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Abstract
Rendezvous and docking missions of small satellites are opening new scenarios to 
accomplish unprecedented in-obit operations. These missions impose to win the new 
technical challenges that enable the possibility to successfully perform complex and 
safety–critical manoeuvres. The disturbance forces and torques due to the hostile space 
environment, the uncertainties introduced by the onboard technologies and the safety 
constraints and reliability requirements lead to select advanced control systems. The 
paper proposes a control strategy based on Model Predictive Control for trajectory con-
trol and Sliding Mode Control for attitude control of the chaser in last meters before the 
docking. The control performances are verified in a dedicated simulation environment 
in which a non-linear six Degrees of Freedom and coupled dynamics, uncertainties 
on sensors and actuators responses are included. A set of 300 Monte Carlo Simula-
tion with this Non-Linear system are carried out, demonstrating the capabilities of the 
proposed control system to achieve the final docking point with the required accuracy.

Keywords Model Predictive Control · Sliding Mode Control · Rendezvous and 
docking · Small Satellites

1 Introduction

Rendezvous and docking (RVD) between spacecraft are very attractive operations 
which enable a large set of space missions. Beyond the spacecraft periodic cargo 
and crewed mission to ISS, a wide range of relevant missions can be performed such 
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as inspection or observation [1], active removal of space debris [2] and not collabo-
rative spacecraft [3], space tugs for refilling on orbit vehicles or move spacecraft 
from lower to high Earth orbit and vice versa [4], and formation flying [5].

These missions can be performed or supported by small satellites. CubeSats and 
nanosatellites might well serve the purpose of inspecting orbiting spacecraft, in 
the terms of free-flyers operating in the vicinity of the target for a certain amount 
of time, while observing the target with suitable sensing equipment. In September 
2019, the 3U CubeSat named Seeker was launched by NASA and operated around 
Cygnus, taking images of the vehicle and performing a set of manoeuvres (such as 
target tracking and station-keeping) [6]. Other studies on the inspection missions by 
CubeSat have been carried out also by the European Space Agency (ESA) [7] and 
[8]. The Ecole Polytechnique Federal de Lausanne is leading the CleanSpace One 
project with the objective of removing the 1U Swiss Cube satellite from orbit using 
a CubeSat [9]. The CleanSpace One mission will also demonstrate in orbit tech-
nologies needed for other ADR missions. In [10], the authors show a set of architec-
tures for CubeSat in different scenarios on a complexity spectrum of uncooperative 
to cooperative. In [11], the authors provide the mission concepts and preliminary 
system design of a CubeSat devoted to the inspection of the cis-lunar space station, 
showing the advantages of the external inspection mode with a small satellite that 
fly-around the station and the challenges in terms of required onboard technology 
and control strategies.

Adopting small satellites for rendezvous missions is challenging because of the 
reduced dimensions and the available technologies, that are achieving the required 
level of maturity only in the last years. In this sense, In Orbit Demonstration mis-
sions are planned and advanced studies are conducted to improve the level of 
readiness for small satellite technology. NASA, ESA, and other organisations and 
companies are also working on CubeSat missions for demonstrating capabilities 
related to formation flight and proximity operations, which have relevance for the 
purpose of inspecting vehicles in orbit (e.g. NanoAce 3U CubeSat flown in 2017 
[12], GOM-x-4B 6U CubeSat flown in 2018 [13], CubeSat Proximity Operations 
Demonstrator (CPOD) to be launched in 2021 [14] Dedicated studies are conducted 
on critical technologies of the mating phase, the relative navigation and the dock-
ing mechanism. A vision-based navigation strategy based on advanced images pro-
cessing algorithms are reported in [15], while [16] proposes a vision-based pose 
estimation combined with robust Higher-Order Sliding Mode (HOSM) controllers 
is explored. Branz et al. [17] propose miniaturized docking mechanisms based on 
the probe–drogue configuration using a minimum number of actuations and moving 
parts.

All the rendezvous and docking missions require that a critical set of manoeuvres 
allow the Chaser spacecraft to operate in proximity to the Target spacecraft, often 
up to the docking that ends when the two spacecraft are kept in touch in the mating 
point. The last meters before the mating are very critical because the margin of error 
is reduced. One way to improve the confidence level in the success of the docking 
phase is to adopt an effective strategy to control the relative attitude and distance 
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between Target and Chaser. In [18], the authors study controllers based on Linear 
Quadratic Regulator (LQR) and Proportional Derivative (PD) Control, verifying the 
performance and robustness of the solutions without considering other parameters 
such as time and control effort. In [19], the authors use the same control laws of 
[18] and present a comparative analysis between different guidance trajectories for 
important parameters such as time, fuel consumption, minimum absolute distance, 
and the maximum radial distance from the target without highlighting the optimality 
of the results. Adaptive control laws for spacecraft rendezvous and docking under 
measurement uncertainty, such as aggregation of sensor calibration parameters, sys-
tematic bias, or some stochastic disturbances, are proposed in [20]. In [21], authors 
show an optimized state dependent Model Predictive Control (MPC) that integrates 
a pulse width pulse frequency modulation model: the results highlight a good accu-
racy for the reaching the final state minimizing the control efforts and approaching 
time. Ventura at al. [22] proposes a guidance scheme for autonomous docking where 
the trajectory components of the controlled spacecraft are imposed by using polyno-
mial functions determined through optimization processes. From the manoeuvre’s 
strategies point of view, the authors in [23] give a complete overview of the manoeu-
vre and control capabilities for the capture of a non-rotating and of a rotating target, 
using a MPC but limiting the study to planar manoeuvres. One of the key points for 
MPC controller is the ability to handle constraints on state vector and control vec-
tors: [24] presents a strategy for spacecraft rendezvous control based on linear quad-
ratic MPC with dynamically reconfigurable constraints. In [25], authors present a 
MPC focused on the tracking based capability for a chaser involved in the capture of 
a non-cooperative spacecraft discussing advantages and criticalities of this approach 
through analysis of the time and the control efforts required to achieve the mating 
point. Mammarella et al. [26] propose and validate on a test-bench a sampling-based 
stochastic model predictive control (SMPC) algorithm for discrete-time linear sys-
tems subject to both parametric uncertainties and additive disturbances.

