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a b s t r a c t 

Deep learning techniques for 3D brain vessel image segmentation have not been as successful as in the 

segmentation of other organs and tissues. This can be explained by two factors. First, deep learning tech- 

niques tend to show poor performances at the segmentation of relatively small objects compared to the 

size of the full image. Second, due to the complexity of vascular trees and the small size of vessels, it 

is challenging to obtain the amount of annotated training data typically needed by deep learning meth- 

ods. To address these problems, we propose a novel annotation-efficient deep learning vessel segmen- 

tation framework. The framework avoids pixel-wise annotations, only requiring weak patch-level labels 

to discriminate between vessel and non-vessel 2D patches in the training set, in a setup similar to the 

CAPTCHAs used to differentiate humans from bots in web applications. The user-provided weak anno- 

tations are used for two tasks: (1) to synthesize pixel-wise pseudo-labels for vessels and background 

in each patch, which are used to train a segmentation network, and (2) to train a classifier network. 

The classifier network allows to generate additional weak patch labels, further reducing the annotation 

burden, and it acts as a second opinion for poor quality images. We use this framework for the segmenta- 

tion of the cerebrovascular tree in Time-of-Flight angiography (TOF) and Susceptibility-Weighted Images 

(SWI). The results show that the framework achieves state-of-the-art accuracy, while reducing the anno- 

tation time by ∼77% w.r.t. learning-based segmentation methods using pixel-wise labels for training. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The segmentation of the 3D brain vessel tree is a crucial task to 

he diagnosis, management, treatment and intervention of a wide 

ange of conditions with a vast population-level impact ( World 

ealth Organization, 2020 ). Due to the high complexity of the 

erebrovascular tree, its automatic extraction is a challenging task. 
∗ Corresponding author. 

E-mail address: maria.zuluaga@eurecom.fr (M.A. Zuluaga). 
1 Joint first auhtorship. 
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espite decades of research ( Lesage et al., 2009; Moccia et al., 

018 ), the problem remains open. 

With the advent of machine learning and, more precisely, deep 

earning techniques over the last decade ( Litjens et al., 2017; Lun- 

ervold and Lundervold, 2019 ), image segmentation of organs, or- 

ans substructures, and lesions has reached state-of-the-art per- 

ormance. This progress, however, has not been as fast in 3D 

rain vessel segmentation. Differently from the segmentation of 

ther organs, there is no consolidated deep learning method which 

as reached human performance, and a vast majority of methods 

 Bernier et al., 2018; Li et al., 2014; 2019; Morrison et al., 2018 )
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till rely on more classical techniques. This lag can be explained by 

wo factors. First, deep learning techniques often assume that the 

bject to segment occupies an important part of the image ( Deng 

t al., 2009; Shelhamer et al., 2017 ). On the opposite, vessels are 

elatively small objects within a large image volume ( Livne et al., 

019; Tetteh et al., 2020 ). Secondly, deep learning techniques are 

ell-known for being data greedy, as they require large annotated 

raining datasets to avoid poor generalization. Due to the complex- 

ty of vascular trees and the small size of vessels, it is challenging 

o obtain sufficiently large high-quality annotated sets. 

This work presents a novel framework to address the challenges 

aced by deep learning-based 3D vessel segmentation. Taking in- 

piration from Completely Automated Public Turing Test To Tell 

omputers and Humans Apart, better known as CAPTCHA ( von 

hn and Dabbish, 2004 ), we initially divide the image volume 

nto 2D image patches and we subsequently request the user to 

dentify the patches containing a vessel or part of it. This task 

s common on websites to differentiate humans from bots, us- 

ng image CAPTCHA s ( von Ahn and Dabbish, 2004; Elson et al., 

007 ) of natural images. This procedure, which we denote Vessel- 

APTCHA , simplifies the annotation process by requiring 2D patch 

ags indicating the presence of a vessel (a part of it, or multi- 

le vessels) and, thus, avoiding pixel-wise annotations. The user- 

rovided patch tags are subsequently used to synthesize a pixel- 

ise pseudo-labeled training set in a self-supervised manner using 

 clustering technique. These two sets are used to train the frame- 

ork. 

The proposed framework is composed of two networks: a seg- 

entation network and a classification network. The segmentation 

etwork extracts vessels on a patch basis to tackle the limitations 

f deep nets in the segmentation of small objects. The final vol- 

metric segmentation is obtained by concatenating the 2D seg- 

ented patches. The classification network is used for two tasks. 

irst, it allows to enlarge the labeled data without the need for 

urther user-provided annotations. Second, it may act as a second 

pinion ( Leibig et al., 2017; Vrugt and Robinson, 2007 ) that pro- 

ides a measure of uncertainty in low quality or complex images. 

e evaluate the role of the classification network as an expert 

pinion, where only the segmentations from patches identified as 

essel patches are kept and those classified as non-vessel patches 

re masked out. 

.1. Related work 

.1.1. 3D brain vessel segmentation 

A comprehensive collection of methods and techniques for gen- 

ral vascular image segmentation is reviewed in Lesage et al. 

2009) ; Moccia et al. (2018) , where they classify different seg- 

entation frameworks according to their characteristic strategies. 

lassical approaches typically rely on hand-crafted features, with 

mage intensity-derived ( Taher et al., 2020 ), and first ( Law and 

hung, 2008 ), second ( Frangi et al., 1998; Sato et al., 1997 ) or

igher order ( Cetin and Unal, 2015 ) tensor-derived features among 

he most common. Feature extraction is followed by a vessel ex- 

raction scheme, which performs the final segmentation. Notable 

xtraction schemes include deformable models ( Klepaczko et al., 

016; Zhao et al., 2015 ), voting ( Zuluaga et al., 2014b ), tracking al-

orithms ( Rempfler et al., 2015; Robben et al., 2016 ) and statisti- 

al approaches ( Hassouna et al., 2006 ). Their main drawbacks are 

wo. First, these methods rely on hand-crafted features that need 

o be tuned, requiring high expertise to find a good set of param- 

ters. Second, extraction schemes are not fully automatic: many 

eed manual initialization, and the final results typically call for 

anual correction, specially when images are noisy. 

Deep learning techniques have emerged as an alternative to 

ircumvent the difficulties of classical approaches. Existing meth- 
2 
ds have tried to explicitly address the brain vessel tree com- 

lexity by designing shallow convolutional neural networks (CNNs) 

rchitectures to avoid possible over-fitting ( Phellan et al., 2017 ), 

r by partitioning the input image volume, while still relying on 

eeper and more powerful architectures ( Kamnitsas et al., 2017; 

onneberger et al., 2015 ). Different partitioning strategies include 

natomical regions ( Kandil et al., 2018 ), 2D slices ( Ni et al., 2020 ),

D ( Phellan et al., 2017; Tetteh et al., 2020 ) and 2D patches ( Livne

t al., 2019 ). Despite achieving accuracies similar to those of clas- 

ical approaches, the main limitation towards the broader use of 

eep learning techniques remains to be the burden linked to pixel- 

ise data annotation, including multi-plane annotations ( Phellan 

t al., 2017 ) or further pre-processing ( Phellan et al., 2017; Kandil 

t al., 2018; Livne et al., 2019 ). 

Patch-based approaches ( Livne et al., 2019; Tetteh et al., 2020 ) 

ot only aim at reducing the vessel tree’s complexity, but they also 

ry to mitigate the limitations of neural nets in the segmentation 

f objects occupying small portions of an image. Our work adopts 

 similar strategy and it builds upon the advantages of 2D patch- 

ased approaches ( Livne et al., 2019 ), thus making vessels cover a 

ignificant portion of the patch, while avoiding pixel-wise annota- 

ions. 

.1.2. Limited supervision for image segmentation 

Different strategies have been explored as an alternative to 

ixel-wise annotation ( Cheplygina et al., 2019; Ørting et al., 2020; 

ajbakhsh et al., 2020 ), a tedious and time consuming task requir- 

ng a high level of expertise. These strategies can be roughly classi- 

ed, according to the type of labels they use, as partial pixel-wise 

abels, which include incomplete, sparse or noisy pixel-wise labels 

 Tajbakhsh et al., 2020 ); or as weak labels, which refer to high-

evel labels and drawing primitives ( Cheplygina et al., 2019 ). 

Partial pixel-wise labels refer to annotations where only a frac- 

ion of the pixels of the object of interest are provided ( Bai et al.,

018; Çiçek et al., 2016; Liang et al., 2019; Ke et al., 2020 ). These la-

els can be provided by the user or generated by simpler methods 

o produce rough segmentation masks. Semi-supervised methods 

ollow different strategies to exploit partially labeled data under 

he assumption that it is enough to train a segmentation model. 

ai et al. (2018) used image registration to propagate user-provided 

abels over some image slices containing the aorta. Çiçek et al. 

2016) designed the 3D-Unet to account for sparse and incomplete 

ixel-wise labels. Other methods resort to iterative stages of refine- 

ent ( Liang et al., 2019; Ke et al., 2020 ). Although these methods 

ave reported good performances in medical image segmentation 

 Cheplygina et al., 2019 ), the complexity of the 3D brain vessel tree 

akes pixel-wise annotation, even if partial, highly time consum- 

ng. As one of our aims is to minimize the annotation effort, our 

ork focuses on the use of weak labels. 

.1.3. Weakly supervised learning 

Weak labels for medical image segmentation We consider two 

orms of weak labels for medical image segmentation tasks: 

mage-level labels and drawing primitives. Image-level labels ( Feng 

t al., 2017; Jia et al., 2017; Raza et al., 2019; Schlegl et al., 2015;

u et al., 2019; Zhao et al., 2019 ) assign a tag or rating to an

mage under the assumption that images contain cluttered scenes 

ith enough information from which a model can learn ( Qi et al., 

017 ). In medical tasks, they have been mainly used with 2D im- 

ges/slices to segment pathologies, i.e. lung nodules ( Feng et al., 

017 ), damaged retinal tissue ( Schlegl et al., 2015 ), brain tumors 

 Izadyyazdanabadi et al., 2018 ) or cancerous tissue ( Jia et al., 2017;

raus et al., 2016; Lerousseau et al., 2020; Xu et al., 2014; 2019 ).

o a lesser extent they have been used for organ structures seg- 

entation, i.e. the optic disc ( Zhao et al., 2019 ). Despite the good 
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1

eported performances and the annotation time savings they rep- 

esent, image tags have not been used for 3D vessel segmentation. 

