uk = Uhf

µk)}ntrain

k=1

)
.

In the remainder of this section, we illustrate the key features of the procedure and we provide several comments.

3.1.1 Spectral maps

The first step of our registration procedure consists in introducing a class of approximation maps. Following
[58], we consider mappings of the form

N(a;µ) = Ψµ ◦ Φ̃ ◦ Λµ̄, Φ̃ = id + ϕ, ϕ =

M∑
m=1

(a)mϕm. (13a)

Note that N generalizes the map (12) in the sense that N(0;µ) = Φgeo
µ . Here, µ̄ is the centroid of P and

ϕ1, . . . , ϕM belong to the polynomial space

Whf =
{
ϕ ∈ [QJ ]2 : ϕ · n̂|∂Ω̂ = 0, ϕ(s, 0) = 0, s ∈ {0.2, 0.6}

}
, (13b)

where QJ denotes the space of tensorized polynomials of degree at most J in each variable, n̂ is the outward
normal to Ω̂. In the numerical tests, we consider J = 15. Note that the second condition in (13b) ensures
that jump discontinuities of ∇N(a;µ) are located in [−0.5, 0], [0.5, 0] for all a ∈ RM and µ ∈ P. We equip the
mapping space Whf with the H2 norm,

‖ϕ‖2
H2(Ω̂)

:=

∫
Ω̂

 2∑
i,j,k=1

(∂j,kϕi)
2 +

2∑
i=1

ϕ2
i

 dx. (14)

Exploiting the analysis in [55, 58], we find that N(a;µ) is a bijection from Ω to Ωµ for all a in the set

Abj :=

{
a ∈ RM : inf

x∈Ω̂
ĝ(x; a) > 0

}
, ĝ(·; a) := det∇Φ̃(a). (15a)

The set Abj is difficult to deal with numerically: as a result, we define A′bj :=
{
a ∈ RM : C(a) ≤ 0

}
such that

C(a) :=

∫
Ω̂

exp

(
ε− ĝ(x; a)

Cexp

)
+ exp

(
ĝ(x; a)− 1/ε

Cexp

)
dx− δ, (15b)

where ε, Cexp, δ are positive constants that will be specified in the next section. Provided that exp
(

ε
Cexp

)
is

sufficiently large, we find that there exists a constant C > 0 such that (see [55, section 2.2]):

Abj ⊂ A′bj ∩ {a : sup
x∈Ω̂

‖∇ĝ(x; a‖2 ≤ C}. (16)

The discussion above motivates the combination of the constraint C(a) ≤ 0 with a (strong or weak) control of
the second-order derivatives of the mapping. We refer to C(a) ≤ 0 as to the bijectivity constraint.

3.1.2 Optimization-based registration

Given µ ∈ P, we denote by sµ ∈ L2(Ω̂) a target sensor that depends on the solution Uµ, and we introduce

the N -dimensional template space SN ⊂ L2(Ω̂). We further denote by WM ⊂ Whf an M -dimensional mapping
space and by WM : RM → WM an isometry such that ‖WMa‖H2(Ω̂) = ‖a‖2 for all a ∈ RM . We discuss the

construction of SN ,WM and the sensor sµ in the next sections.
We can then introduce the optimization statement that is used to identify the mapping coefficients for a

given µ ∈ P:
min
a∈RM

f(a; sµ,SN ,WM ) + ξ|WMa|2
H2(Ω̂)

+ ξmshRmsh(a;µ);

subject to C(a) ≤ 0,
(17a)
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where |ϕ|2
H2(Ω̂)

=
∫

Ω̂

∑2
i,j,k=1(∂j,kϕi)

2 +
∑2
i=1 ϕ

2
i dx is the H2 seminorm. Here, the proximity measure f

measures the projection error associated with the mapped target sµ with respect to the template space SN ,

f(a; sµ,SN ,WM ) := min
ψ∈SN

∫
Ω̂

(
sµ ◦ Φ̃(·; a)− ψ

)2

dx, Φ̃ = id +WMa. (17b)

The contribution ξ|WMa|2
H2(Ω̂)

is a regularization term that is intended to control the norm of the mapping

Hessian and, in particular, the gradient of the Jacobian determinant ∇ĝ(·; a): recalling (16), the latter is
important to enforce bijectivity. The term Rmsh penalizes excessive distortions of the mesh and ultimately
preserves the discrete bijectivity (cf. section 1.5):

Rmsh(a;µ) =

Ne∑
k=1

|Dk|exp (fmsh,k (N(a;µ)) − fmsh,max) , (17c)

where fmsh,max > 0 is a given positive constant and

fmsh,k(Φ) :=
1

2

‖∇Ψhf,1
k,Φ ‖2F

|det(∇Ψhf,1
k,Φ )|

, k = 1, . . . , Ne, (17d)

‖ · ‖F is the Frobenius norm and Ψhf,1
k,Φ is the elemental mapping associated with the mapped mesh and a p=1

discretization. We observe that the indicator (17d) is widely used for high-order mesh generation, and has
also been considered in [71] to prevent mesh degradation, in the DG framework. Finally, C is the bijectivity
constraint in (15b).