In the small satellite’s context, few papers address the control problem for the 
final approach and mating phases of rendezvous. Bowen et al. [27] presents the 
determination and control strategy for CPOD mission, but no further details are 
provided on the adopted techniques. Pirat et  al. [28] present an H-infinity con-
troller taking care the robust stability and performance through mu-synthesis. 
Stesina in [29] reports a solution based on a tracking MPC without including the 
attitude control.

The present paper presents a control strategy that maintain de-coupled the rota-
tional and translational dynamics based on the MPC and Sliding Mode Control tech-
niques, in order to optimize the final position and attitude of the chaser limiting the 
fuel consumption and the time to perform the capture. After the problem definition 
in Sect. 2, the design of the controller and the tuning of its parameters is proposed in 
Sect. 3. Section 4 reports and discusses the results of simulations for different initial 
conditions and uncertainties on the spacecraft parameters. Section 5 concludes the 
paper with final remarks and the future perspectives of the work.
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2  Problem formulation

The objective is the control of the relative position and attitude between the target 
and chaser. The problem formulation is based on the definition of the adopted refer-
ence frames and assumptions on the motion conditions and the spacecraft features.

2.1  Reference frames

Four reference frames are defined in order to formulate the problem (Fig. 1).

• The ECEF (Earth-centered Earth-fixed) frame ( RI ) is considered a quasi-inertial 
frame for the mission and it has origin  OI in the centre of the Earth,  xI in the 
equatorial plane, pointing toward the mean of the vernal equinox;  zI is normal 
to the equatorial plane and pointing north,  yI is in the equatorial plane, such that 
 zI =  xI ×  yI.

• The Spacecraft Local Orbital frame ( Ro ) has its origin  Oo in the centre of 
mass (CoM) of the spacecraft;  xo is defined such that  xo =  yo ×  zo  (xo is in the 
direction of the orbital velocity vector but not necessarily aligned with it),  yo 
is in the opposite direction of the angular momentum vector of the orbit and 
 zo is radial from the spacecraft CoM to the centre of the Earth. In this paper, 
both the Target Local Orbital Rotg =  (Oot,  xot,  yot,  zot) frame and the Chaser 
Local Orbital frame Roch(Ooch,  xoch,  yoch,  zoch) should be taken into account. 
Since distance(OotOoc) ≪ distance  (OotOi) and distance(OotOch) ≪ distance 
 (OocOi), we can assume that Roc = Rot = R

o.

Fig. 1  Schematic of the reference frames
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• The Target Body frame ( Rt ) has origin  Ot in the Target centre of mass, 
the directions of the axes are along the main inertia axes of the Target and 
 zt =  xt ×  yt forming a right-handed system.

• The Chaser Body frame ( Rc ) has origin  Oc in the Chaser centre of mass, 
the directions of the axes are along the main inertia axes of the Chaser and 
 zc =  xc ×  yc forming a right-handed system.

2.2  Assumptions

The problem formation is based on a set of assumptions on the motion conditions:

Assumption 1 (Last Hold Point orbit conditions) The control starts in the final 
hold point (HP) at 50-meters of distance between chaser and target and Chaser 
mechanism is already aligned with the docking port when moves from the HP. 
This assumption allows us to consider guidance strategies based on straight-line 
approaches. The achievement of this final hold point depends on the previous mis-
sion phases; an example is provided in [8].

Assumption 2 (Last hold Point attitude conditions) The target reaches any orienta-
tion in space but it maintains this orientation for the entire duration of the manoeu-
vre. This allows defining a fixed desired attitude that the chaser has in the HP and 
shall maintain for the entire duration of the manoeuvres. Other assumptions derive 
from the spacecraft configuration.

Assumption 3 (Chaser and Target mass properties) Target and chaser are 12U Cube-
Sats (20 cm × 20 cm × 30 cm) whose mass (m) is 20 kg and the inertia (expressed 
in the respective body frame) is diagonal  Icx =  Itx= 0.133,  Icy=  Ity = 0.216,  Icz =  Itz= 
0.216. In general, the two CubeSats should have a different architecture and different 
onboard instruments because the Target should only maintain the attitude without 
orbit control, while the chaser shall determine and change its orbit and needs of spe-
cific sensors and actuators dedicated to this purpose. However, the perfect similar-
ity of the two spacecraft can be justified by reliable considerations: both the Cube-
Sats have the complete attitude and orbit control systems enabling the possibility to 
exchange the role of target and chaser in case of anomaly for the orbit control of the 
regular chaser.