Drawing primitives include bounding boxes and contouring 

hapes ( Cheplygina et al., 2016; Gao et al., 2012; Dai et al., 2015;

i et al., 2018; Rajchl et al., 2017; Wang et al., 2018 ), scribbles and

ines ( Can et al., 2018; Lin et al., 2016; Matuszewski and Sintorn, 

018; Wang et al., 2015 ) and clicks ( Bruggemann et al., 2018 ). In

D vessel segmentation, bounding boxes have been used for aor- 

ic segmentation, with the assumption that the aorta is a com- 

act structure, which can be enclosed within a bounding box ( Pepe 

t al., 2020 ). This assumption does not hold for highly sparse bifur- 

ated trees, as the brain vascular tree, where a 3D bounding box 

ould nearly cover the full brain. Moreover, if an image is ana- 

yzed in 2D, the vessel tree appears as a series of disconnected 

lobs or elongated structures, which challenges the use of 2D con- 

ouring shapes. Kozi ́nski et al. (2020) address this limitation by us- 

ng 2D annotations in Maximum Intensity Projections of 3D vas- 

ular images. To some extent, these can be considered 2D image 

cribbles of varying density for the original 3D volume. The frame- 

ork, however, requires full 2D pixel-wise annotations. Although 

he scheme significantly reduces the labeling time, more than four 

ours are needed to generate sufficiently dense 2D annotations 

hat do not compromise performance. Finally, clicks are common 

n classical 3D vessel segmentation approaches ( Benmansour and 

ohen, 2009; Moriconi et al., 2019 ) to provide seed-points, but no 

orks yet integrate them in a weakly supervised learning frame- 

ork. This may be due to the complexity of the 3D brain vessel 

ree, where a single click might not carry sufficient information to 

rain a model. 

Our work relies on image tags. To cope with the granularity and 

parse appearance of vessels, we use 2D patch-level tags, in the 

orm of clicks over a grid. A click selects the patches containing at 

east one vessel or a part of it. We denote this annotation scheme 

he Vessel- CAPTCHA . 
Weakly supervised learning with image tags Our weakly super- 

ised vessel segmentation framework using image tags can be cast 

s a multi-instance learning (MIL) problem ( Dietterich et al., 1997; 

aron and Lozano-Pérez, 1997; Cheplygina et al., 2019 ), where a 

ag corresponds to an image patch and the instances are the im- 

ge pixels. A bag is considered positive (a vessel patch) if at least 

ne instance within the bag is positive (a vessel pixel). The goal 

s then to infer the key instances ( Liu et al., 2012 ), i.e. the vessel

ixels, that activate the bag label. 

Standard MIL segmentation approaches, which have been less 

tudied than the classification counterpart ( Campanella et al., 2019; 

ou et al., 2016; Quellec et al., 2012 ), follow a multi-stage strat- 

gy. In a first stage common to MIL segmentation and classifica- 

ion, they train a model to learn instance-level probabilities of be- 

onging to the positive class. At a second stage, these probabili- 

ies are used to obtain pixel-wise labels, which can be considered 

s the segmentation output ( Xu et al., 2014; Kraus et al., 2016 )

r as pseudo-labels to train a segmentation model in supervised 

ay ( Lerousseau et al., 2020; Xu et al., 2019 ). A main limitation

s that the instance-level probabilities are not originally conceived 

o generate segmentations, but to serve as inputs for bag classifi- 

ation. Therefore, the segmentation results may be poor. Mitigation 

trategies rely on area constraints ( Jia et al., 2017; Lerousseau et al., 

020 ); robust instance selection operations ( Kraus et al., 2016; Xu 

t al., 2019 ); post-processing ( Kraus et al., 2016 ); or enriched infor-

ation, such as supplementary instance-level inputs ( Shin et al., 

019 ) or image landmarks ( Schlegl et al., 2015 ). However, these 

trategies often come at the cost of further required user inputs 

 Jia et al., 2017; Schlegl et al., 2015; Shin et al., 2019 ). 

Attention-based MIL ( Ilse et al., 2018 ), an alternative to stan- 

ard MIL, uses attention mechanisms ( Niu et al., 2021 ), such as 

lass activation maps (CAM) ( Zhou et al., 2016 ), under the assump- 
3 
ion that the discriminative regions identified by a network cor- 

espond to the key instances, i.e. the pixels to segment ( Ahn and 

wak, 2018; Feng et al., 2017; Hong et al., 2017; Izadyyazdanabadi 

t al., 2018; Ouyang et al., 2019; Shen et al., 2021; Zhao et al., 

019 ). Since attention mechanisms focus on the localization of the 

ost discriminative regions, they suffer from the same limitations 

s standard MIL, which lead to inaccurate segmentation masks. For 

nstance, some works ( Shen et al., 2021 ) consider the resulting 

ask as a localization/detection mask and not as a segmentation 

ne. Others have attempted to refine the attention maps through 

ixel similarity propagation ( Ahn and Kwak, 2018; Zhao et al., 

019 ), feature assembling ( Izadyyazdanabadi et al., 2018 ) and post- 

rocessing stages ( Krähenbühl and Koltun, 2011 ), which all lead 

o increased model complexity. To avoid the increased complexity, 

ther works propose manual intervention ( Feng et al., 2017 ) or the 

se of some pixel-wise annotated data ( Ouyang et al., 2019; Zou 

t al., 2021 ), leading to more user-required inputs. 

A last set of methods favors the use of simpler techniques to 

enerate an initial pseudo-labeled set that can be then refined us- 

ng a learning-based approach. Luo et al. (2020) relied on tradi- 

ional saliency methods along with a quality control step for object 

etection from videos. Hou et al. (2016) used a mixture of Gaus- 

ians in cancer tissue classification. Lu et al. (2021) used a simple 

hreshold to segment tissue regions, which are refined with a CAM 

o classify cancerous tissue. 

While the cerebrovascular tree is a highly complex structure, 

he typical available dataset size for training a model to segment 

t is relatively small. Therefore, avoiding high model complexity is 

ritical in 3D brain vessel segmentation ( Phellan et al., 2017 ). Our 

ork favors simplicity and minimal user interaction. Thus, simi- 

arly to ( Hou et al., 2016; Luo et al., 2020; Lu et al., 2021 ), we

se a simpler self-supervised technique, such as the K-means, to 

enerate pixel-wise pseudo-labels. As other weakly supervised ap- 

roaches ( Feng et al., 2017; Lerousseau et al., 2020; Luo et al., 

020; Xu et al., 2019 ), we use the pseudo-labeled set as input of a

upervised training phase that learns to segment the brain vessel 

ree, without the need for any additional user inputs. 

.1.4. Biomedical image classification 

Our work explores the use of the Unet ( Ronneberger et al., 

015 ) and the Pnet ( Wang et al., 2019 ), two networks originally

onceived for medical image segmentation, for the classification 

asks of our framework. These two networks have been originally 

esigned for image segmentation. Their adaptation to a classifica- 

ion task can be considered as a MIL formulation, where instance- 

evel information, i.e. pixels, are used to predict a bag label, i.e. 

he patch tag. Similar to most biomedical classification tasks, previ- 

us MIL-based biomedical image classification works ( Campanella 

t al., 2019; Qi et al., 2017 ) rely on customized versions of VGG-16 

 Simonyan and Zisserman, 2015 ) and ResNet ( He et al., 2016 ), the

ost popular architectures for natural image classification. Oth- 

rs ( Hou et al., 2016 ) use task-specific architectures adapted from 

eneral purpose networks such as end-to-end CNNs. However, no 

ajor performance differences are currently found among them 

 Lundervold and Lundervold, 2019 ). 

.2. Contributions 

The contributions of this work are four-fold: 

1. we introduce an annotation and segmentation scheme, the 

Vessel- CAPTCHA , to reduce the labeling burden of 3D brain 

vascular images, consisting of two phases: a first phase where 

the user provides tags at the 2D image patch-level, and a sec- 

ond stage where pixel-wise pseudo-labels are obtained, in a 

self-supervised fashion, using only the user-provided patch tags 

as input. 
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2. We propose a weakly supervised learning framework on 2D 

image patches to achieve 3D brain vessel segmentation. To 

circumvent the problems faced by deep neural networks 

when segmenting small objects, the framework uses a 2D 

patch-based segmentation network trained with 2D pixel-wise 

pseudo-labeled patches synthesized by the Vessel- CAPTCHA 
annotation scheme using the weak user-provided patch tags as 

input. 

3. We investigate the use of network architectures specifically de- 

signed for medical imaging tasks to classify 2D image patches 

(vessel vs. non-vessel). The classifier networks are used to 

pseudo-label a potential training set without further user effort, 

and it may act as a second opinion for segmentation masks ob- 

tained from low quality images. 

4. Using two different image modalities, we demonstrate that the 

proposed framework achieves state-of-the-art performance for 

3D brain vessel segmentation, while significantly reducing the 

annotation burden by ∼77% compared to the annotation time 

required in other deep learning-based methods. 

To foster reproducibility and encourage other researchers to 

uild upon our results, the source code of our framework is pub- 

icly available on a Github repository. 2 

. Method 

The proposed Vessel- CAPTCHA framework algorithm for 3D 

essel segmentation is depicted in Fig. 1 . In the following, we 

ntroduce the Vessel- CAPTCHA annotation scheme and we de- 

cribe how pixel-wise pseudo-labels are synthesized from the user- 

rovided weak patch labels in a self-supervised way ( Section 2.1 ). 

n Section 2.2 , we present the two networks conforming the pro- 

osed framework: a classifier network and a segmentation net- 

ork. Section 2.3 explains how the classifier network can be used 

o enlarge the set of weak pixel-wise annotations, allowing to have 

 larger set to train 2D-WnetSeg. Finally, Section 2.4 briefly ex- 

lains how to segment unseen images using the proposed frame- 

ork. 

.1. The vessel-CAPTCHA annotation scheme 

We consider a dataset I of training images. Given an image I ∈ 

of size H × W × S, for each slice X s , s ∈ [1 , . . . , S] , we consider a

artition in P s non-overlapping patches: X s = { ̂  X k } P s k =1 
. Each patch is 

ere considered as a function 

ˆ X k : D k → R , where D k is a subset of

he slice domain D k ⊂ [1 , H] × [1 , W ] . 

