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Interpreting AI for Networking: Where We Are and
Where We Go

Tianzhu Zhang, Member, IEEE, Han Qiu, Marco Mellia, Fellow, IEEE, Yuanjie Li, Member, IEEE, Hewu Li,
and Ke Xu, Senior Member, IEEE,

Abstract—In recent years, Artificial Intelligence (AI) tech-
niques have been increasingly adopted to tackle networking prob-
lems. Although AI algorithms can deliver high-quality solutions,
most of them are inherently intricate and erratic for human
cognition. This lack of interpretability tremendously hinders the
commercial success of AI-based solutions in practice. To cope
with this challenge, networking researchers explore eXplainable
AI (XAI) techniques to make AI models interpretable, manage-
able, and trustworthy. In this paper, we overview the application
of AI in networking and discuss the necessity for interpretability.
Next, we review the current research on interpreting AI-based
networking solutions and systems. At last, we envision future
challenges and directions. The ultimate goal of this paper is to
present a general guideline for AI and networking practitioners
and motivate the continuous advancement of AI-based solutions
in modern communication networks.

Index Terms—XAI for Networking

I. INTRODUCTION

Last decade has witnessed an unprecedented resurge of
interest in Artificial Intelligence (AI) in industry and academia.
Nowadays, AI-based solutions have been widely deployed
across various sectors, including health care, business intel-
ligence, and industrial manufacturing [1]. Meanwhile, with
the rapid deployment of mobile networks, edge computing,
Internet of Things (IoT), and Unmanned Aerial Vehicle (UAV),
modern networking systems are becoming cumulatively di-
verse, ad hoc, and complex to manage. The fast emergent
interactive applications and network services have assorted
performance characteristics and depend upon fine-granular,
passive and active traffic monitoring and real-time analytics
for Quality-of-Experience (QoE) management. Consequently,
network management has become an extremely daunting
undertaking. Traditional network operators heavily lean on
domain-specific knowledge to build rule-based procedures and
heuristics, which become burdensome to sustain the same
level of effectiveness upon network expansions or scenario
changes. As a result, a plethora of research has been devoted
to applying AI techniques to solve problems in heterogeneous
modern networking systems, as illustrated by the scenarios
in Fig. 1. Most of these AI-augmented solutions managed to
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attain superior performance compared to the traditional hand-
crafted, rule-based heuristic solutions [2]–[4].

However, performance improvement cannot directly map
to the success of AI for networking. The current trend of
using AI models, especially Deep Learning (DL) models, is
to treat them as blackboxes. Their complexity keeps growing
to include more parameters since complex DL models can
better approximate universal functions, which leads to great
success in solving famous computer vision problems. How-
ever, applying AI models to solve networking problems has
many practical obstacles. (1) Data discrepancy: unlike image
and text data, the networking data have inherent peculiarities
such as time diversity, space diversity, and the abundance
of categorical features. It is thus non-trivial to replicate the
success of AI in networking due to both the lack of labeled
data and the diversity of the scenarios. (2) Feasibility: although
existing AI-based solutions mainly operate in the control
plane, a recent trend pushes the AI frontiers to the data
plane, which remains challenging given the scarce resources
therein. (3) Robustness: there are many vulnerabilities for the
current AI systems, which could let attackers manipulate the
AI solutions and thus impact the network and QoE. (4) Trust:
decisions made by sophisticated AI models usually entail a
myriad of parameters and non-linear transformations that are
too complex for humans to understand and to trust. This last
point is especially essential in networks, where the operators
need to understand the implications of a decision. Promoting
the trust for AI-based solutions can realize the ultimate goal
of responsible AI [5].

To overcome these issues, researchers work on eXplainable
AI (XAI) to interpret the inference process of AI models. XAI
can boost performance boosts with less complex model struc-
tures and fewer parameters. The robustness against adversarial
attacks and the trustworthiness of the stakeholders can also be
improved. However, very few works specifically concentrated
on XAI for networking.

The purpose of this work is to fill this blank in two steps.
First, we review the applications of AI techniques in the
modern networking domain and discuss the current research
endeavors for interpreting AI in networking. Second, we
present the challenges and future perspectives. In summary,
our goal is to provide a first-hand guideline on XAI for
practitioners in the networking community and catalyze the
sustainable development of AI in networking.
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Fig. 1. An illustrative example of heterogeneous AI-based communication networks and systems, including vehicular network, mobile network, UAV network,
enterprise network, home network, D2D communications, and transport network.

II. AI IN NETWORKING: A GENERAL OVERVIEW

In this section, we give a general overview of the motiva-
tions of AI-based solutions in networking. Then, we highlight
the urgent need for interpretable AI-based solutions.