Assumption 4 (Location of the docking port and docking mechanism) Due to the 
small dimensions of the satellites and considering a fixed distance of the docking 
port with respect to  Oc along  Xc axis and fixed distance of the docking mechanism 
with respect to  Ot along  Xt axis, it is assumed that the docking port and the docking 
mechanism are located in coincidence of  Ot and  Oc, respectively.

Assumption 5 (Rotational Dynamics of Chaser and Target) The Target body axes are 
aligned with the orbital frame (i.e. R

t
 ≡ R

o
 ). It means that if the Chaser controller is 
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able to control the attitude reaching and maintaining the Chaser body axes aligned 
with the orbital frame (i.e. R

c
 ≡ R

o
 ), Target and Chaser have the attitude.

3  Control design

The goal of the controller is to reach the soft docking performance described in 
Table  1 guaranteeing efficiency and safety conditions. More specifically, the goal 
is to control the Chaser attitude and angular velocity and the relative position and 
velocity between the Chaser and Target, according to the strategies defined for any 
phase (see Sect.  4.1). The controlled state variables are: the attitude  (qc) and the 
angular velocity (ωoc) between the Chaser Body Frame ( Rc ) and orbital frame ( Ro ) 
and the relative position (x,y,z) and velocity  (Vx,  Vy,  Vz) between the Chaser CoM 
 (Oc) and the Target CoM  (Ot).

The control design and assessment phases are articulated in two steps: the design 
is based on a linearized spacecraft model, while the verification is led through a 
more complex and nonlinear model of rotational and translational dynamics of the 
chaser including disturbances and uncertainties.

The control design foresees the de-coupling of the rotational and translational 
dynamics, that allows us to select different techniques to control the attitude and the 
relative trajectory between Chaser and Target.

A Model Predictive Controller (MPC) is designed for the control of the Chaser 
trajectory. The advantages of this technique for the rendezvous and docking problem 
are: 1) the possibility to constrain the input, the state and output imposing bounda-
ries whose violation is prevented and 2) the capability to jointly define an optimal 
guidance strategy and the feedback command allowing the spacecraft to follow this 
strategy, 3) constraints or penalties on fuel consumption, time to capture and safety 
conditions of the manoeuvre can be introduced. 4) MPC can drive some variables 
to their optimal set points (i.e., the relative position can be optimized to meet the 
soft docking requirements) while others can be held within imposed ranges (i.e. the 
velocity can be regulated with specific profiles). The prediction of the future states 
leads to the definition of an optimal trajectory. For the MPC design in this research, 
a reference tracking optimization criterion is introduced in order to assign a higher 
importance to the capability of the controller to track the desired values.

Table 1  Final requirements Required
Performance

Approach velocity [m/s]  < 0.05
Lateral alignment [m]  < 0.02
Lateral velocity [m/s]  < 0.02
Angular misalignment [deg]  < 1
Angular rate [deg/s]  < 0.05
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A Sliding Mode Controller is designed for the control of the Chaser attitude. The 
advantages of this approach applied to the presented rendezvous and docking prob-
lem are: 1) capability to efficiently deal with nonlinear dynamics and 2) robustness 
versus modelling uncertainties.

3.1  Trajectory control

3.1.1  Model predictive control law

In this section, we present a general formulation of Model Predictive Control 
(MPC), suitable for nonlinear and linear systems [29].

Consider a dynamic system described by the following state equation:

where x ∈ ℝ
nx is the state, u ∈ ℝ

nu is the command input and f ∶ ℝ
nx+nu → ℝ

nx is a 
function characterizing the system dynamics. Assume that the state is measured in 
real-time, with a sampling time Ts , according to x(tk), tk = Tsk, k = 0, 1,…

Suppose that the system state x is required to track a desired reference signal r . 
The state and input variables may be subject to constraints and it may be of interest 
to have a suitable trade-off between performance and command effort. MPC is a 
suitable approach to solve such a control problem [30].

MPC is based on two key operations: prediction and optimization. At each time 
t = tk , the system state is predicted over the time interval [t, t + Tp] , where Tp ≥ Ts is 
called the prediction horizon. The prediction is obtained by integration of the sys-
tem Eq. (1). For any � ∈ [t, t + Tp] , the predicted state x̂(�) is a function of the “ini-
tial” state x(t) and the input signal:

where u(t ∶ �) denotes the input signal in the interval [t, �] . The basic idea of MPC 
is to look, at each time t = tk , for an input signal u∗(t ∶ �) such that the prediction 
x̂(�, x(t), u∗(t ∶ �)) has the desired behavior in the time interval [t, t + Tp] . The con-
cept of desired behavior is formalized by defining the objective function

where x̃p(𝜏) ≐ r(𝜏) −�x(𝜏) is the predicted tracking error, r(�) ∈ ℝ
nx is the reference 

to track and ‖ ⋅ ‖∗ is a weighted vector norm. For a generic vector x and a positive 
definite weight matrix Q , this norm is defined as follows:

In most cases, diagonal weight matrices are used since the non-diagonal terms are in 
general difficult to manage/interpret and their utilization usually does not yield relevant 
advantages.