User annotations on a given patch 

ˆ X k are defined through a 

unction U k : D k → { 0 , 1 } , assigning a binary label to each coordi-

ate (i, j) ∈ D k . The set of annotations for a given patch is summa-

ized by an indicator function f : U k → { 0 , 1 } which takes value 1

f at least one pixel in the patch was labeled with 1: 

f (U k ) = 1 ⇐⇒ ∃ (i, j) ∈ D k s.t. U k (i, j) = 1 . (1)

Fig. 2 illustrates examples of equivalent user annotations. The 

et of indicators for the slice X s is denoted by Y s = { f (U k ) } P s k =1 
. The

raining set of patch-level labels for the image I is defined by the 

et: T I P = {X s , Y s } S s =1 
. This set is therefore composed by patches and

ssociated indicators/tags of the presence of a vessel according to 

he user’s annotation. Based on the training set T I 
P 

, we estimate 

essel pseudo-labeled masks via a model fitting procedure. For ev- 

ry patch we define a function M k : D k → { 0 , 1 } , which assigns to

ach pixel’s coordinate a label according to the following scheme: 

 k (i, j) = 

{
0 if f (U k ) = 0 , 

KM( ̂  X k (i, j)) otherwise , 
(2) 
2 https://github.com/robustml-eurecom/Vessel-Captcha 

t

i

4 
here KM is a K-means predictor trained on the intensity values 

f the patch { ̂  X k (i, j) , (i, j) ∈ D k } . By specifying K = 2 clusters we

herefore obtain a rough estimate of the low-high intensity parti- 

ioning of the patch. The ensemble of estimated partitions across 

atches is denoted as M s = { M k } P s k =1 
, and we define the pixel-wise

seudo-labeled training set for the image I as T I 
M 

= {X s , M s } S s =1 
. 

Finally, for the full image training set I , the user-provided 

atch-level set and the pixel-wise pseudo-labeled one are denoted 

y 

 P = {T I P } I ∈I , (3) 

nd 

 M 

= {T I M 

} I ∈I , (4) 

espectively. 

.2. Image segmentation and patch classification networks 

.2.1. Segmentation network 

The segmentation network learns from the input training set T M 

ow to segment 2D image patches using the Dice similarity coef- 

cient, as proposed by Milletari et al. (2016) , which is specifically 

ailored for segmentation tasks in medical images. The segmented 

D patches are concatenated to reconstruct the original segmented 

D image volume. For this task, we use a segmentation network 

onnecting two 2D-Unets in cascade ( Dias et al., 2019 ). We denote 

t 2D-WnetSeg ( Fig. 3 ). The network is trained on T M 

, the set of 2D

mage patches with pixel-wise pseudo-labels to tackle the neural 

etworks limitations in the segmentation of objects with a small 

bject-to-image ratio. 

The human cerebrovascular system has an intricate shape with 

arge and smaller blood vessels which mainly differ in the spatial 

cale, but which share similar shapes. The selected self-supervised 

ethod, the K-means, favors over-segmentation of larger vessels. 

hanks to a set of max pooling layers, the first 2D-Unet allows to 

earn spatial scaling features from the input training data. Thus, 

t can recover rough-mask labels from smaller vessels not initially 

xtracted by K-means. This means that the first Unet acts as a re- 

nement module to correct the initial masks by inferring missing 

essels based on the structural redundancy of the cerebrovascular 

ree. The second Unet, with a similar architecture as the first one, 

eceives as input the output of the first Unet with the recovered 

abels from small vessels. As a result, the 2D-WnetSeg learns ves- 

els even with a pseudo-labeled training set with imperfect labels 

r noise. 

The smaller vessels in the brain vessel tree may disappear in 

ery deep networks due to the subsampling layers. To tackle this, 

he 2D-WnetSeg has 14 blocks with convolutional layers structured 

nto 4 levels. In this, it differs from previously proposed cascaded 

etworks ( Dias et al., 2019 ) or the Unet-based vessel segmenta- 

ion from ( Livne et al., 2019 ). This also contributes to reduce the 

umber of trainable parameters. Specifically, the number of train- 

ble parameters in Livne et al. (2019) is about 3 . 1e7 , whereas the

netSeg has only about 1 . 6e7 parameters. 

In our architecture, the first 7 blocks form the first Unet and 

he second 7 blocks belong to the second one. Each block con- 

ists of 2 convolutional layers with kernel size 3 × 3 pixels, each 

ollowed by a rectified linear unit (ReLU). They are both added to 

he padding to ensure that the output has the same shape as the 

nput. A dropout layer is applied between them. As the input pro- 

eeds through different levels along the contracting path, its reso- 

ution is reduced by half. This is performed through a 2 × 2 max- 

ooling operation with stride 2 on 3 levels except for the bottom 

evel. We double the number of feature channels at each level of 

he contracting path. The right portion of a half-network (Unet), 

.e. the expansive path, consists of blocks with concatenation and 

https://github.com/robustml-eurecom/Vessel-Captcha
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Fig. 1. The Vessel-CAPTCHA framework. At Stage 1, an image grid with patch size 32 × 32 covering the brain tissue is presented to the user for annotation. The user selects 

the patches which contain at least one vessel or a part of it. The process, which we denote the Vessel-CAPTCHA annotation scheme, is done for every axial slice in an image 

volume. This weakly annotated set T P is used to synthetize pixel-wise pseudo-labels for every patch using the K-means algorithm. The resulting pseudo-labeled set is denoted 

T M . At stage 2, T P is used to train a classification network (2D-PnetCl) and T M is used to train a segmentation network (2D-WnetSeg). In the segmentation network training, 

it is possible to enlarge the set of pseudo-labeled data through an optional data augmentation step. For an unseen image, the final volumetric segmentation is obtained by 

concatenating the 2D segmentations obtained from 2D-WnetSeg. Optionally, the classification network can be used as a second opinion to refine the segmentation results. 

In that case, only 2D segmentations from patches classified as vessel ones are considered in the final volume segmentation. 

Fig. 2. Example of equivalent CAPTCHA annotations. (a) Image slice X s with patch 

grid, (b) zoomed region corresponding to the highlighted red box in (a), (c) result- 

ing T P obtained through equivalent annotations (d-g). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

u
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s

Fig. 3. Illustration of the 2D-WnetSeg architecture. 
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p-sampling for each level to extract low-features and it expands 

he spatial support of the lower resolution feature maps to as- 

emble the necessary information and recover the original input 

ize. Finally, we employ skip-connections from the shallow layers 
5 
o deeper layers between the two 2D-Unets, at the same levels, to 

ase the training of the network. 

.2.2. Networks for vessel vs. non-vessel patch classification 

The classification network is trained on T P to discriminate be- 

ween vessel and non-vessel patches in unseen data. This discrim- 

nation serves two purposes: (1) to synthesize patch tags without 

he need of user interventions and (2) to act as a second opin- 

on for segmentations. In the latter case, the segmentation network 

erves as a first expert predicting pixel-wise labels, whereas the 

lassifier network provides a concept on a per-patch basis. This 

an be considered an ensemble approach to uncertainty ( Vrugt 

nd Robinson, 2007 ), where a disagreement among the two net- 
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Fig. 4. Data Augmentation procedure. The trained classifier is used as the start- 

ing point to enlarge the initial pixel-wise labeled training set T M without requiring 

further user inputs. The resulting training set T M ALL 
is a combination of both the 

pseudo-labels and those obtained via the Vessel-CAPTCHA annotation. 
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orks/opinions indicates uncertainty on the predictions of a given 

atch. 

Most works in the literature rely on customized versions of 

GG-16 ( Simonyan and Zisserman, 2015 ) and ResNet ( He et al., 

016 ), the most popular architectures for natural image classi- 

cation, or on task-specific architectures adapted from general 

urpose networks ( Chen et al., 2016; Setio et al., 2016 ). In this

ork, we investigate the use of networks specifically designed for 

edical imaging applications for our classification task: the Unet 

 Ronneberger et al., 2015 ) and the Pnet ( Wang et al., 2019 ). As

hese two networks have been designed for image segmentation, 

e hereby describe how they have been modified to achieve clas- 

ification. 

We denote the modified 2D Pnet architecture ( Wang et al., 

019 ) 2D-PnetCl. It consists of 7 convolution layers, 2 dropout lay- 

rs, and a sigmoid layer. The first 5 convolution layers are concate- 

ated. Each convolutional layer contains 64 filters with 3 × 3 pixels 

eceptive fields in a 1 pixel stride sliding with different dilation fac- 

ors. The dilations are 1, 2, 4, 8 and 16, respectively. The last two 

onvolutional layers are the 1 × 1 convolutions, the output feature 

ap is flattened and fed to a fully connected layer for interpre- 

ation with 128 hidden units and the final prediction layer uses a 

igmoid function with one unit to classify patches with and with- 

ut vessels. The adapted 2D-Unet architecture, denoted 2D-UnetCl, 

ses the network from ( Livne et al., 2019 ) as a starting point. Sim-

larly to the 2D-PnetCl, the output feature map is flattened and fed 

o a fully connected layer for interpretation with 128 hidden units 

nd a final prediction layer with one unit to classify patches with 

nd without vessels. 

.3. Data augmentation for segmentation network training 

The set T M 

consisting of pseudo-labels is used to train the 2D- 

netSeg. To augment its size without increasing the annotation 

urden, we make use of the classification network to generate a 

arger set with pixel-wise pseudo-labels. The procedure is depicted 

n Fig. 4 . 
6 
Assuming that there is an initial set of unlabeled images I ∗ that 

an be used for training, we consider the joint image dataset of 

abeled and unlabeled images I ALL = I 
⋃ 

I ∗. The subset I of these 

mages is used to generate Vessel- CAPTCHA s, which are presented 

o the user for annotation. This results in the training set T P ( Eq.

3) ), which is used to both train the classification network and to 

ynthesize the pixel-wise pseudo-labeled set T M 

( Eq. (4) ). 

Using the trained classification network, a set of patches {X 

∗
s } is 

btained in the remaining set of images I ∗. Rather than presenting 

nother Vessel- CAPTCHA to the user for annotation, the {X 

∗
s } are 

nputted to the classification network to estimate patch labels {Y 

∗
s } . 

he paired set of patches and estimated labels conform a new set 

 

∗
P 

= {T I 
P 
} I ∈I ∗ . 

The set T ∗P is used to synthesize pixel-wise pseudo-label masks 

 

∗ following the same procedure applied to T P ( Section 2.1 ). This 

eads to a new pseudo-labeled set T ∗
M 

. The extended set of pixel- 

ise pseudo-labels is formed by the union of the two sets T M ALL 
= 

 M 

⋃ 

T ∗M 

, and is subsequently used to train the 2D-WnetSeg archi- 

ecture. 

.4. Inference phase 

Unseen 3D images are segmented by extracting 2D image 

atches that are then segmented by the 2D-WnetSeg and concate- 

ated to build back the original volume ( Fig. 1 ). In low quality or

oisy images, the resulting segmentation can often present a large 

et of pixels erroneously segmented as vessels. To avoid this prob- 

em, the trained classifier network may act as an expert providing 

 second opinion to the results from the segmentation network. In 

uch case, only those patches which have been classified as ves- 

els are taken into account to reconstruct the final volume. All the 

ixels of the remaining patches are set to zero. 