We observe that the optimization statement depends on several parameters: here, we set

ε = 0.1, Cexp = 0.025ε, δ = 1, fmsh,max = 10, ξ = 10−3, ξmsh = 10−6.

Since the optimization statement (17) is highly nonlinear and non-convex, the choice of the initial condition is of
paramount importance: here, we exploit the strategy described in [55, section 3.1.2] to initialize the optimizer;
furthermore, we resort to the Matlab function fmincon [36], which relies on an interior penalty algorithm to
find local minima of (17). In our implementation, we provide gradients of the objective function and we rely on

a structured mesh on Ω̂ to speed up evaluations of the sensor and its gradient at deformed quadrature points,
at each iteration of the optimization algorithm.

Remark 3.1. In our experience, the choice of ξ is of paramount importance for performance. Small values
of ξ lead to lower values of the proximity measure at the price of more irregular mappings (i.e., larger values
of |WMa|H2). We empirically observe that the latter reduces the generalization properties of the regression
algorithm (cf. section 3.1.5) used to define the parameterized mapping; in terms of reconstruction performance,
we also find that the mapping process introduces small-amplitude smaller spatial scale distortions that ultimately
control convergence of the ROM (cf. [55, Figure 5]) and become more and more noticeable as ξ decreases.

3.1.3 Parametric registration

Given snapshots of the sensor s, {(µk, sµk)}ntrain

k=1 , we propose to iteratively build the template space SN , WM

through the Greedy procedure provided in Algorithm 1. The algorithm takes as input (i) the sensors associated
with the snapshot set, (ii) the initial template SN0

, and (iii) the mesh Thf , and returns (i) the final template
space SN , (ii) the isometry WM associated with the mapping space, and (iii) the mapping coefficients {ak}k.
To clarify the procedure, we introduce notation[

a?, f?N,M
]

= registration (s,SN ,WM , Thf , µ)

to refer to the function that takes as input the target sensor s, the template space SN , the isometry WM :
RM → WM associated with the mapping space, the mesh Thf of Ω and the parameter µ ∈ P and returns a
solution to (17) and the value of the proximity measure f?N,M = f(a?, s,SN ,WM ). Furthermore, we introduce
the POD function that takes as input a set of mapping coefficients and returns the reduced isometry and the
projected mapping coefficients

[WM , {ak}k] = POD
(
{WM̃ ãk}ntrain

k=1 , tolpod, ‖ · ‖H2(Ω̂)

)
,

where M is chosen according to the eigenvalues {λm}m of the Gramian matrix C ∈ Rntrain,ntrain such that
Ck,k′ = ãk · ãk′ ,

M := min

M ′ :

M ′∑
m=1

λm ≥ (1− tolpod)

ntrain∑
i=1

λi

 . (18)
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We observe that our approach depends on several hyper-parameters. In our tests, we set SN0=1 = span{sµ̄},
where µ̄ is the centroid of P; furthermore, we set Nmax = 5, tolpod = 10−3 and tol = 10−4.

Algorithm 1 Registration algorithm

Inputs: {(µk, sk = sµk )}ntrain
k=1 ⊂ P × L2(Ω̂) snapshot set, SN0 = span{ψn}N0

n=1 initial template space; Thf mesh.

Outputs: SN = span{ψn}Nn=1 template space, WM : RM →WM mapping isometry, {ak}k mapping coefficients.

1: Initialization: SN=N0 = SN0 , WM =Whf .

2: for N = N0, . . . , Nmax − 1 do

3:

[
a?,k, f?,kN,M

]
= registration

(
sk,SN ,WM , Thf , µ

)
for k = 1, . . . , ntrain.

4: [WM , {ak}k] = POD
(
{WMa?,k}ntrain

k=1 , tolpod, ‖ · ‖H2(Ω̂)

)
5: if maxk f

?,k
N,M < tol then, break

6: else
7: SN+1 = SN ∪ span{sk? ◦ (id +WMak

?

)} with k? = arg maxk f
?,k
N,M .

