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ON THE EXPONENTS IN THE FACTORIZATIONS OF

r CONSECUTIVE NUMBERS

CARLO SANNA†

Abstract. Let f(n) be the number of distinct exponents in the prime factorization of the
natural number n. For every r-tuple of positive integers k = (k1, . . . , kr) and for all x > 1, let
Nk(x) be the set of natural numbers n ≤ x such that f(n+ i− 1) = ki for i = 1, . . . , r.

We prove that
#Nk(x) = Akx+Or

(
xαr

)
,

where Ak ≥ 0 depends only on k and αr ∈ (0, 1) depends only on r. Moreover, we provide
a characterization of the k’s such that Ak > 0. This extends a previous result of the author,
who considered the case r = 1.

1. Introduction

Let n > 1 be an integer with prime factorization n = pa11 · · · pass , where p1 < · · · < ps are
prime numbers and a1, . . . , as are positive integers. Several arithmetic functions of n defined in
terms of the exponents a1, . . . , as have been studied, including: the product [12], the arithmetic
mean [2, 3, 4, 5], and the maximum and minimum [7, 8, 11, 13] of the exponents.

Let f be the arithmetic function defined by f(1) := 0 and f(n) := #{a1, . . . , as}, that is,
f(n) is the number of distinct exponents in the prime factorization of n. For every natural
number k, let Nk be the set of positive integers n such that f(n) = k. In a previous paper, the
author proved the following result [10, Corollary 1.1].

Theorem 1.1. For each positive integer k, there exists Ak > 0 such that

#Nk(x) = Akx+Oε
(
x1/2+ε

)
,

for all x > 1 and ε > 0.

We extend Theorem 1.1 by considering the values of f on r-tuples of consecutive integers.
For k = (k1, . . . , kr) ∈ Zr>0, let Nk be the set of positive integers n such that f(n+ i− 1) = ki
for i = 1, . . . , r. Our first result is the following.

Theorem 1.2. For each k = (k1, . . . , kr) ∈ Zr>0, there exists Ak ≥ 0 such that

(1) #Nk(x) = Akx+Or
(
xαr
)
,

for all x > 1, where αr ∈ (0, 1) depends only on r. In particular, for r ≥ 2 we can take
αr = 1− 1/(45r + 3).

We did not try to minimize the exponent of x in the error term of (1), and some improvements
are surely possible. However, our method cannot provide an exponent below 2/3.

Note that, contrary to Theorem 1.1, the constant in the asymptotic formula of Theorem 1.2
may be equal to zero. The next result characterizes when this is the case. Recall that a natural
number n is said to be powerful if p | n implies p2 | n, for every prime number p.

Theorem 1.3. For k = (k1, . . . , kr) ∈ Zr>0, we have that Ak > 0 if and only if there exists a
positive integer n0 such that n0 + i− 1 is not powerful and f(n0 + i− 1) = ki for i = 1, . . . , r.
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2 C. SANNA

Note that Theorem 1.3 is not an effective criterion, since no upper bound for n0 is provided.
It seems likely that the only obstruction to the existence of n0 comes from congruences modulo
prime numbers not exceeding r1/2. For example, it is easy to check that n0 does not exist if
k = (1, 1, 1, 1). Indeed, for every four consecutive integers at least one of them, say m, is
divisible by 4 and consequently if m is not powerful then f(m) > 1. However, we did not
find a simple way to generalize these kind of reasonings. We leave such problem as an open
question for the interested reader.

Theorem 1.2 is a result about consecutive natural numbers each of which has a small (pre-
scribed) number of distinct exponents in its prime factorization. We remark that, on the
opposite side, Aktaş and Ram Murty [1], motivated by a question of Recamán Santos [9],
considered tuples of consecutive natural numbers each of which has all distinct exponents in
its prime factorization, and showed that only finitely many (and effectively computable) such
23-tuples exist, assuming the explicit abc-conjecture.