.5. Implementation details 

We used the Keras library to implement 2D-PnetCl, 2D-UnetCl 

nd 2D-WnetSeg. The networks were trained on a GPU worksta- 

ion with 4-core Intel(R) Xeon(R) CPU @ 2.30 GHz, a NVIDIA Tesla 

100-PCIE-16 GB, and 25 GB memory. For both 2D-UnetCl and 2D- 

netCl we optimized the binary cross-entropy loss function with 

 minibatch stochastic gradient descent and a conservative learn- 

ng rate of 0.01 and momentum of 0.9. The weights of the 2D- 

netSet were optimized using an Adam optimizer with learn- 

ng rate lr = 1e −4 , β1 = 0 . 9 , and β2 = 0 . 999 . All networks were

rained from scratch using mini-batches of 64 patches. All input 

atches were normalized by the mean and standard deviation of 

he whole training data. A dropout of 0.5 for 2D-PnetCl and 2D- 

netCl, and of 0.1 for 2D-WnetSeg was added to prevent overfit- 

ing during the training. For 2D-PnetCl, the dropout is applied be- 

ore and after the second to last convolutional layer. For 2D-UnetCl 

nd 2D-WnetSeg, the droput is applied after a convolutional layer 

nd the ReLU ( Fig. 3 ). The image input sizes of 2D-PnetCl and 2D-

netSeg were 32 × 32 and 96 × 96, respectively. We implemented 

 zero-padding technique to preserve output size as input size at 

ach convolution layer in both networks. Therefore, the feature 

ap size at each level in the 2D-PnetCl is 32 × 32. 

. Experimental setup 

In this section, we describe the experimental setup. First, we 

resent the datasets used in our experiments ( Section 3.1 ) and the 

aselines used for comparison ( Section 3.2 ). Then, we describe the 

raining setup ( Section 3.3 ). Finally, we present the performance 

valuation metrics used in our experiments ( Section 3.4 ). 
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Table 1 

Main properties of data used and training and validation test sizes per data type. 

Synthetic TOF SWI 

Dataset size 136 100 33 

Volume dimensions 325 × 304 × 600 560 × 560 × 117 (Set 1) 480 × 480 × 288 

576 × 768 × 232 (Set 2) 

Voxel spacing 1 × 1 × 1 mm 

3 1 × 1 × 1 mm 

3 (Set 1) 1 × 1 × 1 mm 

3 

0 . 3 × 0 . 3 × 0 . 6 mm 

3 (Set 2) 

|T P | (patch size 32 × 32 ) 7.18 M 770 K 30.6 K 

|T M | (patch size 96 × 96 ) 1.04 M 110 K 10.2 K 
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.1. Data 

Three different types of data were used in this study: synthetic, 

ime-of-Flight (TOF) angiography and Susceptibility-Weighted Im- 

ges (SWI). The latter two correspond to two magnetic resonance 

maging (MRI) sequences commonly used to image and assess the 

erebrovascular tree ( Radbruch et al., 2013 ), although blood ves- 

els present different appearances in each modality. In TOF, ves- 

els are hyper-intense structures, whereas they are hypo-intense 

n SWI. Table 1 summarizes the main properties of each data type 

nd the datasets used. 

Synthetic data We use the synthetic data generated and made 

ublic by Tetteh et al. (2020) . 3 The dataset consists of 136 volumes 

f size 325 × 304 × 600 with corresponding labels for vessel seg- 

entation, which were generated following the method proposed 

n Schneider et al. (2012) . The vessel labels occupy 2.1% of total in-

ensities, highlighting the problem of vessels being relatively small 

bjects within a large image volume. 

TOF data We use 100 TOF scans coming from two different 

ources. Forty-two TOF subject scans, from retrospective studies 

reviously conducted at the UCL Queen Square Institute of Neu- 

ology, were available with volume dimensions 560 × 560 × 117 

nd isotropic voxel size 1 × 1 × 1 mm 

3 (Set 1). The remaining 

8 scans were obtained from the OASIS-3 database ( LaMontagne 

t al., 2019 ) with volume dimensions 576 × 768 × 232 and voxel 

ize 0 . 3 × 0 . 3 × 0 . 6 mm 

3 (Set 2). 

SWI data We use 33 different subject scans with image di- 

ensions 480 × 480 × 288 and isotropic image resolution 1 × 1 ×
 mm 

3 , from retrospective studies previously conducted at the 

CL Queen Square Institute of Neurology, Queen Square MS Cen- 

re, University College London. Due to poor image quality, three 

WI scans were discarded for the experiments. 

.2. Baselines 

We compare our segmentation framework with several alter- 

atives, including state-of-the art deep learning-based vessel seg- 

entation ( Livne et al., 2019; Tetteh et al., 2020 ) and classical 

pproaches ( Frangi et al., 1998; Sato et al., 1997; Zuluaga et al., 

014b ), and weakly supervised learning frameworks ( Ahn and 

wak, 2018; Lerousseau et al., 2020 ). Specifically, we evaluate: 

1. Classical 3D Vessel Segmentation Methods: We consider three 

classical non-learning based approaches, which use the 3D im- 

age volume as input. These are: the Frangi filter ( Frangi et al., 

1998 ) ( Frangi ) and the Sato filter ( Sato et al., 1997 ) ( Sato ), two

references for vessel segmentation, and a tensor voting frame- 

work for 3D brain vessel segmentation ( Zuluaga et al., 2014b ) 

( TV ). 

2. Deep Leaning-based 3D Vessel Segmentation Methods: We 

consider the deep learning-based brain vessel segmentation 

framework from Livne et al. (2019) ( Vessel 2D-Unet ), which re- 
3 https://github.com/giesekow/deepvesselnet/wiki/Datasets 

(

w

a

7 
lies on the 2D-Unet ( Ronneberger et al., 2015 ) as backbone ar- 

chitecture, and uses 2D patches as input; and DeepVesselNet , 

the framework from Tetteh et al. (2020) , which uses the 3D im- 

age volume as input, but operates on 3D patches using a fully 

convolutional architecture to extract the 3D vessel tree. 

3. Weakly Supervised Methods: We compare our weakly su- 

pervised strategy with one standard MIL and a CAM-based 

approach. Concretely, we use a MIL framework for whole 

slice ( WS-MIL ) histopathology segmentation ( Lerousseau et al., 

2020 ) and the CAM-based approach proposed by Ahn and 

Kwak (2018) for natural image segmentation ( AffinityNet ). Both 

methods work with 2D image patches with size 32 × 32 and 

96 × 96, respectively. 

4. Other Limited Supervision Strategies: We consider two semi- 

supervised strategies using partial labels: the 3D-Unet , which 

can be trained using sparsely annotated training data ( Çiçek 

et al., 2016 ), and a Pseudo-labeling strategy, where we use 

rough masks as labels. The label masks are generated with the 

Sato filter ( Sato et al., 1997 ) and they are used to train a 2D-

Unet network with 2D image slices. 

We compare the classification networks, 2D-PnetCl and 2D- 

netCl, with two baselines, VGG-16 ( Simonyan and Zisserman, 

015 ) and ResNet ( He et al., 2016 ), as they are among the most

ommon networks for classification ( Litjens et al., 2017 ). Table 2 

ummarizes the hyperparameter setup for every baseline network. 

.3. Setup 

Pre-processing and annotation We used the available ground 

ruth from the synthetic images to generate Vessel- CAPTCHA an- 

otations. Since the in-plane dimensions of the images are not 

 multiple of the patch size ( Table 1 ), we overlap the last two

ows/columns of patches. 

Both TOF and SWI were skull-stripped using a standard tool 

nd we generated the Vessel- CAPTCHA annotation grid only over 

he brain tissue ( Fig. 2 ). Where the minimum-sized rectangle mask 

overing the brain tissue was not a multiple of the patch size in 

 given dimension, we dilated the mask in that dimension until 

he condition was met and generate the annotation grid. If the 

inimum-sized rectangle mask touched the image slice borders 

nd the in-plane dimensions of the images were not a multiple 

f the patch size, we generated the annotation grid by overlapping 

he last two rows or columns of patches. Three users annotated the 

mages using the Vessel- CAPTCHA annotation scheme: a trainee, 

n experienced rater and a neurologist. In addition to this, TOF 

ata was pixel-wise annotated. Finally, no pixel-wise labels were 

btained for SWI, since it is difficult to obtain a sufficiently robust 

round truth. All annotation times were recorded. 

For the Vessel 2D-Unet, further data pre-processing for syn- 

hetic and TOF data was performed as described in Livne et al. 

2019) . All datasets where normalized (within modality). For TOF, 

here two different sources were used, we follow the intensity 

nd spacing normalization strategy from ( Full et al., 2021 ). 

https://github.com/giesekow/deepvesselnet/wiki/Datasets
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Table 2 

Hyper-parameter setup for baseline networks. 

Network Hyper-parameters 

Vessel 2D-Unet batch size: 64, lr: 1e −4, dropout: 0.0 

DeepVesselNet batch size: 10, lr: 1e −3, decay: 0.99, cube size: 64 

WS-MIL batch size: 100, lr: 1e −4, decay: 10e −5, c 0 = c 1 = 1, α = [1e − 2 , . . . , 0 . 1] , β=[0 . 9 , . . . , 0 . 99] 

AffinityNet batch size: 16, lr: 1e −1 

3D-Unet lr: 1e −4, reduced by 0.5 every 10 epochs. Stopped at 50 epochs if no improvements in the validation error 

VGG-16 batch size: 64, lr: 1e −4 

ResNet batch size: 64, lr: 1e −3 
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tain a visually satisfactory segmentation. 
Training setup Table 1 displays the number of available 2D 

atches for training and validation per dataset. For every dataset, 

e performed data splitting at the image volume level, using a 

plit ratio 70/10/20% for training, validation and testing, respec- 

ively. The training sets were augmented through the use of dif- 

erent random rotations, flips and shears at every epoch for every 

D patch. Models are chosen based on the best performance in the 

alidation set. 

Two different rules are used to synthesize pseudo-labels for the 

nnotated training set T M 

with the K-means algorithm. In synthetic 

ata and TOF, vessels are associated to the cluster with the high- 

st mean value, whereas the vessel class is associated to the clus- 

er with the lowest mean value in SWI. The training sets, T P and 

 M 

, are used to separately train a classification and a segmentation 

etwork per modality. 