A. Benefits of AI in solving networking problems

Traditionally, network operators resort to rule-based and
modeling-based algorithms and heuristics to address both in-
network problems (e.g., packet routing, traffic classification)
and end-to-end issues (e.g., congestion control, QoE predic-
tion) [3]. However, with the growing scale and complexity of
modern networks and the diverse requirements of applications,
these approaches face severe limitations.

First, it is arduous for rule-based algorithms to compre-
hensively consider the related factors that can explicitly or
implicitly impact the performance in a vast problem space.
For instance, high-speed traffic processing stacks (e.g., FD.io
VPP, Open vSwitch with DPDK) need to not only make the
most suitable forwarding decisions but also consider mis-
cellaneous low-level system details (e.g., buffer occupancy,
cache locality, batch sizes) to optimally schedule resource and
realize the intended network services at line rate. Second, the
static algorithms cannot be improved by incremental learning,
which makes them susceptible to recurrent execution pitfalls
(e.g., load imbalance) and adversarial maneuvers (e.g., DDoS
attacks). Third, the rules are primarily constructed based on
human experience in specific scenarios and must be thoroughly
adjusted upon domain or environment shift, making rule-based
algorithms challenging to be adapted for reuse. For example,
migrating a rule-based TCP congestion control algorithm from
wired networks to wireless networks requires scrutinizing the
additional impact of signal interference, link failures, and
other performance impairments [4], which demands detailed
knowledge on both networks.

As detailed in [3], AI techniques have been widely applied
for various in-network and end-to-end tasks. We review the
literature and summarize the commonly employed AI models

and their use cases in Table I. Compared to traditional ap-
proaches, AI-based solutions possess several key advantages:
(1) AI models can discover hidden patterns and automati-
cally extract insights from voluminous data of heterogeneous
sources, which makes them practical for analytics tasks in
large-scale environments with abounding correlated factors
(e.g., anomaly detection, root cause analysis). (2) AI tech-
niques can efficiently capture and adapt to the temporal and
spatial network dynamics. For instance, unlike traditional al-
gorithms that identify network congestion through predefined
static triggers, ML algorithms can proactively exploit various
information to predict bottleneck conditions. (3) AI-based
solutions can autonomously drive networks without human
intervention, which is crucial to fulfilling the vision of zero-
touch networks. Although the novel network softwarization
technologies such as Software-Defined Networking (SDN) and
Network Function Virtualization (NFV) significantly reduce
operational costs, they still rely on static, hand-crafted algo-
rithms for network service management and resource provi-
sioning. AI techniques such as Reinforcement Learning (RL)
can be integrated with existing frameworks to grant unprece-
dented flexibility and intelligence on network automation. (4)
With the proliferation of transfer learning techniques, pre-
trained AI models can be possibly refactored for networking
tasks in different settings.

B. Commonly adopted AI models

AI models have quite different performance characteristics
and interpretation overhead. Commonly adopted models are
Naive Bayes (NB), Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), and Deep Neural Network
(DNN) [6]. Based on internal functioning, these models can be
categorized as transparent AI models and opaque AI models.

Transparent AI models: Transparent models are simple by
design and can be readily presented to humans through simu-
lation, decomposition, or algorithmic analysis [5]. AI models
such as DT and NB are transparent and self-explanatory. For
instance, DT consists of a hierarchy of nodes to split input
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TABLE I
COMMONLY EMPLOYED AI MODELS TO SOLVE DIFFERENT NETWORKING PROBLEMS

AI model Complexity Transparency Common use cases
Decision Tree (DT) Low High Unsupervised traffic classification, misuse intrusion detection
Naive Bayes (NB) Low High Supervised traffic classification

Random Forest (RF) High Low QoE prediction, routing
Support Vector Machine (SVM) High Low Supervised traffic classification, congestion control
Deep Neural Network (DNN) High Low Traffic prediction, routing, congestion control, resource scheduling, anomaly detection, QoE prediction

data and leaves to represent predictions. In the networking
domain, DTs are usually employed to tackle scenarios that are
fault-tolerant and time-critical. NB is based on the assumption
that the input features are independent of each other. If the
“naive” assumption holds, NB can make precise predictions
with relatively few training data. Both models offer means to
understand their decision-making process.

Opaque AI models: AI models whose predictions cannot be
easily communicated are deemed opaque. RF, SVM, and NN
are typical opaque models. RF is an ensemble learning method
that combines the predictions of multiple DTs to improve
accuracy. SVM represents input data as points in a multi-
dimensional space and uses hyperplanes to separate them
into classes. DNNs are inspired by the structure of biological
neurons in human brains. Sophisticated Deep Neural Networks
(DNNs) can contain millions or even billions of parameters
and are widely used for various complex tasks where proved
to have outstanding performance.