2. Notation

We employ the Landau–Bachmann “Big Oh” notationO, as well as the associated Vinogradov
symbols � and �, with their usual meanings. Any dependence of the implied constants is
explicitly stated or indicated with subscripts. For every set of positive integers S, we put
S(x) := S ∩ [1, x] for all x > 1. Throughout, the letter p is reserved for prime numbers. We
write (n1, . . . , ns) and [n1, . . . , ns] to denote the greatest common divisor and least common
multiple of the integers n1, . . . , ns, respectively. The first notation should not be mistaken for
the s-tuple notation (n1, . . . , ns), which we also use.

3. Preliminaries

We need some basic results on powerful numbers. Let P be the set of powerful numbers.

Lemma 3.1. We have #P(x)� x1/2, for all x > 1.

Proof. See [6]. �

Lemma 3.2. We have ∑
`∈P
`> y

1

`
� 1

y1/2
,

for all y > 1.

Proof. The claim follows easily from Lemma 3.1 by partial summation. �

For every natural number n, let λ(n) be the powerful part of n, that is, the greatest powerful
number that divides n.

Lemma 3.3. For each positive integer r and for all x, y > 1, the number of positive integers
n ≤ x such that λ(n+ i− 1) > y, for some i ∈ {1, . . . , r}, is at most Or

(
x/y1/2

)
.

Proof. By Lemma 3.2, the quantity at issue is at most
r∑

i= 1

∑
`∈P
`> y

x+ i− 1

`
�r

x

y1/2
,

as claimed. �

For a = (a1, . . . , ar) ∈ Zr>0, b = (b1, . . . , br) ∈ Zr≥0, and x > 1, let Qa,b(x) be the set of
positive integers n ≤ x such that a1n+ b1, . . . , arn+ br are all squarefree. Furthermore, put

Qa,b :=
∏
p

(
1−

%a,b(p)

p2

)
,

where %a,b(p) is the number of n ∈ {1, . . . , p2} such that at least one of a1n+ b1, . . . , arn+ br
is divisible by p2. We need the following asymptotic formula for #Qa,b(x).
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Theorem 3.4. Let a = (a1, . . . , ar) ∈ Zr>0 and b = (b1, . . . , br) ∈ Zr≥0. We have

(2) #Qa,b(x) = Qa,b x+O
(
[a1, . . . , ar]

3x2/3
)
,

for all x ≥ max bi/max ai with log x/ log log x ≥ 25r.

Proof. In the special case in which ai = 1 for i = 1, . . . , r, Tsang proved an asymptotic formula
for #Qa,b(x) using the Buchstab–Rosser sieve [14, Theorem 1]. In the general case, the proof
of (2) proceeds exactly as Tsang’s proof, with only a few changes. First, [14, Eq. (10)] (which
in our notation is %a,b(p) ≤ r and is false if, for example, p > r and p2 | (ai, bi) for all i) has to
be replaced with the upper bound

%a,b(p) ≤

{
r if p - [a1, . . . , ar],

p2 otherwise,

which in turn accounts for an extra factor [a1, . . . , ar]
2 on the right-hand sides of [14, Eqs. (7)

and (8)] and their subsequent. Second, the ninth equation on [14, p. 269] becomes

max
n≤x

1≤ i≤ r

|ain+ bi| ≤ (L+ 1)x,

which holds picking L so that (L + 1)/2 = max ai and assuming x ≥ max bi/max ai. After
these changes, Tsang’s proof yields

#Qa,b(x) = Qa,b x+ E(x),

where

−C

(
r

log x
(Lx)1/2 + x3/5 r12/5

(log x)8/5

)
≤ E(x)

[a1, . . . , ar]2
≤ Cx2/3

(
r

log x

)4/3

and C > 0 is an absolute constant. Since r � log x (the condition log x/ log log x ≥ 25r is
required in Tsang’s proof) and L� max ai ≤ [a1, . . . , ar], we have that (2) follows easily after
some simplifications. �

We need the following easy lemma about a least common multiple of “almost” pairwise
coprime integers.

Lemma 3.5. Let `1, . . . , `r and D be positive integers such that (`i, `j) | D for i, j = 1, . . . , r
with i 6= j. Then [`1, . . . , `r]�D,r `1 · · · `r.