8: end if
9: end for

3.1.4 Choice of the registration sensor

The sensor s : P → L2(Ω̂) should be designed to capture relevant features of the solution field that are important
to track through registration; furthermore, it should be sufficiently smooth to allow efficient applications of
gradient-based optimization methods. Given the FE field in the deformed mesh (Φgeo

µ (Thf),U
hf
µ ), we compute

the Mach number Mahf
µ (see (7b)) in the nodes of the mesh; then, we define the sensor as the solution to the

following smoothing problem:

sµ := arg min
s∈H1(Ω̂)

ξs‖∇s‖2L2(Ω̂)
+

Nhf,v∑
i=1

(
s(xhf,ref

j )−
(
Mahf

µ

)
j

)2

. (19)

The regularization term associated with the hyper-parameter ξs > 0 is needed due to the fact that sµ is defined

over a structured1 mesh over Ω̂ that is not related to the mesh Thf used for FE calculations. In all our tests, we
consider ξs = 10−4. We refer to [58, section 3.3] for an alternative strategy for the construction of the sensor.

We observe that the choice of the Mach number to define the registration sensor is coherent with the choice
made in [44] to define the highest-modal decay artificial viscosity. Other choices are possible: in particular,
using the fluid density ρ in (19) as opposed to Ma, we obtain similar results. Figure 2 shows the behavior of
the registration sensors for the two values of the parameter in Figure 1.

(a) µ = µmin (b) µ = µmax

Figure 2: registration sensor for two values of the parameter, µmin = [0.75, 1.7], µmax = [0.8, 1.8].

1As explained in [58], the use of structured meshes for the sensor is crucial to speed up the evaluation of the objective function
of (17).
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3.1.5 Generalization

Given the dataset {(µk,ak)}ntrain

k=1 as provided by Algorithm 1, we resort to a multi-target regression algorithm
to learn a regressor µ 7→ âµ and ultimately the parametric mapping

Φ : Ω× P → R2, Φµ := N(WM âµ;µ). (20)

We here resort to radial basis function (RBF, [65]) approximation: other regression algorithms could also be
considered. To avoid overfitting, we retain exclusively modes for which the out-of-sample R-squared is above a
given threshold (here, Rmin = 0.75): we refer to [55, 59] for further details.

We observe that purely data-driven regression techniques do not enforce bijectivity for out-of-sample pa-
rameters: in practice, we should thus consider sufficiently large training sets in Algorithm 1. This is a major
limitation of the present approach that motivates the multifidelity proposal discussed in section 3.3.

3.2 Projection-based reduced-order model

To clarify the formulation and also provide insights into the implementation, we introduce a number of definitions
and further notation. Given the FE vector w ∈ RNhf , we define the elemental restriction operators Ek : RNhf →
Rnlp·D such that Ekw contains the values of the FE field in the nodes of the k-th element for k = 1, . . . , Ne;
the elemental restriction operators Eext

k : RNhf → Rnlp·D,3 such that Eext
k w contains the values of the FE

field in the nodes of the neighbors of the k-th element, for k = 1, . . . , Ne. We further introduce the set
of mesh nodes associated with the k-th element and its neighbors: Xhf

k = {xhf
Ti,k
}nlp

i=1 and Xhf
k,ext = {xhf

Ti,k′
:

i = 1, . . . , nlp, Dk ∩ Dk′ 6= ∅}; given the mapping Φ, we define Φµ(Xhf
k ) = {Φµ(xhf

Ti,k
)}nlp

i=1 and Φµ(Xhf
k,ext) =

{Φµ(xhf
Ti,k′

) : i = 1, . . . , nlp, Dk ∩ Dk′ 6= ∅}.
We have now the elements to introduce the DG residual associated with (1):

Rhf
µ (U,V) =

Ne∑
k=1

rkµ(U,V), ∀ U,V ∈ RNhf , (21a)

where the local residual rkµ corresponds to the contribution to the global residual associated with the k-th
element of the mesh and depends on the value of the FE fields U, V in the k-th element and in its neighbors,

rkµ(U,V) = rµ
(
EkU, EkV, Eext

k U, Eext
k V, Φµ(Xhf

k ), Φµ(Xhf
k,ext)

)
, k = 1, . . . , Ne. (21b)

In the DG literature, schemes in which the primal unknown is only coupled with the unknowns of the adjacent
elements are referred to as “compact”: the BR2 flux considered in this work is an example of compact treatment
of second-order terms for DG formulations (cf. [5]). Decomposition of the residual as the sum of local elemental
contributions is at the foundation of the hf assembling and also of the hyper-reduction procedure discussed
below. We emphasize that the decomposition of the facets’ contributions is not unique: in order to ensure
certain stability and conservation properties for the hyper-reduced ROM, we here consider the energy-stable
element-wise decomposition in [67, section 3.1].