.4. Evaluation metrics 

Vessel segmentation We estimate the Dice Similarity Coefficient 

DSC), the Hausdorff Distance (HD), the 95% Hausdorff Distance 

95HD) and the mean surface distance error ( μD) between the seg- 

entation and the annotated ground truth to quantitatively assess 

he segmentation accuracy in TOF and the synthetic dataset. We 

easure HD, 95HD and μD in voxels. 

In SWI, the segmentations are assessed qualitatively. Based on 

 visual inspection by two raters (an expert rater and a neurolo- 

ist), the segmented images are classified as good (3), average (2) 

r low quality (1). A segmented image is considered good, if it seg- 

ents the large and medium vessels, and avoids the segmentation 

f noisy regions, with an elongated appearance similar to a vessel, 

nd sulci. It might miss some small vessels. A segmented image is 

onsidered of average quality if it segments large and medium ves- 

els, it misses small ones, it may segment noisy areas in a small 

roportion (less than 50%), specially in the anterior part of the 

rain, and often segments sulci. All other cases are considered as 

ow quality ones. We use the Cohen’s Kappa coefficient ( κ) to mea- 

ure the level of agreement among raters. 

Patch classification We measured precision (P), recall (R) and the 

-score (F 1 ), using a vessel patch as the positive class to assess the 

uality of the classification results obtained by the classifier net- 

orks. 

. Experiments and results 

We assess the performance of the Vessel- CAPTCHA in terms 

f vessel segmentation accuracy and required annotation time 

 Section 4.1 ). In Section 4.2 , we compare our weak learning strat-

gy with other limited supervision techniques. Section 4.3 studies 

he proposed classification networks and their performance as a 

ata augmentation strategy. Next, we perform an ablation study to 

nderstand how the different com ponents of the framework con- 

ribute to performance ( Section 4.4 ) and we present a brief sum- 

ary of all the obtained results in Section 4.5 . 
8 
.1. 3D brain vessel segmentation performance 

We evaluate the performance of the Vessel- CAPTCHA frame- 

ork in terms of segmentation accuracy and required annotation 

ime using all available datasets. We compare it against the 3D 

rain vessel segmentation, i.e. the deep learning vessel segmenta- 

ion frameworks and the classical techniques. 

Synthetic data We use the synthetic data to provide a con- 

rolled setup, where the ground truth is fully reliable, to assess 

he learning-based vessel segmentation strategies. In addition to 

he required fully supervised training, Vessel 2D-Unet and Deep- 

esselNet are trained using weak labels from the Vessel- CAPTCHA 
nnotation scheme. 

Fig. 5 summarizes the segmentation accuracy results from the 

ifferent networks. The Vessel 2D-Unet and DeepVesselNet present 

he best performances when they are trained using fully labeled 

nd reliable ground truth data. DeepVesselNet reports a minor 

rop in performance (1 and 2%) w.r.t. the values reported in Tetteh 

t al. (2020) , which we consider related to implementation details. 

s it could be expected, the Vessel- CAPTCHA has a slightly lower 

erformance than Vessel 2D-Unet and DeepVesselNet trained with 

ull precision labels. However, it surpasses the performance of 

oth architectures trained with weak labels, indicating that Vessel- 

APTCHA is better suited for the weak learning setup. 

TOF images We use real clinical data from the TOF images to 

valuate the Vessel- CAPTCHA and to compare it against the 3D 

essel segmentation baselines in terms of segmentation accuracy 

nd training set annotation time. 

Among classical 3D vessel segmentation methods, the Frangi 

 Frangi et al., 1998 ) and Sato ( Sato et al., 1997 ) filters produce real-

alued maps that need to be thresholded to get a binary segmen- 

ation. The TV ( Zuluaga et al., 2014b ) provides a probability map, 

hich may produce small spurious segmentations that need to be 

ltered out. The three methods allow to identify vessels at differ- 

nt spatial resolutions. In our experiments, we set 10 scales in the 

ange [0.5,2] mm. We obtain final binary segmentations for the 

lassical methods in two ways: 

1. No post-processing (NP): the real-valued masks obtained with 

the Frangi and Sato filter are normalized to the range [0,1]. We 

set a fixed threshold ( t > 0 . 6 ) to binarize the three maps, and

we do no filter out potential small spurious objects. 

2. Post-processing (PP): Every (real-valued and probability) map 

is inspected by overlaying it on the original testing image, to 

define and apply a per-image threshold. The resulting binary 

maps are filtered by masking out any connected component 

with a size equal or smaller than 4. Through visual inspection 

of every binary segmentation overlaid in the original image, the 

minimum connected component size could be modified. Where 

the results are yet not satisfactory, the base method can be re- 

run using a different set of scales, followed by a new round of 

post-processing operations. We record the time required to ob- 
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Fig. 5. Segmentation performance in synthetic data. Vessel 2D-Unet and DeepVesselNet are trained with full pixel-wise annotations (Full) and with weak labels (Weak). A 

higher value is better for DSC, lower is better for HD, 95HD and μD, indicatin that our Vessel-CAPTCHA is the best method among the weakly supervised ones. 

Table 3 

3D brain vessel segmentation methods accuracy in TOF. The bold font denotes best value, with un- 

derlined values not significantly different from it ( α = 0 . 05) . Classical methods and DeepVesselNet 

use 3D volumes as input. Vessel 2D-Unet and our framework use 2D patches as inputs. HD, 95HD 

and μD are reported in voxels. 

Method DSC ( ↑ ) HD ( ↓ ) 95HD ( ↓ ) μD ( ↓ ) 
NL Frangi-NP 54.16 ± 8.81 81.04 ± 18.48 14.78 ± 13.83 2.47 ± 2.22 

Sato-NP 55.75 ± 7.15 78.60 ± 16.37 11.53 ± 12.01 2.17 ± 1.07 

TV-NP 68.41 ± 5.01 60.23 ± 10.08 10.97 ± 11.72 2.10 ± 1.00 

Frangi-PP 68.44 ± 3.15 20 . 60 ± 10 . 91 9.01 ± 10.38 2.36 ± 2.01 

Sato-PP 69.01 ± 3.67 21 . 53 ± 9 . 11 8.86 ± 10.09 2.10 ± 1.01 

TV-PP 70.74 ± 3.38 20.11 ± 8.45 8.31 ± 8.23 2.07 ± 1.02 

FS Vessel 2D-Unet 77 . 66 ± 4 . 32 74.78 ± 16.73 12.60 ± 18.16 0 . 60 ± 0 . 11 

DeepVesselNet 76 . 13 ± 5 . 51 75.32 ± 12.94 4 . 32 ± 1 . 16 1.65 ± 0.26 

Vessel-CAPTCHA (ours) 79.32 ± 3.02 51.70 ± 5.92 4.06 ± 1.50 0.50 ± 0.09 

NL, No labels; FS, Fully supervised; NP, No post-processing; PP, Post-processing. 
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Table 3 summarizes the segmentation performance. Classical 

essel segmentation methods show a poor performance when no 

anual post-processing is done. This is expected, as it is a well- 

nown limitation of such approaches. The manual post-processing 

tep allows an important jump in performance. In particular, it al- 

ows to remove spurious and disconnected false positives, which 

s reflected on their low HD, the best among all methods, and an 

mportant drop of the 95HD, while maintaining μD relatively con- 
9 
tant. However, post-processing requires high level of expertise and 

t is time consuming. 

With the exception of the HD, learning-based methods consis- 

ently show a better performance across measures, with no statis- 

ical differences among them, and the Vessel- CAPTCHA reporting 

he best results among all methods. This demonstrates that the 

roposed framework can reach state-of-the-art performance de- 

pite the use of less accurate annotations ( Fig. 6 ). We bring at- 
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Fig. 6. Segmentation results in TOF images. From left to right: ground truth, Vessel-CAPTCHA (ours), Vessel 2D-Unet and DeepVesselNet. 
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test set. 
ention to the fact that Vessel 2D-Unet and DeepVesselNet re- 

ort lower DSC (77.66 vs. 89.0 and 76.13 vs. 81.0, respectively) 

han the reported in Livne et al. (2019) ; Tetteh et al. (2020) . How-

ver, for Vessel 2D-Unet our results show a better 95HD (12.6 vs. 

7.27) and a comparable sub-voxel μD (0.60 vs. 0.38). The better 

istance-based measures suggest that the differences in the DSC 

ight come from the ground truth annotation protocol, in which 

ur data might include more distal, hence thinner vessels that are 

ore prone to be unsegmented. This is confirmed by DeepVessel- 

et’s DSC on synthetic data. In the controlled setup, the reported 

esults are comparable to ( Tetteh et al., 2020 ). 

Fig. 7 presents segmentation accuracy measured with the DSC 

s a function of the required average user intervention time per 

mage. For the proposed framework, the user intervention time 

orresponds to the average time required to obtain weak la- 

els using the Vessel- CAPTCHA annotation scheme. We report 

he average from the time measurements from the three raters 

75.5 ± 12.5 min). For 2D Vessel-Unet and DeepVesselNet, the user 

ntervention time corresponds to the average time to fully pixel- 
10 
ise annotate TOF images (327.5 ± 20.5 min). The 2D-Unet frame- 

ork ( Livne et al., 2019 ) requires additional data pre-processing 

o obtain patches with vessels located at the center of the patch, 

hich is not considered in the reported numbers. While this op- 

ration could represent a further increase in the time needed 

o prepare the training set, we consider it marginal in compari- 

on with the time required to do the pixel-wise annotation. Fi- 

ally, for the classical methods, the user intervention time corre- 

ponds to the average time required to segment and post-process 

ne image. We observe that, on average, the Vessel- CAPTCHA 
educes the annotation time by 77%, w.r.t. pixel-wise annota- 

ions in the same image, while achieving a higher segmentation 

ccuracy. 

Susceptibility-weighted images (SWI) We study the capacity of 

he Vessel- CAPTCHA to segment different image modalities by 

ualitatively assessing the segmentation results obtained in SWI. 

he framework was trained and visually assessed on the validation 

et. The model visually judged as best was used to segment the 
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Fig. 7. Segmentation accuracy (DSC) vs. User intervention time. 

Fig. 8. Segmentation results in SWI images. Top: Original image. Bottom: Overlaid 

segmentation. From left to right the first three cases present good segmentation 

results. The rightmost example shows a sulci that has been segmented as if it was 

a vessel (green arrow). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Table 4 

Comparison with partial labeling methods using TOF images. The bold font 

denotes best value. Our framework uses 2D patches, Pseudo-labeling uses 

image slices and 3D-Unet image volumes as input. 