(1)ẋ = f (x, u)

x̂(�) ≡ x̂(�, x(t), u(t ∶ �))

J
�
u(t ∶ t + Tp)

�
≐
�

t+Tp

t

�
‖x̃p(𝜏)‖2Q + ‖u(𝜏)‖2

R

�
d𝜏 + ‖x̃p(t + Tp)‖2P

‖x‖2
Q
≐ x⊤Qx.
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The input signal u∗(t ∶ t + Tp) is chosen as one minimizing the objective function 
J
(
u(t ∶ t + Tp)

)
 . In particular, at each time t = tk , for � ∈ [t, t + Tp] , the following opti-

mization problem is solved:

where 0 ≤ Ts ≤ Tc ≤ Tp . The fist constraint in this problem ensures that the pre-
dicted state is consistent with the system Eq. (1). The set Xc accounts for possible 
constraints that may hold for the state trajectory (e.g., obstacles, barriers, etc.). The 
set Uc accounts for input constraints (e.g., input saturation).

The MPC feedback command is obtained by solving the optimization problem at 
each sampling time t = tk , according to a so-called receding horizon strategy:

• At time t = tk:

– compute u∗(t ∶ t + Tp) by solving (2);
– apply to the system only the first input value: u(�) = u∗(t = tk) and keep it 

constant for ∀� ∈ [tk, tk+1].

• Repeat the two steps above for t = tk+1, tk+2,…

Note that the optimization problem in Eqs. (2) is in general non-convex. Moreover, 
the decision variable u(⋅) is a signal and optimizing a function with respect to a sig-
nal is in general a difficult task. To overcome this problem, a suitable parametrization 
of the input signal u is taken. In particular, the prediction interval [t, t + Tp] is divided 
into sub-intervals [t + 𝜏i, t + 𝜏i+1] ⊂ [t, t + Tp] , i ∈ {1, 2,… , nI + 1} , where the �i ’s are 
called the nodes. Then, u is assumed constant on each sub-interval, so that the optimi-
zation problem reduces to a finite-dimension problem, which is solved using an effi-
cient numerical optimization algorithm.

3.1.2  MPC for trajectory control

The assumptions of small initial relative position and short maneuver time allow us to 
use the well-known Hill–Clohessy–Wiltshire model, describing the motion of a space-
craft (called the Chaser) relative to a nominal point traveling in a circular orbit (called 
the Target orbit). This model is described by the following equations:

where xc , y c, zc are the relative Chaser positions, mc is its mass, Ω is the angular frequency 
of the Target orbit, and Fcx , Fcy and Fcz are the external forces applied to the Chaser.

(2)

u∗(t ∶ t + Tp) = argmin
u(⋅)

J
(
u(t ∶ t + Tp)

)

subject to

�̇x(𝜏) = f
(
�x(𝜏), u(𝜏)

)
,�x(t) = x(t)

�x(𝜏) ∈ Xc, u(𝜏) ∈ Uc

(3)

ẍc − 2Ωżc =
Fcx

mc

ÿc + Ω2yc =
Fcy

mc

z̈c + 2Ωẋc − 3Ω2zc =
Fcz

mc



1 3

The Journal of the Astronautical Sciences 

Equations (3) can be represented in the form of the state equation (1) as follows:

where x = ( xc , yc , zc , ẋc , ẏc, żc ) is the state vector, constituted by the three compo-
nents of the Chaser position and velocity with respect to Rt , u=(Fcx,Fcy,Fcz ) is the 
force vector, and

The MPC control law is obtained by solving, at each sampling time, the 
optimization problem in Eqs.  (2), according to the receding horizon strategy 
described in the above section. In the optimization problem, the model func-
tion is f (x, u) = Ax + Bu . The input constraint set Uc is defined by the following 
inequalities:

where Fcmax is the vector of the maximum thruster forces and the inequalities are 
element-wise. The state constraints depend on the approach corridor represented by 
the cone originated from the mating point and with a half cone angle of � . Consider-
ing the assumptions made in Sect. 2, the cone is univocally defined for the straight-
line maneuver, and it is generated from the docking point and it is centered in the 
docking axis, the  Xc axis. Therefore, the state constraint set is defined by the follow-
ing inequalities:

where axy , axz , bxy and bxz represent the corridor limits, and � and � are the angles 
between the docking axis and  Rt axes. These angles are assumed constant for the 
entire prediction horizon. Figure  2 refers to the specific case (considered in this 
paper) of V-bar approach, where phi and theta are equal to 180 deg.

The MPC weight matrices Q and R (defined as Q = diag(Q11, Q22, Q33,Q44,
Q55,Q66), R = diag(R11,R22,R33)) are tuned to satisfy the requirements in Table 1.