Existing research shows that compared to transparent AI
models, opaque AI models are less interpretable but much
more proficient in capturing non-linear patterns and solving
complex tasks. For instance, a linear regression model is
intuitive to explain as the linear relationship automatically
provides a straightforward mapping between feature input
and target output. However, linear regression oversimplifies
the context and often fails to deal with complex real-world
problems. Similarly, the inference of a DT can be handily
simulated by humans. Nonetheless, DTs suffer from over-
fitting and are non-trivial to generalize. Researchers usually
resort to ensemble methods like RF, which results in more
accurate prediction but are innately too equivocal to interpret.
Another significant difference between transparent and opaque
AI models is the resource requirement. Transparent models
have much simpler and fewer operations compared to opaque
models whose scale can be prohibitively large. For instance,
a powerful DNN model can contain billions of parameters
that require specialized hardware (e.g., GPUs or TPUs) to
accommodate the enormous computation and memory cost.
Nevertheless, it is impractical to expect network devices such
as programmable switches, routers, or smartNICs to spare
adequate resources to deploy and serve these high-performance
but heavyweight models.

C. The need for explainable AI in networking

Although some AI-based networking solutions still adopt
transparent models, they are not the majority in the current
research trend. According to a recent survey [6], most of the
existing AI-based networking solutions are built on opaque

models, which considerably plateau the development of AI-
based networking solutions. Compared to well-established
AI application domains such as computer vision, networking
tasks have disparate time and spatial diversities and abundant
categorical features (e.g., IP addresses, ports, paths). These
tasks call for the availability of labeled data which is un-
fortunately hard to obtain. The continuing moving targets
such as new applications, protocols, and patterns only make
the situation more complex. Naively applying these opaque
AI models without interpretation raises concerns about their
robustness, reliability, and trustworthiness. Also, networking
tasks customarily have a high reliance on domain-specific
knowledge and experience, and human experts will always
play an irreplaceable role [7]. As networks are destined to
become more intelligent in the future, it is beneficial to
consolidate the abilities of human experts and AI models
to deliver the most performant and cost-efficient solutions.
However, the opaqueness of most AI models completely
blocks human involvement. XAI techniques can explain the
inner workings of the AI-based solutions in understandable
formats to let network/AI experts inspect and dissect the cur-
rent solutions and craft high-level augmentations with domain
expertise. Specifically, XAI techniques can enhance AI-based
networking solutions in the following four aspects.

1) Performance: Albeit AI-based solutions can make sat-
isfactory predictions and decisions, the underlying AI models
are not immune to undesirable results or errors. An error can
still occur in any stage of a model development cycle due
to mislabelled data, poor feature selection, model drift, or
deficient design. XAI techniques provide means to scrutinize
the model and reveal potential bias and variances. AI experts
can subsequently discern whether a particular network policy
made by a model is derived from the intended portion of input
data or control logic and take the correct measures to make the
model more generalizable to network and system dynamics,
e.g., adjusting the dataset, changing the feature set, tuning
the hyper-parameters, redesigning the model architecture. In
addition, network engineers can capitalize on the generated
interpretations to pinpoint the decisive factors for a given AI-
based solution and perform tailored optimizations based on
the high-level observations of the problem settings.

2) Feasibility: Besides performance improvement, XAI can
assist in model refinement. Considering the complexity of
many existing opaque AI models, it is challenging to accom-
modate them using resource-constrained networking devices.
Researchers are exploring different methods to reduce the AI
models and fit them into small devices, commonly referred
to as “Tiny AI”. As shown in [8], XAI can be combined
with these methods to expose the redundant operations and
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Fig. 2. A summary of the existing XAI techniques, i.e., visualization-oriented, model simplification-oriented, and feature analysis-oriented XAI.

features and shrink the incurred computation cost, processing
latency, memory footprint, and energy consumption of existing
DL-based networking systems. More advanced XAI methods
are expected to progressively make AI models versatile and
suitable for networking problems in the future.

3) Robustness: AI models, especially the DNN models,
are well known to be non-robust against adversarial attacks.
Using AI-based solutions in networking will inherit this vul-
nerability, which will threaten the models’ applicabilities and
even the security of the resulting networking systems. For
instance, researchers have introduced DNN models in intru-
sion detection systems and achieved better detection accuracy
than traditional approaches. However, attackers can introduce
malicious modifications (e.g., several bits in a network packet)
to generate Adversarial Examples (AE) that can easily mislead
the DNN-based detectors. XAI techniques can help defenders
understand their vulnerabilities from both the DNN model
and networking data aspects. Besides the security against
the famous adversarial attacks, XAI can also assist network
administrators to discover the (otherwise hidden) security
threats and loopholes in an interpretable way.