3D-Unet Pseudo-labeling Vessel-CAPTCHA (ours) 

DSC ( ↑ ) 68.50 ± 3.37 54.99 ± 5.86 79.32 ± 3.02 

HD ( ↓ ) 76.12 ± 8.47 68.50 ± 9.58 51.70 ± 5.92 

95HD ( ↓ ) 15.72 ± 2.23 24.19 ± 5.25 4.06 ± 1.50 

μD ( ↓ ) 2.56 ± 1.44 4.48 ± 1.67 0.50 ± 0.09 
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Fig. 8 illustrates some segmentation results. Overall, SWI is 

ore complex than TOF, thus further errors are observed. As a 

eneral pattern, the SWI segmentations tend to miss small vessels, 

hile there is also a high incidence of false positives due to erro- 

eously segmented sulci and noise. Nevertheless, the raters judged 

ore that 50% of the segmentations as good and only one image 

as considered poor by one of them. Their visual judgment an av- 

rage rating score of 2.57 with an agreement κ = 0 . 75 . 

SWI Vessel- CAPTCHA annotation requires 38% more time than 

n TOF (94.5 ± 11.5). This is expected given the increased complex- 

ty of SWI scans: small vessels require more effort to be identified 

nd vessels often present an appearance similar to sulci ( Fig. 8 ). 

hese factors have a direct incidence in the time needed by a rater 

o discriminate vessel from non-vessel patches. Nevertheless, SWI 

essel- CAPTCHA accounts for 71% less time than the pixel-wise 

nnotation baseline (327.5 ± 20.5 min, see Fig. 7 ). 

.2. Alternative limited supervision strategies 

Using the TOF dataset, we choose to do a separate compari- 

on of the Vessel- CAPTCHA and other limited supervision strate- 

ies, which excludes fully supervised 3D brain vessel segmentation 

pproaches. As there are no works using limited supervision ad- 

ressing 3D brain vessel segmentation we consider that a direct 
11 
omparison between the two families of methods (i.e. limited vs. 

ull supervision) is advantageous towards the fully supervised tech- 

iques. 

Partial labeling techniques Table 4 compares our framework with 

he partial labeling techniques, 3D-Unet, and Pseudo-labeling. The 

D-Unet is trained with the pixel-wise annotations. Given that 3D 

ixel-wise vessel annotations are highly prone to error, given the 

ifficulties that the brain vessel tree poses, the resulting annotated 

ataset is likely to present missing labels (i.e. sparsity), which the 

D-Unet handles seamlessly. Pseudo-labeling uses rough segmen- 

ation masks obtained using the Sato filter ( Sato et al., 1997 ) to the

mage volumes, thus avoiding user annotations. Despite being de- 

igned to handle sparse pixel-wise annotations and being the only 

ethod directly processing the image volume, the 3D-Unet does 

ot achieve the best performance. The results are lower than those 

eported by other frameworks requiring precise pixel-wise annota- 

ions, i.e. Vessel 2D-Unet and DeepVesselNet ( Table 3 ). These re- 

ults are consistent with other works in the literature ( Livne et al., 

019; Kozi ́nski et al., 2020; Ni et al., 2020; Phellan et al., 2017; Tet-

eh et al., 2020 ), which avoid the use of end-to-end 3D networks 

nd favor the use of networks relying on smaller input spaces, e.g. 

D subvolumes ( Phellan et al., 2017; Tetteh et al., 2020 ), 2D im-

ges ( Kozi ́nski et al., 2020; Ni et al., 2020 ) or patches ( Livne et al.,

019 ). Pseudo-labeling results suggest that, in isolation, this ap- 

roach cannot reach a good accuracy, which explains why it is of- 

en coupled with a refinement stage ( Liang et al., 2019; Ke et al., 

020 ). 

Weakly supervised strategies In our experiments, we were not 

ble to achieve sufficiently good results with WS-MIL and Affini- 

yNet that could allow a quantitative comparison with the other 

aselines. In this section, we perform a qualitative analysis of the 

btained results to gain understanding about the limitations of 

tandard MIL- and CAM-based segmentation techniques for brain 

essel tree segmentation. 

We adapt WS-MIL to address 3D brain vessel segmentation by 

sing the Vessel- CAPTCHA patches as input rather than an im- 

ge slice ( Lerousseau et al., 2020 ). WS-MIL splits its input into 

ub-patches and it ranks them according to their predicted prob- 

bility of containing a vessel. We consider two sub-patch sizes, 

6 × 16 and 8 × 8. The final sub-patch labeling is achieved by us- 

ng the ranked patches along with two hyper-parameters, α and 

, which control the minimum number of pixels belonging to the 

oreground ( α) and the background class ( β) ( Table 2 ). We observe

wo limitations in the obtained results ( Fig. 9 ). First, the resulting 

asks correspond to vessel localization masks, not segmentations, 

ue to the granularity of the patches. The original WS-MIL formu- 

ation ( Lerousseau et al., 2020 ) has been conceived for super reso- 

ution histology images, where the resulting labeled sub-patches 

an be considered a segmentation mask. Standard brain images 

ave a much lower resolution. Therefore, the final result lacks the 

ecessary specificity to be considered a segmentation. Second, we 

bserve that it is difficult to set a value for α and β that works 

ell for all the slices in an image volume. As shown in Fig. 9 , while

 low α value works well in image slices with larger vessels, the 
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Fig. 9. Vessel localization results with WS-MIL using sub-patch resolution 8 × 8 

(top) and 16 × 16 (bottom). The first two columns use α = 0 . 01 , β = 0 . 99 . The right- 

most column uses α = 0 . 07 , β = 0 . 93 on the middle column images. 

Fig. 10. Vessel patches of size 96 × 96 (top) with overlaid CAMs (bottom) from the 

AffinityNet framework. 
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ame value fails to detect smaller vessels, hence it is necessary to 

rain a new model with different α, β values. 

The architecture of AffinityNet does not allow images below a 

ertain size to be fed into it. Therefore, we had to enlarge the patch 

sed from 32 × 32 to 96 × 96, similar to the one we use as in-

ut of 2D-WnetSeg. The larger patches were obtained by grouping 

2 × 32 patches. A vessel label was assigned if at least one sub- 

atch was originally labeled as a vessel patch. Otherwise, the patch 

as labeled as non-vessel. 

Despite the larger field of view of the new input patches, our 

xperiments did not achieve good results with AffinityNet. A visual 

nspection of the CAMs showed that, although they activate conse- 

uently with the class associated to the patch, these did not con- 

ain discriminative information about vessels ( Fig. 10 ). Let us recall 

hat AffinityNet ( Ahn and Kwak, 2018 ) uses the input image and 

he CAMs ( Zhou et al., 2016 ) to synthesize pseudo-labels, which 

re then used to train a segmentation model. However, CAMs are 

ough approximations of the object of interest ( Ahn and Kwak, 

018; Bae et al., 2020; Zou et al., 2021 ). In the past, CAM-based

ethods have been used to segment relatively large objects in nat- 

ral scenes ( Ahn and Kwak, 2018; Hong et al., 2017; Zou et al.,

021 ), damaged tissue ( Izadyyazdanabadi et al., 2018 ) or blob-like 

tructures occupying an important part of the image, such as the 
12 
ptic disc ( Zhao et al., 2019 ). In our case, as vessels are relatively

mall objects, it seems that the network requires to use much 

ore information from the scene to discriminate between vessel 

nd non-vessel patches, as reflected by the CAMs ( Fig. 10 ). The 

nformation, however, is to broad to locate the vessels and thus 

ffinityNet fails. 

.3. Classification networks 

Classification networks performance We study the performance 

f the two classification networks, 2D-UnetCl and 2D-PnetCl, to 

etermine if they are well-suited as discriminators within our 

ramework. Table 5 compares the classification performance of 2D- 

netCl and 2D-PnetCl in TOF and SWI images with VGG-16 and 

he ResNet. For each network, two models were trained, one for 

OF and one for SWI. Results are reported on the best performing 

odel in the validation set. 

The two proposed networks, derived from medical imaging 

ask-specific networks, present a higher overall performance (F- 

core) than VGG-16 and the ResNet, suggesting that the networks 

pecifically designed for medical imaging tasks can contribute to 

n increased performance. All methods report a drop in perfor- 

ance from TOF to SWI, which is expected given that SWIs are 

ore challenging to classify and segment due to several factors. 

irst, vessels in SWI are hypo-intense, being similar in appearance 

o the image background. As such, vessels close to the brain surface 

re prone to misclassification. Second, SWI is capable of imaging 

ery small vessels that can be difficult to identify within a patch, 

s they can have an appearance similar to the one of brain tissue 

nhomogeneities or sulci, this leading to misclassification. 

Among the proposed networks, 2D-PnetCl presents the high- 

st performance in both modalities. This reflects a good balance 

n the network’s capability to discriminate among vessel and non- 

essel patches, which is key for its use within the Vessel- CAPTCHA 
ramework. In the remaining, we rely on 2D-PnetCl as a classifica- 

ion network. 

Classification network as a weak Pseudo-label generator We use a 

ercentage (25%, 50% and 100%) of the weakly annotated training 

et T M 

. Where applicable, we enlarge it with a fixed set of 10 im-

ges automatically labeled through the data augmentation process, 

.e. |T ∗
M 

| = 10, ( Fig. 4 ). Fig. 11 reports DSC in the different scenarios.

he results show that the data augmentation step improves per- 

ormance w.r.t. using the same annotated training set with no aug- 

entation, while reaching a comparable performance to that one 

f using a dataset entirely annotated by the user. The comparable 

erformances come as a result of the high classification accuracy 

f the 2D-PnetCl (F-score = 94.71%), which sits close to the perfor- 

ance of a human rater. 

Classification network as a second opinion The results obtained 

y post-processed classical methods ( Table 3 ) suggest that a re- 

ision of the segmentation results and their refinement through 

ost-processing can lead to a significant improvement in perfor- 

ance. We investigate if the classification network can act as an 

xpert providing a second opinion on the segmentation results ob- 

ained by the 2D-WnetSeg, on a per-patch basis. If the classifica- 

ion network labels a patch as vessel patch, the segmented pix- 

ls in the patch will be preserved. Instead, if the classification net- 

ork classifies the patch as a non-vessel one, any segmented pixels 

re masked out. To this end, we calibrate the 2D-PnetCl output by 

hoosing the classification threshold of the final prediction layer, 

hich maximizes the DSC ( Fig. 12 ). 

Fig. 13 reports vessel segmentation DSC, using Set 1 of the TOF 

mages, in the following scenarios: (1) on all the testing set (ALL); 

2) on 4 images identified as of low quality by the raters (LQ); 

3) using a second opinion on the testing set (Cl(ALL)); (4) using 

 second opinion on the low quality data (Cl(LQ)); and (5) in all 
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Table 5 

Classification network comparison in TOF and SWI. For each row, bold font denotes 

the best value, with underlined values not significantly different from it ( α = 0 . 05) . An 

asterisk ( ∗) denotes a network proposed in this work. 