Note that the set Uc is convex. If the chaser initial conditions are inside the cone, 
also the set Xc is convex. Hence, with f (x, u) = Ax + Bu , the optimization problem 
of Eqs.  (2) becomes convex, which implies that every local solution of this prob-
lem is a global solution. Another implication is that convex algorithms can be used 
for its solution, which are characterized by a high numerical efficiency and strong 

ẋ = Ax + Bu

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 2Ω2

0 −Ω 0 0 0 0

0 3Ω2 0 −2Ω2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0
1

mc

0 0

0
1

mc

0

0 0
1

mc

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−Fcmax ≤ u ≤ Fcmax

(4)

axy = −xcsin(� − �) + yccos(� − �) ≥ 1

bxy = xcsin(� + �) − yccos(� + �) ≥ 1

axz = −zcsin(� − �) + xccos(� − �) ≥ 1

bxz = zcsin(� + �) − xccos(� + �) ≥ 1
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convergence properties. In this paper, an algorithm based on quadratic programming 
is adopted, suitably modified for the considered application.

As discussed in the above section, it is convenient to parametrize the input sig-
nal by dividing the prediction interval into sub-intervals and assuming u constant 
on each sub-interval. In this paper, a single sub-interval is assumed for simplicity 
( �1 = 0, �2 = Tp ). Larger numbers of sub-intervals were considered in preliminary 
simulation sessions, but no relevant improvements were observed.

3.2  Attitude control design

3.2.1  Sliding mode control

In this section, we present a standard formulation of Sliding Mode Control 
(SMC), that is particularly suitable for mechanical systems.

Consider a dynamic system described by the following state equations:

where p, v ∈ ℝ
np , x = (p, v) ∈ ℝ

nx is the state and u ∈ ℝ
nu is the command input; 

f ∶ ℝ
nx → ℝ

np and g ∶ ℝ
nx → ℝ

np are two functions characterizing the system 
dynamics. Note that many mechanical systems can be written in the form (5), with p 
being a position vector and v a velocity vector.

Suppose that the system state x = (p, v) is required to track a desired reference 
signal r = (pr, vr) . SMC is a suitable approach to solve this tracking problem. 
SMC is based on the concept of sliding surface, that is a surface S(t) in the state 
domain, defined as

(5)
ṗ = v

v̇ = f (x) + g(x)u

(a) (b)

Fig. 2  Safety cone definition
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where the tracking errors p̃ ≐ pr − p and ṽ ≐ vr − v have been introduced, and 
k2 > 0 . A fundamental property of S(t) is that, if the motion of the system state 
occurs on this surface, then the tracking errors converge to zero [29].

Based on the sliding surface, the following SMC law is defined:

where k1 > 0 . It can be proven that this law is able to bring the system state to the 
sliding surface and, once there, to keep the state on it [29]. In summary, with this 
law, the following properties hold:

• S(t) is globally attractive: x(t) → S(t) in finite time.
• S(t) is an invariant set: x(�) ∈ S(�) ⇒ x(t) ∈ S(t) , ∀t ≥ �.
• On S(t) the tracking errors converge to 0 : p̃(t), ṽ(t) → 0 as t → ∞.

It must be noted that the term with the sign in the control law may cause a phe-
nomenon called chattering (high frequency oscillations around the sliding surface). 
To avoid this problem, a sigmoid function like the hyperbolic tangent can be used 
instead: tanh(��) ≃ sign(�) , where � is a design parameter determining the sigmoid 
slope.

3.2.2  Sliding mode controller for attitude control

Considering the Assumption 5, it is possible to design the attitude control using the 
absolute rotational dynamics of the Chaser, as in [25], instead the relative dynam-
ics Target/Chaser. A standard model is adopted for the chaser attitude motion. In 
particular, the attitude state equations are obtained using the quaternion kinematic 
equation and the Euler dynamic equation:

where � is the chaser quaternion (rotation from the ECEF to the Chaser Body 
frame), � is the chaser angular speed vector, J is the chaser inertia matrix, × denotes 
the cross product and

The goal is to have the state vector x = (�,�) tracking a reference vector (�r,�r) . 
In order to define a proper SMC law accomplishing this task, we define the angu-
lar velocity tracking error as 

∼
�≐ �r − � and the quaternion tracking error as 

S(t) ≐ {x ∈ ℝ
nx ∶ �(x, t) = 0}

�(x, t) ≐ ṽ + k2p̃

(6)u =
1

g(x)

(
v̇r − f (x) + k2ṽ + k1sign(�(x, t))

)

(7)�̇ =
1

2
Q�

�̇ = −J−1� × J� + J−1�

Q ≐

⎡
⎢⎢⎢⎣

−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

⎤
⎥⎥⎥⎦
.
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∼
�≐ �

∗ ⊗ �r , where �∗ is the conjugate of � and ⊗ denotes the quaternion product. A 
suitable sliding surface function is

where q̃ is the imaginary part of 
∼
� . The SMC law for the system (7) is given by

where q0 is the real part of 
∼
� . See [30] for a detailed derivation of this control law.