Given the reduced-order bases (ROBs) Z ∈ RNhf ,N and Y ∈ RNhf ,Jes , N ≤ Jes, and the trial and test norms

‖ · ‖ and |||·|||, the EQ-LSPG ROM considered in this work reads as follows: find Ûµ = Zα̂µ to minimize

min
ζ∈col(Z)

sup
η∈col(Y)

Req
µ (ζ,η)

|||η|||
. (22a)

Here, Req
µ is the empirical residual defined as

Req
µ (U,V) =

∑
k∈Ieq

ρeq
k r

k
µ(U,V), ∀ U,V ∈ RNhf , (22b)

where Ieq ⊂ {1, . . . , Ne} are the indices of the sampled elements and ρeq = [ρeq
1 , . . . , ρ

eq
Ne

] are positive empirical
weights to be determined, ρeq

k > 0 ⇔ k ∈ Ieq. Provided that the columns [η1, . . . ,ηJes ] of Y are orthonormal
with respect to the |||·||| norm, we can rewrite (22a) as

α̂µ ∈ arg min
α∈RN

‖Req
µ (α)‖2, Req

µ (α) =
[
Req
µ (Zα,η1), . . . , Req

µ (Zα,ηJes)
]
. (22c)

Note that (22c) is a nonlinear least-squares problem that can be solved using the Gauss-Newton algorithm. We
initialize the iterative procedure using a non-intrusive estimate of the solution coefficients: if the number of
training points is sufficiently large — such as in the case of POD data compression — we use RBF regression
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as in [59, 57]; for small training sets — such as in the first steps of the Greedy algorithm — we use nearest-
neighbors regression. Similarly to [59], we resort to a discrete L2 norm for the trial space and to a discrete
H1 norm for the test space: we refer to [9] for a discussion on variational formulations for first-order linear
hyperbolic problems.

The MOR formulation (22) depends on the choice of the trial and test ROBs Z and Y and on the sparse
vector of empirical weights ρeq: we discuss their construction in the remainder of section 3.2. Before proceeding
with the discussion, we remark that we can exploit (22b) to assemble the reduced residual Req

µ : first, we evaluate

Φµ(Xhf
k ) and Φµ(Xhf

k,ext) for all k ∈ Ieq; then, we compute the local residuals {rkµ(Zα,ηj)}k using (21b); finally,

we compute Req
µ (α) by summing over the sampled elements, cf. (22b). Note that, since the residuals {rkµ}k are

linear with respect to the test function, we can use standard element-wise residual evaluation routines to compute
local contributions to the residual. Furthermore, we observe that computation of the residual Req

µ (α) requires
the storage of trial and test ROBs in the sampled elements and in their neighbors, and is thus independent of
the total number of mesh elements. We refer to [57] for further details.

Remark 3.2. We observe that we here resort to a discretize-then-map (DtM, [17, 57, 63]) treatment of pa-
rameterized geometries. As discussed in [57], the DtM approach — as opposed to the more standard map-then-
discretize (MtD, [33, 50, 2, 3, 51]) ) approach — in combination with EQ allows to reuse hf local integration
routines and is thus considerably easier to implement, particularly for nonlinear PDEs.

3.2.1 Construction of trial and test spaces

We resort to the standard data compression algorithms POD and weak-Greedy to build the trial ROB Z. For
stability reasons, we ensure that the columns ζ1, . . . , ζN of Z are orthonormal with respect to the ‖ · ‖ norm.
We anticipate that, for the problem considered in this paper, POD leads to superior performance (cf. section
4) in terms of online accuracy; however, POD requires more extensive explorations of the parameter domain
and is thus more onerous during the offline stage. For this reason, in section 3.3, we resort to the weak-Greedy
method in combination with multi-fidelity training to reduce offline costs. We refer to the monographies [28, 46]
for extensive discussions on POD and weak-Greedy data compression.

For completeness, we report in Algorithm 2 the weak-greedy algorithm as implemented in our code. Note
that the algorithm takes as input the mesh Thf and the mapping Φ which define the FE mesh for all parameters,
and returns the ROB Z and the ROM for the solution coefficients. The residual indicator is presented in section
3.2.3. The function Gram-Schmidt at Line 4 performs one step of the Gram Schmidt process to ensure that
the trial ROB is orthonormal with respect to the ‖ · ‖ norm. Construction of the ROM at Line 5 involves the
construction of the test ROB Y and the computation of the empirical quadrature rule: these procedures are
described below.

Algorithm 2 Weak-greedy algorithm.