VGG-16 ResNet 2D-UnetCl ∗ 2D-PnetCl ∗

Precision 92.48 ± 1.54 93.66 ± 1.48 94 . 82 ± 0 . 48 94.91 ± 1.04 

TOF Recall 87.39 ± 4.60 93.27 ± 1.73 94 . 04 ± 0 . 65 94.94 ± 1.09 

F-score 88.68 ± 3.81 93.34 ± 1.62 94 . 27 ± 0 . 54 94.71 ± 1.23 

Precision 82 . 34 ± 1 . 15 80.14 ± 1.13 82 . 44 ± 1 . 18 82.97 ± 1.55 

SWI Recall 77.45 ± 4.17 79.39 ± 3.35 74.35 ± 5.35 79 . 30 ± 4 . 07 

F-score 78.76 ± 3.39 79 . 17 ± 2 . 31 76.42 ± 4.63 80.31 ± 3.31 

Fig. 11. Segmentation performance with varying training set size with (augmented) 

and without (original) data augmentation. 

Fig. 12. Threshold (th) calibration of the 2D-PnetCl output. Precision, recall and F- 

score measure patch classification accuracy, wehereas DSC measures pixel-wise seg- 

mentation performance. 

t

i

n

m

(

a  

t

c

e

m

Fig. 13. Classification network as a second opinion in TOF. Vessel segmentation DSC 

for all the test set (ALL), low quality test images (LQ), full test set after second 

opinion (Cl(ALL)), low quality images after second opinion (Cl(LQ)) and full test with 

only the low quality subject to a second opinion (ALL+Cl(LQ)) using 2D-WnetSeg 

trained on original training set 1. 
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he testing set with the a second opinion only on the low qual- 

ty data (ALL + Cl(LQ)). The results suggest that using the classifier 

etwork as a second opinion has a significant impact in the seg- 

entations’ accuracy and variability for low quality (LQ) images 

 p-value < 0.05), although when applied to the full test set there is 

 slight drop in accuracy ( ∼ 1 . 9% ), indicating a negative impact on

he segmentation accuracy in high quality images. As a result, one 

ould consider the classifier as a second opinion and not the main 

xpert. In images were there is a discrepancy between the seg- 

entation network and the classifier, the user may inspect them 
13 
nd decide what to do. As an example, the second opinion could 

e used only on those images identified as of low quality by the 

aters. The results from Fig 13 indicate that, in such scenario, a 

igher overall performance is achieved. 

We follow the same procedure using SWI segmentations and 

resent the revised segmentation masks to the raters for visual 

udgement. The average rating score achieved was 2.30 with an 

greement κ = 0 . 57 , which is lower than that one achieved with- 

ut using a second opinion (i.e. 2.57, see Section 4.1 ). This lower 

ating score is explained by the fact the classification network al- 

ows to correct segmentations containing large regions of false pos- 

tives caused by noise in the image, mostly in the boundaries of 

he brain tissue, at the cost of removing true positives ( Fig. 14 ).

ne rater considered this as less critical than the other, which ex- 

lains the lower agreement among them. The results suggest that 

he classifier network should not be considered as an expert, i.e. it 

cts as a mask, but as a second opinion providing a heuristic mea- 

ure of uncertainty on patches where the two networks disagree. 

he mismatching and uncertain regions should be thus validated 

y an external user. 

.4. Ablation study 

We study the properties of the different components of the pro- 

osed annotation and segmentation framework through a set of 

blation studies. We investigate the incidence of the K-means as 

nd we investigate the role of the 2D-WnetSeg network. 

.4.1. K-means as a Pseudo-label generation strategy 

We study how the pixel-wise pseudo-labeled dataset T M 

syn- 

hesized from user-provided weak patch tags affects the frame- 

ork’s performance in TOF. We achieve this in two ways. First, 
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Fig. 14. Classification network as a second expert opinion in two SWI slices. From 

left to right, original image, segmentation from 2D-WnetSeg, segmentation after fil- 

tering. The yellow boxes highlight areas with image noise that are first segmented 

as vessel, but corrected with the filter. The green dashed boxes, highlight areas with 

segmented vessels that are removed. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 15. Top: Similarity between user-provided pixel-wise annotations and weak 

pixel-wise labels obtained through K-means and GMM, measured through the DSC 

in TOF. K-means and GMM are applied on the full volume (FV), on a per slice basis 

(IS) and on different patch sizes. Bottom: 2D-WnetSeg performance using pixel-wise 

pseudo-labels by K-means and GMM for different input patch sizes (16, 32, 64 and 

96). 

Fig. 16. Examples of the generated training set T M . From left to right original TOF 

image, ground truth, GMM pseudo-labels and K-means pseudo-labels. 
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e investigate if the pixel-wise pseudo-labels synthesized by K- 

eans represent a good rough approximation of pixel-wise user- 

nnotated labels. Second, we assess how the size of the patches 

sed as input of the segmentation network influences the latter’s 

erformance. In our experiments, we compare with Gaussian mix- 

ure models (GMM), an alternative self-supervised approach to ob- 

ain pixel-wise pseudo-labels from image tags ( Luo et al., 2020 ). 

wo components (vessel and background) are used for the GMM 

o be comparable with K-means. For both cases, patches with more 

han 30% pixels marked as vessel are fully masked out and consid- 

red as non-vessel. These correspond to highly noisy patches con- 

aining only brain tissue. 

The role of the self-supervised method, i.e. the K-means in 

ur case, is to synthesize pixel-wise pseudo-label masks {M s } S s =1 
hich are sufficiently good to train the segmentation network. 

n other words, the pseudo-labels should be as close as possible 

o hypothetically pixel-wise annotations provided by a user. We 

hus measure the similarity between the pixel-wise pseudo-labeled 

asks {M s } S s =1 
and the available pixel-wise annotations of the TOF 

raining set. The K-means (and GMM) are applied on different in- 

ut sizes, namely directly on the full image volume, or on sub- 

ets of it that are then concatenated. For this we use image slices 

nd patches of varying sizes: 96, 64 and 32. For the patches, K- 

eans and GMM are only applied to vessel patches. We set 32 as 

he smallest patch size, which corresponds to the size set for the 

essel- CAPTCHA , i.e. the user-input. Larger patches are obtained 

y concatenating the user input into a 2 × 2 and 3 × 3 grid. 

Smaller patches are best for Pseudo-label generation Fig. 15 (top) 

hows the similarity between the training set pixel-wise annota- 

ions and the weak pixel-wise label masks measured with the DSC. 

he performance of both methods is inverse to the size of the in- 

ut sample. As it would be expected, when applied to large ex- 

ents of the image volume, i.e. the full image volume (FV) or on a 

er image slice basis (IS), the DSC is very low ( < 40% ), with GMM

eporting slightly higher values. As the extent of the input sample 

ecreases, i.e using patches, K-means performs better, which could 

e justified by the fact that smaller regions tend to be more ho- 

ogeneous. Two aspects should be highlighted from the obtained 
14 
esults. Firstly, we observe that GMMs lead to thinner vessel masks 

han those synthesized by K-means ( Fig. 16 ), which is consistent 

ith the higher DSC, as over-segmentations tend to be less penal- 

zed than mis-segmentations. Given the way that the 2D-WnetSeg 

earns, it is better to have overestimated masks from K-means 

han the finer ones. However, being K-means a simpler algorithm, 

he patch size used as the input plays an important role. Our re- 

ults suggest that smaller patch sizes lead to better results. Sec- 

ndly, we shall recall that both self-supervised methods are only 

pplied to vessel patches. This is a necessary condition to obtain 

seudo-labels of a minimum quality using these two algorithms. 

he condition is guaranteed by the patch tags discriminating vessel 

rom non-vessel patches, which are obtained through the Vessel- 
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Fig. 17. 2D-WnetSeg (ours) vs. single Unet performance (DSC) for varying training 

set size, |T M | . 
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Table 6 

2D-WnetSeg (ours) vs. single Unet perfor- 

mance using synthetic data. 

Measure 2D-WnetSeg One 2D-Unet 

DSC ( ↑ ) 88.77 ± 0.90 86.61 ± 1.05 

HD ( ↓ ) 40.31 ± 2.95 41.18 ± 4.32 

95HD ( ↓ ) 6.74 ± 0.48 7.96 ± 0.52 

μD ( ↓ ) 0.91 ± 0.06 1.08 ± 0.07 
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APTCHA . Based on these results, for the remaining experiments 

e set the patch size input to the K-means to 32 × 32 , which cor-

esponds to the same value used in the Vessel- CAPTCHA . 
Larger patches are best for segmentation Fig. 15 (bottom) shows 

he 2D-WnetSeg accuracy with varying input patch sizes over the 

alidation set. The patches are obtained by rebuilding the rough 

ask volume from the 32 × 32 patches and re-cropping the vol- 

me into different patch sizes. It should be noted that the seg- 

entation network’s input patch size does not have to match that 

ne of the Vessel- CAPTCHA . Coherently with the previous results 

howing that K-means pseudo-labels are more similar to true an- 

otations, their use consistently leads to higher DSCs. The Vessel- 

APTCHA patch size, 32 × 32 , seems too small for the 2D-WnetSeg 

o capture the features that allow to discriminate vessel pixels 

rom non-vessel ones. Instead, larger patches lead to higher DSCs. 

owever, we avoid the use of larger patch sizes to avoid the prob- 

em of vessels becoming a small portion of the full image/patch, 

eading to drops in performance. For instance, we set the segmen- 

ation network’s input patch size to 96 × 96 . 