4  Numerical results

4.1  Simulation architecture

The designed controllers are verified using a detailed model and a simulation 
architecture built in the Matlab/Simulink© environment (Fig. 3). This architecture 
includes models for disturbance torques (i.e. all the torques due to aerodynamic 
drag, the solar pressure, gravitational gradient, residual magnetic dipole, and the 
sloshing of the fuel in the tank) and the disturbance force due to the aerodynamics. 
The emulation of the attitude and position sensing and estimation is obtained from 

�(x, t) ≐
∼
𝜔 +k2 q̃

u = us + k1 J tanh(𝜂�)

us = J
(
�̇�r +

k2

2

(
q̃0

∼
𝜔 +q̃ × (𝜔r + 𝜔)

))
+ 𝜔 × J𝜔

Fig. 3  Simulation architecture
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the simulated values (output of the Dynamics and Kinematics Blocks), added by 
random values in the range of ±5%. The desired attitude for the Chaser is the cur-
rent attitude of the Target, while the desired position is the final position. The atti-
tude control actuators consists in the model of three reaction wheels installed along 
the main body axes of the satellite, and the thruster emulation consists of the thrust 
value saturation at the maximum value and an uncertainty of the 5% on the align-
ment of the thrusters with respect to the chaser axes expressed by the frame Rc . 
Moreover, the rotational and the translational dynamics of the Chaser are coupled in 
the simulation environment, while the controllers for the attitude and the controller 
for the relative position are designed independently.

4.2  Cubesat constraints and initial conditions

In the simulation sessions, the parameters representative of a CubeSat are reported 
in Table 2: the inertia matrix is diagonal and the mass is compliant with a 12U and 
an uncertainties of the 10% is added for both the parameters. The maximum con-
trolled forces and torques are limited by the small satellite technology, i.e., the maxi-
mum thrust of a miniaturized propulsion system, that guarantees a 3DoF control, 
and the maximum torque generated by a set of reaction wheels.

Table 3 reports the initial conditions with uncertainties angular velocity and atti-
tude, and relative velocity and position.

The satellites travel in a circular orbit with an altitude of 500 km. The controllers 
sampling time is 0.1 s.

Upper and lower bounds are referred to input values, according to the physical 
limitations of the propulsion system: the thrusters are able to provide a maximum 
force equal to 0.035 N. Since the internal model considered in the MPC formulation 
is based on Clohessy–Wiltshire–Hill equations, whose right hand side (correspond-
ing to the control action) is dimensionally a product between the force produced by 
thrusters and the mass of the chaser, the following equalities hold:

Table 2  Chaser features Parameter Value Uncertainties

Diag [ Ichx, Ichy, Ichz] [0.08;0.16;0.216]kg ⋅m2    ± 10%
mch 20 kg    ± 10%

Max ( ||Fcx
||, |||Fcy

|||, ||Fcz
||) [0.035;0.035;0.035]N   -

Max (||Tcx||, |||Tcy
|||, ||Tcz||) [0.5;0.5;0.5]Nm   -

Table 3  Chaser initial 
conditions

Parameter Value Uncertainties

�cx,�cy,�cz [0;0;0]rad∕s    ± 0.2 rad/s
q0, q1, q2, q3 [1;0;0;0]  ± 10%
xc0,yc0,zc0 [−50;0;0] m    ± 2.5 m
ẋc0, ẏc0, żc0 [0;0;0] m/s  ± 0.2 m/s
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By adopting the usual trial & error approach, the choice of a smaller prediction 
horizon Tp resulted in a better overall performance and in a slower response of the 
system. This latter consequence should not be considered a drawback because a 
slower response of system reduces the overshoots that could not be tolerated in the 
docking phases. Moreover, a smaller prediction horizon means a reduced computa-
tional time. A higher prediction horizon leads to a better performance in terms of 
final state achievement, at the expense of a larger the complexity of the optimization 
problem.

The Q matrix has higher values on the lateral position with respect to the 
approach axis in order to limit or eliminate the overshoots, while lower values are 
selected for relative position and velocity of the chaser along the approach axis, in 
order to slow down the response of the system along the approach axis.

A high value is selected for the terminal weight only on the velocity along the 
approach axis, corresponding to the last diagonal element of the P matrix, in order to 
meet the requirement on the approach velocity at the end of the simulating sequence.

The R matrix values are close to zero in order to drive the MPC algorithm 
towards the optimization of states and to exploit all the available actuation, which is 
a key element in this phase of the manoeuvre.

Table 4 reports the main parameters of MPC tuning.
In the state constraints (4), the parameters are � = � and � =

�

24
 , while the con-

straint on the input umin and umax are −0.7 N and + 0.7 N along each axis.
Referring to the Sliding Mode Control law, discussed in Sect. 3.2, k1 and k2 are 

tuning parameters, respectively aimed at weighting tracking performance and at 
minimizing the disturbance action on the spacecraft attitude. The tuned values of the 
SMC are reported in Table 5.

umax = Fmax ⋅ m = 0.035 ⋅ 20
[
N ⋅ kg

]
= 0.700

[
N ⋅ kg

]
umin = Fmin ⋅ m = −0.035 ⋅ 20

[
N ⋅ kg

]
= −0.700

[
N ⋅ kg

]

Table 4  MPC settings Parameter Chosen value

Q ⎡⎢⎢⎢⎢⎢⎢⎣

500 0 0 0 0 0

0 500 0 0 0 0

0 0 20 0 0 0

0 0 0 100 0 0

0 0 0 0 100 0

0 0 0 0 0 100

⎤⎥⎥⎥⎥⎥⎥⎦
P ⎡⎢⎢⎢⎢⎢⎢⎣

10
−10

0 0 0 0 0

0 10
−10

0 0 0 0

0 0 10 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 100

⎤⎥⎥⎥⎥⎥⎥⎦
R ⎡⎢⎢⎣

10
−10

0 0

0 10
−10

0

0 0 10
−10

⎤⎥⎥⎦
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These parameter values were chosen through a “trail & error” procedure using 
the simulation environment described in Sect. 4.1. The main criterion for the selec-
tion of these values was to minimise the misalignment of the thrusters with respect 
to the main body axes in a sufficiently short time compared to the entire duration of 
the manoeuvre (resulting in less than 10 seconds).