Inputs: Ptrain := {µk}ntrain
k=1 training parameter set, Φ : Ω× P → R2 mapping; Thf mesh.

Outputs: Z trial ROB; µ ∈ P 7→ α̂µ ROM for the solution coefficients.

Offline stage

1: Choose µ?,1 = µ̄.

2: for N = 1, . . . , Nmax do
3: Solve the hf problem for µ = µ?,N to obtain U? = Uµ?,N .

4: Update the ROB Z = Gram-Schmidt(Z,U?, ‖ · ‖).
5: Build the ROM µ ∈ P 7→ α̂µ.

6: for k = 1, . . . , ntrain do
7: Estimate the solution using the ROM for µ = µk.

8: Compute the error indicator ∆µk := Rµk(α̂µk) (cf. section 3.2.3).
9: end for

10: Set µ?,N+1 = arg maxµ∈Ptrain
∆µ.

11: end for

As rigorously proven in [59, Appendix C] for linear inf-sup stable problems, the test ROB Y should ap-
proximate the Riesz representers of the Fréchet derivative of the residual at Uhf

µ applied to the elements of the
trial ROB for all µ ∈ P. Similarly to [57], we here resort to the sampling strategy based on POD proposed in
[59]: first, given the Y inner product ((·, ·)) such that |||·||| =

√
((·, ·)), we compute the Riesz representers of the
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Fréchet derivative of the residual at Uhf
µ , evaluated for the elements of the n-th trial bases ζn and for the k-th

parameter µk in the training set,

((ψk,n,v)) = DRhf
µ [Uhf

µ ](ζn,v), ∀ v ∈ RNhf ,

for n = 1, . . . , N , k = 1, . . . , ntrain; then, we apply POD for a given tolerance toltest > 0 to find the test ROB
Y,

[Y, ·] = POD
(
{ψk,n}k,n, toltest, |||·|||

)
.

The POD tolerance should be sufficiently tight to ensure the well-posedness of the reduced problem: in the
numerical tests of section 4, we set toltest = 10−3.

3.2.2 Empirical quadrature

As in [57], we seek ρeq ∈ RNe
+ such that (i) the number of nonzero entries in ρeq, ‖ρeq‖`0 , is as small as possible;

(ii, constant function constraint) the constant function is approximated correctly in Ω (i.e., Φ = id),

∣∣∣ Ne∑
k=1

ρeq
k |Dk| − |Ω|

∣∣∣� 1; (23)

(iii, manifold accuracy constraint) for all µ ∈ Ptrain,eq = {µk}ntrain+ntrain,eq

k=1 , the empirical residual satisfies∥∥∥Rhf
µ (αtrain

µ ) − Req
µ (αtrain

µ )
∥∥∥

2
� 1. (24a)

where Rhf
µ corresponds to substitute ρeq

1 = . . . = ρeq
Ne

= 1 in (22b) and αtrain
µ satisfies

αtrain
µ =


ZTXhfU

hf
µ if µ ∈ Ptrain;

arg min
α∈RN

‖Rhf
µ (α)‖2, if µ /∈ Ptrain.

(24b)

Here, Xhf is the matrix associated with the (·, ·) inner product and Ptrain = {µk}ntrain

k=1 is the set of parameters
for which the hf solution is available. When we apply POD to generate the ROM, we set Ptrain = Ptrain,eq; when
we apply the weak-Greedy algorithm, we augment Ptrain with ntrain,eq = 10 randomly-selected parameters (see
[67, Algorithm 1]): we empirically observe that this choice improves performance of the hyper-reduced ROM,
particularly for small values of ntrain. We refer to the above-mentioned literature for a thorough motivation of
the previous constraints; in particular, we refer to [14, 67] for a discussion on the conservation properties of the
ROM for conservation laws.

It is possible to show (see, e.g., [59]) that (i)-(ii)-(iii) lead to a sparse representation problem of the form

min
ρ∈RNe

‖ρ‖`0 , s.t

{ ‖Gρ− b‖2 ≤ δ;

ρ ≥ 0;
(25)

for a suitable threshold δ > 0, and for a suitable choice of G,b. Following [22], we here resort to the non-
negative least-squares method to find approximate solutions to (25). In particular, we use the Matlab function
lssnonneq, which takes as input the pair (G,b) and a tolerance toleq > 0 and returns the sparse vector ρeq,

[ρeq] = lsqnonneg (G,b, toleq) . (26)

We refer to [15] for an efficient implementation of the non-negative least-squares method for large-scale problems.