.4.2. The role of the segmentation network 

We perform an ablation study to explore the effectiveness of 

he 2D-WnetSeg. Fig. 17 compares the performance of 2D-WnetSeg 

ith its ablated version consisting its first Unet (2D-Unet), while 

arying the size of the training set. The 2D-WnetSeg reports a 

igher DSC across datasets. The better performance of the 2D- 

netSeg is explained by the fact that the deep networks are 

rained on rough segmentation maps. The first Unet works as a 

efinement module to correct the mask by inferring potentially 

issing vessels based on the structural redundancy of the cere- 

rovascular tree. The second Unet can learn from the raw brain 

mage and the previously improved segmentation mask, leading to 

n increased segmentation performance. The single Unet, instead, 

s faced directly with the rough masks. We further investigate this 

ehavior using the synthetic dataset, which provides a controlled 

etup for comparison ( Table 6 ). The higher reported DSC of 2D- 

netSeg indicates it is better at detecting vessel pixels. Moreover, 

he lower 95HD and μD are a sign of the more refined results that 

he 2D-WnetSeg can achieve w.r.t. its ablated version. 
15 
.5. Summary 

Table 7 summarizes the performance of the different baselines 

ompared in this work, along with their computational costs, in 

erms of model size, FLOPs, training and inference time, and user 

ntervention time. Training time denotes the time required to train 

 learning-based model, except for Pseudo-labeling, where it refers 

o the time to train the model and to obtain sequentially the 

seudo-labels for each image in our training and validation sets 

sing the Sato filter. User intervention time represents the time to 

nnotate the training set in learning-based approaches, or to post- 

rocess the segmentation results for classical methods. It should 

e noted that for the latter user intervention occurs every time 

n image is segmented, whereas for learning-based methods this 

nly happens once during training. In addition to the considered 

aselines, we include two further methods for reference: the 2D- 

netSeg trained with pixel-wise annotations and the combination 

f the classifier network with K-means (no segmentation network). 

verall, the Vessel- CAPTCHA has a performance comparable to the 

est fully supervised methods ( Livne et al., 2019 ), it avoids any 

ost-processing steps and it provides an important speed-up for 

raining data annotation. 

. Discussion and conclusions 

Context and proposed solution Deep convolutional networks have 

chieved state-of-the-art performance in many medical image seg- 

entation tasks. However, their success has not been as wide 

or 3D brain vessel segmentation. This can be explained by two 

actors. First, deep learning techniques are less performing when 

he object of interest occupies a small portion of the image, as 

t is the case for brain vessels ( Livne et al., 2019 ). Second, man-

al pixel-wise annotation of vessels is highly time consuming and 

omplex ( Moccia et al., 2018 ). In this work, we introduced the 

essel- CAPTCHA , an efficient learning framework for vessel anno- 

ation and segmentation. The framework formulates the Vessel- 

APTCHA annotation scheme, which allows users to annotate a 

ataset through simple clicks on patches containing vessels, sim- 

larly to the commonly used image-CAPTCHAs of web applications 

 von Ahn and Dabbish, 2004 ). As such, our work can be consid- 

red a multi-instance learning problem where a bag corresponds 

o an image patch and the instances are the image pixels to be 

egmented. 

User-provided patch-level tags are used to synthesize pixel- 

ise pseudo-labels that serve as input to train a 2D patch-based 

egmentation network. In particular, we use the K-means algo- 

ithm to synthesize the pixel-wise pseudo-labels along with the 

roposed 2D-WnetSeg network, concatenating two 2D-Unets, as 

ackbone architecture. The use of a 2D patch-based segmentation 

etwork instead of more complex end-to-end 3D or hybrid archi- 

ectures, is motivated by the need to increase the object-of-interest 

o image size ratio, as a way to mitigate the reduced performance 

f deep learning-based methods when the object of interest does 

ot occupy an important portion of the input image. Furthermore, 

his simplifies the learning process: at a larger scale, the complex- 

ty and uniqueness of each brain vessel tree makes it difficult to 
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Table 7 

Performance summary considering segmentation accuracy, model complexity (Params, GFLOPs), and computational (training and prediction) and user inter- 

vention time in minutes. In classical models (NL), user intervention time is measured during inference. In learning-based models, it refers to the time used 

during training set annotation. For accuracy measures, the bold font denotes best value, with underlined values not significantly different from it ( α = 0 . 05) . 

Method Accuracy Complexity ( ↓ ) Time ( ↓ ) 
DSC ( ↑ ) HD ( ↓ ) 95HD ( ↓ ) μD ( ↓ ) Params ×10 3 GFLOPs Train Predict User 

NL Frangi-NP 54.16 ± 8.81 81.04 ± 18.48 14.78 ± 13.83 2.47 ± 2.22 0 25 0 

Sato-NP 55.75 ± 7.15 78.60 ± 16.37 11.53 ± 12.01 2.17 ± 1.07 25 0 

TV-NP 68.41 ± 5.01 60.23 ± 10.08 10.97 ± 11.72 2.10 ± 1.00 35 0 

Frangi-PP 68.44 ± 3.15 20 . 60 ± 10 . 91 9.01 ± 10.38 2.36 ± 2.01 25 25 

Sato-PP 69.01 ± 3.67 21 . 53 ± 9 . 11 8.86 ± 10.09 2.10 ± 1.01 25 25 

TV-PP 70.74 ± 3.38 20.11 ± 8.45 8.31 ± 8.23 2.07 ± 1.02 35 25 

FS Vessel 2D-Unet 77 . 66 ± 4 . 32 74.78 ± 16.73 12.60 ± 18.16 0 . 60 ± 0 . 11 31.38 15.6 90 < 1 327 

DeepVesselNet 76 . 13 ± 5 . 51 75.32 ± 12.94 4 . 32 ± 1 . 16 1.65 ± 0.26 0.05 NA 960 < 1 327 

2D-WnetSeg 76 . 63 ± 4 . 26 80.69 ± 23.20 13.15 ± 19.67 2.13 ± 2.37 16.34 25.90 90 < 1 327 

LS 3D-Unet 68.50 ± 3.37 76.12 ± 8.47 15.72 ± 2.23 2.56 ± 1.44 16.21 1669.53 60 < 1 327 

Pseudo-labeling 54.90 ± 5.86 68.50 ± 9.58 24.19 ± 5.25 4.48 ± 1.67 31.38 15.6 910 < 1 0 

PnetCl + K-means 64.96 ± 4.76 65.82 ± 7.99 16.66 ± 3.85 2.62 ± 0.65 0.62 0.993 60 ∼1 75.5 

Vessel-CAPTCHA (ours) 79.32 ± 3.02 51.70 ± 5.92 4.06 ± 1.50 0.50 ± 0.09 16.34 25.90 90 < 1 75 .5 

NL, No labels; FS, Fully supervised; LS, Limited supervision; NP, No post-processing; PP, Post-processing; NA, Not available. 

Fig. 18. 3D renderings of obtained segmentations in two TOF images (left) and two SWI (right). 
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earn common underlying patterns ( Moriconi et al., 2019 ), whereas, 

t a local scale, the characteristic patterns of vessels are similar be- 

ween each other, allowing the network to learn them. Reducing 

he input size is a common strategy in learning-based vessel seg- 

entation, beyond brain vessel tree segmentation ( Kitrungrotsakul 

t al., 2019; Kozi ́nski et al., 2020 ). The lower results obtained by

D networks validate our choice of a 2D patch-based segmentation 

etwork. 

To further ease the annotation process, our framework includes 

 classification network that can label training data without further 

ser effort. This network is trained using the same user-provided 

atch tags and it allows to classify image patches from unseen im- 

ges that can be used to enlarge the original training set without 

he need for further user annotations. 

Framework evaluation We evaluated the proposed framework in 

erms of its accuracy and required annotation time, using a syn- 

hetic dataset and two image modalities, TOF and SWI. Our frame- 

ork achieved performances comparable to those of current state- 

f-the-art deep learning approaches for brain vessel segmentation 

 Livne et al., 2019; Tetteh et al., 2020 ), while reducing the annota-

ion burden by 77% on average. A visual inspection of the extracted 

rees showed a good continuity of the extracted vessel trees across 

mage slices ( Fig. 18 ). When compared to other approaches subject 

f limited supervision, our simple yet effective framework demon- 

trated its superiority. Our promising results, with competitive ac- 

uracies and a significant reduction of the user-required effort, 

hould enable the wider use of deep learning techniques for vessel 

egmentation. 

Our results show that the classifier network not only allows to 

nlarge the training dataset, but it can act as a second opinion to 

ssess the segmentations. This concept could be further extended 

o guide a user in the manual correction of a segmentation mask. 
16 
n this work, we used the classification network as an expert. How- 

ver, the disagreements between the segmentation and classifica- 

ion network (i.e. 2D-WnetSeg segments a vessel in a patch classi- 

ed as non-vessel or vice versa) could be used as a measure of un- 

ertainty. Since WnetSeg and PnetCl architectures are significantly 

ifferent, they extract low-level and high-level features differently. 

s such, they are complementary to each other: if both agree on a 

rediction over a patch, the prediction can be considered as one of 

igh confidence, whereas when there is a disagreement the patch 

an be suggested to the rater for revision. 

Limitations and perspectives Although our work focuses on the 

rain vessel tree, we consider that the proposed framework is 

eneral enough that it can be easily extended to other vascular 

tructures ( Aughwane et al., 2019 ), other tubular structures with 

omplex networks to annotate ( Zuluaga et al., 2014a ), or differ- 

nt image modalities. However, for some modalities the K-means 

lgorithm used to obtain pixel-wise pseudo-labels can be lim- 

ted. As an example, the coronary vessel tree imaged with com- 

uted tomography angiography is likely to present calcified or lipid 

laques that appear as hyper and hypo-intense objects, respec- 

ively ( Zuluaga et al., 2011 ). In the current setup, they would be 

egmented as a vessel (calcified plaques) or the background (lipid 

laques). A natural extension of this work would be to develop 

ovel self-supervised methods, beyond those studied in this work, 

hich can cope with the characteristics of different vessel/tubular 

rees and image modalities. 

Our main effort in this work has been directed towards a sim- 

lified annotation process and the development of mechanisms 

hat can mitigate the negative effects of ‘simpler’ annotations to 

chieve performances comparable to the state-of-the-art. Never- 

heless, we consider that there are different ways that could be 

xplored to achieve a higher performance and 3D vessel continu- 
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ty. For instance, similarly to what has been proposed by ( Kozi ́nski 

t al., 2020; Phellan et al., 2017 ), the annotations could be per- 

ormed in different image planes. The use of multiple planes could 

ontribute to improve the 3D consistency of the extracted ves- 

el tree and its continuity. Currently, these are done in the axial 

lane. In addition, the Vessel- CAPTCHA allows for flexible annota- 

ions as, for some users, it is simpler to label vessels by following 

heir trajectory. Now, all this information is discarded (see Fig. 2 (e) 

nd (g)), when in some cases it may have relevant content. The 

hallenge here would be to identify when the patch annotations 

ontain relevant information beyond the mere identification of the 

atch. Finally, one last limitation of the current framework is re- 

ated to the selection of the patch grid scheme. While it is con- 

enient to present non-overlapping patches to the user, in some 

ases, this may degrade the framework’s performance. This is par- 

icularly true when the grid partition results in the split of vessels, 

n particular the smaller ones, across two or more patches caus- 

ng them to lose their characteristic shape. The use of overlapping 

atches is a straightforward extension of this work that could re- 

uce the number of misclassified vessels. 
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