Proof. Clearly, R := `1 · · · `r/[`1, . . . , `r] is an integer. We have to bound R in terms of D, r.
Let p be a prime number. If p - D, then from (`i, `j) | D it follows that there exists at most
one i such that p | `i. Consequently, p - R. If p | D then, without loss of generality, we can
assume that νp(`1) ≤ · · · ≤ νp(`r), where νp denotes the p-adic valuation. Hence, for every
positive integer i < r we have

νp(`i) = min{νp(`i), νp(`r)} = νp((`i, `r)) ≤ νp(D),

so that

νp(R) = νp(`1) + · · ·+ νp(`r−1) ≤ (r − 1)νp(D).

We have thus proved that R | Dr−1 and the claim follows. �

4. Proof of Theorem 1.2

Let us fix k = (k1, . . . , kr) ∈ Zr>0. We assume that x > 1 is sufficiently large so that
log x/ log log x ≥ 25r. In what follows, implied constants may depend on r. Let y = y(x) > 1
be a function of x to be chosen later. Let N ′k be the set of n ∈ Nk such that n+ i− 1 is not
powerful and λ(n+ i− 1) ≤ y for i = 1, . . . , r. By Lemma 3.1 and Lemma 3.3, we have

(3) #Nk(x) = #N ′k(x) +O

(
x1/2 +

x

y1/2

)
.
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Pick n ∈ N ′k(x) and put, for a moment, `i := λ(n+i−1) for i = 1, . . . , r. Since f(n+i−1) =
ki and n + i− 1 is not powerful, it follows that f(`i) = ki − 1. Moreover, since `i | n + i− 1,
we get that (`i, `j) | i− j for i, j = 1, . . . , r.

In light of that, let Lk be the set of r-tuples ` = (`1, . . . , `r) of powerful numbers such that
f(`i) = ki−1 and (`i, `j) | i−j for i, j = 1, . . . , r. Also, let Lk(y) be the subset of Lk consisting
of the `’s such that `i ≤ y for i = 1, . . . , r, and put L′k(y) := Lk \ Lk(y). Furthermore, for
each ` ∈ Lk(y), let N ′k,`(x) be the set of n ∈ N ′k(x) such that λ(n+ i− 1) = `i for i = 1, . . . , r.

Clearly, the sets N ′k,`(x), with ` ∈ Lk(y), constitute a partition of N ′k(x).

Pick ` ∈ Lk(y). Let us count the number of n ∈ N ′k,`(x). The condition λ(n + i − 1) = `i
is equivalent to `i | n + i − 1, (`i,mi) = 1, and mi is squarefree, where mi := (n + i − 1)/`i
for i = 1, . . . , r. In turn, `i | n + i − 1 and (`i,mi) = 1 are equivalent to n ≡ `isi − i + 1
(mod `2i ), for some si ∈ {1, . . . , `i} with (si, `i) = 1. Letting L := [`1, . . . , `r] and putting these
r congruences moduli `21, . . . , `

2
r together using the Chinese Remainder Theorem, we get that n

modulo L2 must belong to a set Ω` ⊆ {1, . . . , L2} completely determined by `. In particular,

(4) #Ω` ≤ ϕ(`1) · · ·ϕ(`r) ≤ `1 · · · `r ≤ yr,

since there are at most ϕ(`i) choices for each si. Thus n = L2u + v, for some integers u, v
satisfying 0 ≤ u ≤ (x − v)/L2 and v ∈ Ωl. Finally, mi = aiu + bi, where a(`) = (a1, . . . , ar)
and b(`, v) = (b1, . . . , br) are integer vectors defined by ai = L2/`i and bi = (v + i − 1)/`i for
i = 1, . . . , r. Note that

(5) [a1, . . . , ar] ≤ L2 ≤ (`1 · · · `r)2 ≤ y2r.