3.2.3 Dual residual estimation

We here resort to the dual residual error indicator

Rhf
µ (α) := sup

v∈RNhf

Rhf
µ (Zα, v)

|||v|||
, α ∈ RN , (27)

to drive the weak-Greedy algorithm. If we denote by Yhf the matrix associated with the |||·||| norm, we have
that

Rhf
µ (α) :=

√
Rhf
µ (Zα)T Y−1

hf Rhf
µ (Zα), ∀µ ∈ P,α ∈ RN .

Computation of Rhf
µ (α) thus requires to assemble the hf residual Rµ(α) ∈ RNhf and then solve a linear problem

of size Nhf . Since the matrix Yhf is symmetric positive definite and parameter-independent, we use Cholesky

12



factorization to speed up computations of the inner loop in Algorithm 2 — we further use the Matlab function
symamd to reduce fill-in.

In the numerical results (cf. Appendix A), we show that Rhf
µ (·) is highly correlated with the relative error.

In order to use Rhf
µ (·) during the online stage, we shall perform hyper-reduction: we refer to [57] for the details.

In our experience, for the value of ntrain and for the particular hf discretization considered, the cost of the
greedy search in Algorithm 2 is negligible compared to the cost of an hf solve; as a result, hyper-reduction does
not seem needed during the offline stage.

3.3 Offline/online computational decomposition based on two-fidelity sampling

As discussed in section 3.1, the registration procedure relies on a regression algorithm to compute the mapping
coefficients âµ for out-of-sample parameters. Since the regression algorithm does not explicitly ensure that
bijectivity is satisfied, in practice we should consider sufficiently large training sets Ptrain. To address this issue,
we propose to use a multi-fidelity approach, which relies on hf solves on a coarser grid to learn the parametric
mapping Φ. Algorithm 3 summarizes the offline/online procedure implemented in our code.

We state below several remarks.

• The snapshots {Uhf,c
µk
}ntrain,c

k=1 are exclusively used to compute the sensors {sµk}
ntrain,c

k=1 that are then fed
into the registration algorithm: we might then employ snapshots from third-party solvers and we might
also use different grids for different parameters.

• In this work, we propose to build the fine mesh Thf based on the coarse snapshot Uhf,c
µ̄ ; we use here the

open source mesh generator proposed in [45] based on a suitable relative size function: we provide details
concerning the definition of the size function in Appendix B. As anticipated in the introduction, we expect
that for more challenging problems it might be necessary to adapt the mesh based on multiple snapshots.

• Computation of the ROB Z and of the ROM for the solution coefficients and the online evaluation can
be performed using standard pMOR algorithms for linear approximations in parameterized geometries:
we believe that this represents a valuable feature of the proposed approach that allows its immediate
application to a broad class of problems.

• Our multi-fidelity procedure does not include any update of the sensors as more accurate simulations
become available during Step 5 of the offline stage: as a result, it might lead to poor results if the initial
discretization is excessively inaccurate. Development of more sophisticated multi-fidelity techniques is the
subject of ongoing research.

Algorithm 3 Offline online algorithm.

Offline stage

1: Generate the snapshots {Uhf,c
µk
}ntrain,c

k=1 based on the grid Thf,c and the mapping Φgeo.

2: Use the snapshots {Uhf,c
µk
}ntrain,c

k=1 to compute the sensors {sµk}
ntrain,c

k=1 using (19).

3: Generate the fine mesh Thf .

4: Apply registration (cf. Algorithm 1) based on {sµk}
ntrain,c

k=1 and the mesh Thf .

5: Generate the ROB Z and the ROM for the solution coefficients µ ∈ P 7→ α̂µ ∈ RN .

Online stage (for any given µ ∈ P)

1: Solve the ROM to compute α̂µ.

2: Compute the deformed mesh Φµ(Thf) and Ûµ = Zα̂µ.

4 Numerical results

We present below extensive numerical investigations for the model problem introduced in section 2. Further
numerical tests are provided in Appendix A.

4.1 Test 1: single-fidelity training

In this first test, we consider performance of our approach without multi-fidelity training. Towards this end,
we consider a p=2 DG FE discretization with Nhf = 197856 degrees of freedom (Ne = 8204): the FE mesh is
depicted in Figure 5(a). We consider an equispaced grid of 11×11 parameters Ptrain := {µk}ntrain

k=1 ⊂ P (ntrain =
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121); we further consider ntest = 10 randomly-selected parameters for testing. We measure performance of the
ROM in terms of the average out-of-sample relative prediction error :

Eavg :=
1

ntest

∑
µ∈Ptest

‖Uhf
µ − Ûhf

µ ‖L2(Ωµ)

‖Uhf
µ ‖L2(Ωµ)

. (28)

The mapping Φ that is obtained applying the registration procedure in Algorithm 1 consists of three modes
(M = 3): the R-squared associated with the RBF regressors is above the threshold for all three modes.