4.3  Simulation results

A robustness analysis was performed by introducing an uncertainty-based setup, in 
a Monte Carlo simulations framework. All simulations resulted successful, meeting 
all requirements in Table 1. In order to avoid dwelling on every single set of simula-
tion, however, only the worst-case scenario is analysed here, i.e. the 30 last simula-
tions with the highest amplitude of uncertainties (Table 6).

This set of Monte Carlo simulations shows how the control strategy is proven 
effective also in the most uncertain condition expected. In Figs. 4 and 5, it is shown 
how trajectory never exceeds the upper and lower bounds of 2 meters and −2 meters. 
Due to the high amount of uncertainties, however, a significantly oscillating behav-
iour is observed in relative position: in such conditions a straight-line trajectory can-
not be guaranteed, by means of the discussed control strategy.

Despite the not negligible amplitude and frequency of oscillations, on both z and 
y axes, the acceptance cone constraint is always satisfied.

As plotted in Figs. 6 and 7, in very close proximity with the target, the previously 
outlined oscillations do not affect the behaviour of the system, nor the outcome of 
the RVD procedure which is brought to completion in compliance with require-
ments, for each developed simulation.

In Fig.  8, the relative velocity time response is shown: this parameter never 
exceeds the upper bound of 0.8 m/s in any of the performed simulations. The tran-
sient is completely expired after 260 s of simulation. The elements of the response 
reaching the peak value of 0.8 m/s are, for each simulated manoeuvre, referred to the 
velocity along the approach axis. The contribution of vx is the most relevant, as it is 
related to position along x-axis, which must be driven from 50 to 0 m to the target.

Figure  9 shows that the initial deviation on the desired angular velocity (i.e. 0 
rad/s around each axis) is quickly recovered in less than 8 seconds (Fig. 10), limiting 
the orientation error towards the docking port.

In Fig. 11, the results of the attitude behaviour are outlined: there is no perturba-
tion, along the simulating sequence, apart from a small overshoot at the beginning, 
due to the disturbing torques slightly affecting rotational dynamics. Every undesired 
deviation from the reference values is recovered after only 6 seconds (Fig. 12).

Table 5  tuned values of SMC Parameter Value

k1 15
k2 10
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Table 6  Analysis of the control performance varying R matrix

 

R =

⎡⎢⎢⎣

10
−10

0 0

0 10
−10

0

0 0 10
−10

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.05 ⋅10−5

Lateral alignment [m] [−1.44 ⋅10−6; − 5.65 ⋅ 10
−6]

Lateral velocity [m/s] [−3.92 ⋅10−8,−1.18 ⋅ 10−7]

Angular misalignment [deg] [−0.02; −0.02; −0.02]

Angular rate [deg/s] [−0.13 ⋅10−5 ; 0.03 ⋅10−5 ; 7 ⋅10−9]

Max input force [N] [0.0014; 0.0006; 0.0350]

Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

10
−10

0 0

0 10
−10

0

0 0 1

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.16 ⋅10−5

Lateral alignment [m] [−3.78 ⋅10−6; 4.92 ⋅ 10−6]
Lateral velocity [m/s] [−8.14 ⋅10−8,−1.06 ⋅ 10−7]
Angular misalignment [deg] [−0.02; −0.02; −0.02]
Angular rate [deg/s] [−0.9580 ⋅10−6 ; 0.2749 ⋅10−6 ; 0.0089 

⋅10
−6]

Max input force [N] [0.0006; 0.0004; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

10
−10

0 0

0 1 0

0 0 10
−10

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.06 ⋅10−5

Lateral alignment [m] [−3.37 ⋅10−5; − 3.63 ⋅ 10
−5]

Lateral velocity [m/s] [7 ⋅10−8; -8 ⋅10−8]
Angular misalignment [deg] [−0.02; −0.02; −0.02]
Angular rate [deg/s] [−0.0606 ⋅10−6 ; 0.2844 ⋅10−6 ; 0.0075 

⋅10
−6]

Max input force [N] [0.0008; 0.0014; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

1 0 0

0 10
−10

0

0 0 10
−10

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.07 ⋅10−5

Lateral alignment [m] [3.74 ⋅10−7; − 9.91 ⋅ 10
−6]

Lateral velocity [m/s] [−5.70 ⋅10−8; −2.134 ⋅10−7]
Angular misalignment [deg] [−0.02; −0.02; −0.02]
Angular rate [deg/s] [0.4768 ⋅10−6 ; 0.2842 ⋅10−6 ; 0.0075 ⋅10−6]
Max input force [N] [0.0005; 0.0006; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]
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Table 6  (continued)