Hence, we are asking that a1u + b1, . . . , aru + br are all squarefree and greater than 1 (this
latter condition to ensure that each n+ i− 1 is not powerful). Therefore, setting

S` :=
∑
v ∈Ωl

Qa(`),b(`,v),

we obtain

#N ′k,`(x) =
∑
v ∈Ωl

(
#Qa(`),b(`,v)

(
x− v

[`1, . . . , `r]2

)
+O(1)

)
(6)

=
∑
v ∈Ωl

(
Qa(`),b(`,v)

x

[`1, . . . , `r]2
+O

(
x2/3y6r

))
=

S`
[`1, . . . , `r]2

x+O
(
x2/3y7r

)
,

where we employed Theorem 3.4, (5), and (4).
Noting that S` ≤ #Ω` ≤ `1 · · · `r and using Lemma 3.5 and Lemma 3.2, we get∑

`∈L′k(y)

S`
[`1, . . . , `r]2

≤
∑

`∈L′k(y)

`1 · · · `r
[`1, . . . , `r]2

�
∑

`∈L′k(y)

1

`1 · · · `r
(7)

�

(∑
`∈P

1

`

)r−1 ∑
`∈P
`> y

1

`
� 1

y1/2
.

In particular, the series

(8) Ak :=
∑
`∈Lk

S`
[`1, . . . , `r]2

converges.
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Hence, summing (6) over all the ` ∈ Lk(y), using #Lk(y)� yr/2 (by Lemma 3.1) and (7),
we get

#N ′k(x) =
∑

`∈Lk(y)

#N ′k,`(x) =
∑

`∈Lk(y)

(
S`

[`1, . . . , `r]2
x+O

(
x2/3y7r

))

= Akx−
∑

`∈L′k(y)

S`
[`1, . . . , `r]2

x+O
(
x2/3y15r/2

)
= Akx+O

(
x

y1/2
+ x2/3y15r/2

)
,

which together with (3) yields

#Nk(x) = Akx+O

(
x1/2 +

x

y1/2
+ x2/3y15r/2

)
.

At this point, picking y = x2/(45r+3) gives the desired asymptotic formula.

5. Proof of Theorem 1.3

Let us fix k = (k1, . . . , kr) ∈ Zr>0. Suppose that there exists a positive integer n0 such
that n0 + i − 1 is not powerful and f(n0 + i − 1) = ki for i = 1, . . . , r. We shall prove that
Ak > 0. Put `i := λ(n0 + i − 1) for i = 1, . . . , r. Also, let L := [`1, . . . , `r] and define
a = (a1, . . . , ar) ∈ Zr>0 and b = (b1, . . . , br) ∈ Zr≥0 by ai := L2/`i and bi := (n0 + i − 1)/`i
for i = 1, . . . , r. Note that, by construction, `i | ai, (bi, `i) = 1, and bi is squarefree. Since
n0 + i − 1 is not powerful and f(n0 + i − 1) = ki, we have that f(`i) = ki − 1. Let u be a
positive integer and set n := L2u + n0. We have n + i − 1 = `imi, where mi := aiu + bi, for
i = 1, . . . , r. In particular, (`i,mi) = (`i, bi) = 1. Thus n ∈ Nk whenever a1u+ b1, . . . , aru+ br
are all squarefree. By Theorem 3.4, this happens for a set of u with natural density Qa,b.
Recalling that b1, . . . , br are all squarefree, for every prime number p we have that none of
a1p

2 + b1, . . . , arp
2 + br is divisible by p2 and, consequently, %a,b(p) < p2. Hence, Qa,b > 0 and

Ak > Qa,b/L
2 > 0, as desired.

Now suppose that Ak > 0. We shall prove that there exists a positive integer n0 such that
n0 + i− 1 is not powerful and f(n0 + i− 1) = ki for i = 1, . . . , r. Thanks to Theorem 1.2 and
Lemma 3.1, we have

#
(
Nk(x) \

{
n ≤ x : n+ i− 1 ∈ P for some i ∈ {1, . . . , r}

})
≥ Akx+Or

(
xαr
)
−Or

(
x1/2

)
�k x > 0,

for sufficiently large x, and the existence of n0 follows.
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