Figure 3 shows performance of linear and Lagrangian approaches based on POD data compression. Figure
3(a) shows the projection error, while Figure 3(b) shows the error associated with the EQ-LSPG ROM introduced
in section 3.2. We observe that registration significantly improves performance for all values of N . Figure 4
replicates the results for the ROM based on weak-Greedy2 compression: note that also in this case registration
significantly improves performance for all values of N considered. We further observe that our EQ-LSPG ROM
is able to achieve near-optimal performance compared to projection for both linear and Lagrangian approaches
and for both POD and Greedy compression.
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Figure 3: single-fidelity training. Comparison of linear and Lagrangian approaches. Trial ROB Z is built using
POD.
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Figure 4: single-fidelity training. Comparison of linear and Lagrangian approaches. Trial ROB Z is built using
weak-Greedy.

2We initialize the Greedy procedure with N0 = 4 equispaced samples. The Greedy search is performed over the training set of
ntrain = 121 parameters.
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4.2 Test 2: multi-fidelity training

We now validate the full offline/online algorithm presented in section 3.3: towards this end, we consider the
same hf discretization and parameter set Ptrain considered in the previous section to compute the mapping Φ;
on the other hand, we use the refined grid depicted in Figure 5(b) with Nhf = 402048 (Ne = 16752) to generate
the hf snapshots.

(a) (b)

Figure 5: multi-fidelity training. (a) coarse mesh used for sensor generation. (b) fine mesh used for MOR
calculations.

As in the previous case, the mapping Φ that is obtained applying the registration procedure in Algorithm 1
consists of three modes (M = 3); all three mapping coefficients are well-approximated through RBF regression.
Note that the mapping considered in this test differs from the one in the previous test due to the fact that
Algorithm 1 is fed with a different mesh. Nevertheless, we find that the differences between the two mappings
are moderate.

In Figure 6, we investigate the ability of the parametric mesh Φµ(Thf) to track the sharp gradient regions.
More in detail, in the background we show the mesh density log10(hµ); in the foreground we show the contour
lines of the Mach number, for µmin = [0.75, 1.7] and µmax = [0.8, 1.8]. Here, the mesh density is defined as
hµ(x) :=

√
|Dk,Φµ | if x ∈ Dk,Φµ , where Dk,Φµ is the k-th element of the mesh Φµ(Thf). We observe that the mesh

“follows” the shocks of the solution field: registration is thus able to correctly deform the mesh to track relevant
features of the parametric field.

(a) µmin (b) µmax

Figure 6: multi-fidelity training. Comparison of contour lines of Mach number and mesh density log10(h) for
two values of the parameter.

In Figure 7, we show performance of EQ-LSPG for POD (based on ntrain = 121 snapshots) and weak-
Greedy data compression; to facilitate interpretation, we further report the average error of the coarse solver.
We observe that also in this case the ROM is able to provide accurate predictions for extremely moderate values
of the ROB size N . In particular, EQ-LSPG with weak-Greedy sampling is able to achieve average out-of-sample
errors below 10−3 with only N = 12 hf solves.

5 Conclusions

In this work, we developed and numerically assessed a multi-fidelity projection- and registration-based MOR
procedure for two-dimensional hyperbolic PDEs in presence of shocks. The key features of our approach are (i)
a general (i.e., independent of the underlying PDE) registration procedure for the computation of the mapping
Φ that tracks moving features of the solution field; (ii) an hyper-reduced LSPG ROM for the computation of
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Figure 7: multi-fidelity training. Performance of EQ-LSPG for POD and weak-Greedy data compression.

the solution coefficients; and (iii) a multi-fidelity approach based on coarse simulations to train the mapping Φ
and Greedy sampling in parameter, to reduce offline costs. We illustrate the many pieces of our formulation
through the vehicle of a supersonic inviscid flow past a bump.

We wish to extend the present work in several directions. First, our multi-fidelity approach does not include
a feedback control on the accuracy of the coarse simulations: for this reason, it might be brittle for more involved
problems. It is thus important to devise robust multi-fidelity strategies that are able to correct the inaccuracies
of the coarse simulations. Second, we wish to relax the bijectivity-in-Ω constraint in the registration algorithm
by suitably extending the field outside the domain of interest: this would allow to increase the flexibility of our
approach — particularly, in the presence of fictitious boundaries in the computational domains — and ultimately
improve performance. Third, as stated in the introduction, we wish to combine our r-type, registration-based,
parametric mesh adaptivity technique with h-type adaptivity.
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A Further numerical investigations

We present here further numerical results to better illustrate the performance of our method. We state upfront
that in the results of Figures 8, 9, 10, we show results for POD data compression.