 

R =

⎡⎢⎢⎣

10
−10

0 0

0 1 0

0 0 1

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.17 ⋅10−5

Lateral alignment [m] [7.41 ⋅10−6; 4.67 ⋅ 10−6]

Lateral velocity [m/s] [0.1705 ⋅10−6; 0.1010 ⋅10−6]

Angular misalignment [deg] [−0.02; −0.02; −0.02]

Angular rate [deg/s] [−0.1686 ⋅10−5 ; 0.0275 ⋅10−5 ; 0.0009 
⋅10

−5]

Max input force [N] [0.0006; 0.0004; 0.0350]

Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

1 0 0

0 10
−10

0

0 0 1

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.17 ⋅10−5

Lateral alignment [m] [−1.46 ⋅10−6; − 4.45 ⋅ 10
−6]

Lateral velocity [m/s] [−4.07 ⋅10−8; −1.07 ⋅10−6]
Angular misalignment [deg] [−0.02; −0.02; −0.02]
Angular rate [deg/s] [−0.6281 ⋅10−6 ; 0.2749 ⋅10−6 ; 0.0089 

⋅10
−6]

Max input force [N] [0.0013; 0.0008; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 10
−10

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.07 ⋅10−5

Lateral alignment [m] [−1.10 ⋅10−6; 4.93 ⋅ 10−7]
Lateral velocity [m/s] [−1.86 ⋅10−8; 5.26 ⋅10−9]
Angular misalignment [deg] [−0.02; −0.02; −0.02]
Angular rate [deg/s] [−0.5701 ⋅10−6 ; 0.842 ⋅10−6 ; 0.0075 ⋅10−6]
Max input force [N] [0.0008; 0.0006; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]

 

R =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦  

Parameters Results

Approach velocity [m/s] 2.16 ⋅10−5

Lateral alignment [m] [1.38 ⋅10−7; − 9.94 ⋅ 10
−7]

Lateral velocity [m/s] [−3.90 ⋅10−9; −1.46 ⋅10−8]
Angular misalignment [deg] [−0.02; -0.02; -0.02]
Angular rate [deg/s] [−0.3621 ⋅10−6 ; 0.2751 ⋅10−6 ; 0.0088 

⋅10
−6]

Max input force [N] [0.0006; 0.0008; 0.0350]
Max control torque [Nm] [0.4120; 0.3336; 0.3284]
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Figure  13 shows, by means of a histogram, the simulation time, in order to 
evaluate how heavily the uncertain initial conditions can affect the duration of 
the manoeuvre. Even though the selected control strategy does not directly 
include time as a variable of the optimization problem, the duration of simula-
tions is mostly kept in the neighbourhood of 580 seconds, with few exceptions 
in which the manoeuvre lasts even less. This parameter is in line with the time 

Fig. 4  xz relative position

Fig. 5  xy relative position

Fig. 6  xz relative position
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requirements of a RVD manoeuvre in its final phases. Eight different cases are 
analysed, as regards MPC tuning, to varying of R matrix parameters. In each 
case, slightly different results are obtained; for each scenario, those results are 
compared, as follows, with the problem requirements, in order to verify if the 
orbit control strategy is effective.

Fig. 7  xy relative position

Fig. 8  Relative velocity—time response

Fig. 9  Angular velocity—time response
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5  Conclusions

Rendezvous and docking between two nanosatellites is challenging because an high 
accuracy is required due to the low dimensions of the spacecraft and the current 
miniaturized technology has lower performance compared with that available for 
bigger satellites. Advanced control systems can help to improve the confidence level 
in the accomplishment of the docking manoeuvre.

The paper assesses the capabilities of a Model Predictive Controller and a Slid-
ing Mode Controller to control the chaser trajectory and attitude, respectively. Both 
the controllers provide an excellent capability to lead the chaser to achieve the 
docking port with the required accuracy in terms of final position, final attitude, 
approaching velocity and angular velocity. Using a nonlinear model for simulations 
and varying the initial state conditions and the mass properties of the chaser, 300 
Monte Carlo runs have been performed demonstrating that a final position lower 
than 0,02 m is achieved, the approaching velocity is lower than 5 mm/s, the relative 
attitude between chaser and target is lower than 0,1 deg. Moreover, the achieved 
results show that a relevant margin exists between the performance and the required 

Fig. 10  Angular velocity – 
detailed results of the last 30 
Monte Carlo simulation

Fig. 11  Quaternions—time response
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Fig. 12  Quaternion – details of 
the vector part (a) and scalar 
part (b) for the last 30 Monte 
Carlo Simulation

Fig. 13  Docking maneuvers 
duration for the last 30 Monte 
Carlo runs
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values ensuring the capability of the system to work properly in presence of all the 
uncertainties.

In the future, the proposed solution will be extended considering that the docking 
port and the docking mechanism frames are not coincident with the body frames of 
target and chaser, respectively and studies on the collision avoidance manoeuvres 
will be conducted in order to evaluate the ability of the controller to react in case of 
off-nominal conditions.
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