In Figure 8 we show the size of the test ROB Y as obtained using the Algorithm described in section 3.2 for
both linear and Lagrangian ROMs. We observe that Jes is considerably larger for the linear ROM: registration
thus also helps reduce the size of the test space required for stability.

Figure 9 investigates performance of the hyper-reduction procedure: we show the behavior of the out-of-
sample error Eavg for different EQ tolerances in (26); we further show the percentage of sampled elements
Q/Ne · 100 selected by the EQ procedure. We remark that EQ ensures accurate performance for toleq ≤ 10−10

for all values of N considered and for both linear and Lagrangian ROMs. Interestingly, the linear ROM requires
slightly more sampled elements: we conjecture that this is due to the larger size of the test space.

In Figure 10, we illustrate the effect of discretization on hyper-reduction: we show the percentage of sampled
elements Q/Ne ·100 selected by the EQ procedure for two tolerances, several values of the trial ROB size N , and
for the two meshes considered in this work (cf. Figure 5). We find that the absolute value of sampled elements
weakly depends on the underlying FE mesh; as a result, hyper-reduction becomes more and more effective as
Ne increases.

In Figure 11, we investigate the relationship between dual residual (27) and relative L2 error for linear
and Lagrangian ROMs. More precisely, during each step of the weak-greedy algorithm, we compute both dual
residual and relative L2 error for all training points; then, we show the results for all N = 4, . . . , 12. We observe
that there is a strong correlation between error and dual residual: this motivates the use of dual residual
norm to drive the Greedy algorithm and also as error indicator during the online stage. We remark that the
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Figure 9: single-fidelity training; hyper-reduction for linear and Lagrangian ROMs. (a)-(b) behavior of relative
error Eavg for various tolerances toleq (cf. (26)). (c)-(d) percentage of sampled elements Q/Ne ·100 for the same
tolerances toleq.

points associated with the relative error below 10−5 correspond to parameters that are sampled by the greedy
procedure (see Algorithm 2).

B Mesh generation

For completeness, we provide the definition of the mesh size function employed to generate the mesh in Figure
5(b). We here use the Matlab suite distmesh: we refer to the documentation available at persson.berkeley.
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Figure 10: effect of discretization on hyper-reduction. Percentage of sampled elements Q/Ne · 100 for two
tolerances toleq and for fine and coarse discretizations (cf. Figure 5).

10−6 10−5 10−4 10−3 10−2
10−6

10−5

10−4

10−3

10−2

10−1

100

dual residual

re
l

er
ro

r

Linear
Lagrangian

Figure 11: single-fidelity training; dual residual norm estimation. Comparison between dual residual norm and
exact relative error for various ROMs and µ ∈ Ptrain.

edu/distmesh/ for further details. We envision that the present approach might be greatly improved both in
terms of accuracy and in terms of offline computational costs; the use of state-of-the-art adaptive FE techniques
might also be important to automatize the refinement procedure. Given the coarse simulation (Thf,c,U

hf,c
µ̄ ), we

define the Mach number Mahf,c and we compute the local averages sc
1, . . . , s

c
Nc

e
such that

sc
k :=

∫
Dck

‖∇Mahf,c‖22 dx, k = 1, . . . , N c
e .

We then reorder the elements so that sc
1 ≥ sc

2 ≥ . . .; given n1 = n2 = 0.1 ·N c
e , we define the barycenters {xc

j}j
and the size function

htmp(x) = min

{
3h0 +

1

4
min

{
dist

(
x, {xc

j}
n1
j=1

)
, 2h0 + dist

(
x, {xc

j}
n1+n2
j=n1+1

)}
, h̄(x)

}
where h0 = 0.007,

h̄(x) = min {2h0 + distbump(x), 6h0 + (−0.6− x1)+} ,

and distbump(x) is the distance of the point x from the semicircular bump. The size function htmp measures
the proximity to the regions where the gradient of the Mach number is large: it thus leads to mesh refinement
in the proximity of the shocks.

The size function htmp is excessively irregular for mesh generation purposes: for this reason, we project htmp

over a 100× 100 p = 2 structured uniform grid over Ωbox = (−1, 1.5)× (0, 1) and we compute a moving average
with respect to both coordinates; the resulting FE field h? is passed to the mesh generation routine distmesh2d

to generate the p = 1 FE grid; finally, we perform an iteration of uniform refinement (see the distmesh routine
uniref) to obtain the mesh in Figure 5(b).
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