4) Trust: Humans are naturally reluctant to trust non-
justifiable decisions made by AI-based solutions without
proper insights into the internal inference mechanisms [9].
XAI is a fundamental requirement for solutions based on
opaque models [10]. Depending on the target users, even
solutions based on transparent AI models might still need to be
explained. For instance, although transparent models such as
DT and NB are relatively intuitive for ML engineers to under-
stand, they might not be accessible for users without technical
experience. In these cases, XAI techniques provide straight-
forward and non-ambiguous interpretations to the involved
audience with or without a proper technical background. This
benefit is especially crucial for mission-critical networks, e.g.,
banking, satellite, UAV, and transportation system networks,
where predictable policies and deterministic behaviors are
highly valued. Thus, explaining the AI models can expedite
the validation of functional coherence, constraints violations,
ethical customs, and legal obligations and make their decisions
and recommendations more trustworthy, accountable, and de-
pendable to human users.

III. CURRENT XAI-BASED SOLUTIONS IN NETWORKING

XAI methods can be categorized using different criteria.
Depending on the interpretation scope, XAI methods can be

either global or local. Global methods strive for comprehensive
model interpretation while local methods provide interpreta-
tions on specific prediction instances. Based on the reliance
on specific AI models, XAI methods can be model-agnostic
or model-dependent. Model-dependent methods are custom-
made for specific models, while model-agnostic methods are
technically applicable to any AI model. In this section, we
classify existing XAI research in networking based on interpre-
tation techniques, namely visualization, model simplification,
and feature relevance analysis, as shown in Fig. 2.

A. Visualization-oriented XAI

The most straightforward XAI method is explaining through
visualization, which entails visual augmentation and (option-
ally) dimensionality reduction techniques to generate simple
illustrations of an AI model’s internal operations and inter-
actions. Beliard et al. [11] proposed a platform to visualize
the inference process of a commercial-grade network traffic
classification engine based on Convolutional Neural Networks
(CNNs). The platform can generate a set of graphs to illustrate
the classification process and highlight the most salient fea-
tures. Human users can thus develop a better understanding of
CNN’s classification process by interacting with the graphs.

B. Model simplification-oriented XAI

The model simplification method builds a functionally
similar yet much-simplified model (e.g., linear models) to
elucidate the inference process. For instance, Morichetta et
al. [12] targeted the unsupervised traffic classification problem
and trained an SVM-based classifier. Then, they integrated
the Local Interpretable Model-agnostic Explanations (LIME)
approach to explain the specific clustering results. LIME
constructs an interpretable model coherent with the SVM
model for a given prediction instance and perturbs the input to
locate the most influential features. Similarly, Sun et al. [13]
presented their preliminary research on wireless multi-channel
power allocation. The authors leveraged Meijer G-function
to represent a NN model and to render a low-dimensional
explainable symbolic representation. As Meijer G-function
has an ample search space, there is no guarantee that it is
the most representative function for the NN model. Meng et
al. [8] proposed two methods to interpret DL-based networking
systems. They utilized teacher-student training to build DTs
for local networking systems and hyper-graph formulations to
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TABLE II
THE RELATED WORKS FOR XAI IN NETWORKING

Research item Problem domain XAI technique Interpretation scope Model-agnostic Target model
Beliard et al. [11] Traffic classification Visualization Local No DNNs
Morichetta et al. [12] Video quality classification Model simplification Local Yes -
Sun et al. [13] Wireless channel allocation Model simplification Local No DNNs
Meng et al. [8] Interpreting DL-based system Model simplification Local No DNNs
Guo et al. [14] Wireless service provisioning Feature relevance analysis Local No DDDQN
Terra et al. [15] 5G root cause identification Feature relevance analysis Global/Local Yes -

generate interpretable policies for global networking systems.
The proposed methods were applied to interpret three real-
world DL-based systems (i.e., video streaming, flow schedul-
ing, and SDN-based routing) and presented more accurate
interpretation results than LIME and LEMNA, another preva-
lent XAI method approximates a local region of the complex
decision boundary with an interpretable model.

C. Feature relevance-oriented XAI

Feature relevance analysis methods compute a feature rel-
evance score to assess each feature’s impact on the final
decision. For example, Guo et al. [14] proposed a DRL
method for optimal service provisioning in the UAV-based
wireless networks and conducted local feature analysis using a
sample configuration to interpret and highlight the determinant
features leading to specific predictions. Terra et al. [15]
tackled the interpretability of an XGBoost model that predicts
the latency violation in 5G networks. The authors evaluated
several classical XAI methods and recommended using SHAP
that rendered the most proper interpretation.

Although these endeavors to interpret AI-based solutions
have borne some fruit, XAI is still in its infancy in the
networking field. According to Table II, existing methods
either heavily rely on state-of-the-art XAI techniques designed
for general purposes or have limited interpretation scope only
applicable to some specific AI models.

IV. CHALLENGES AND FUTURE PERSPECTIVES

With the deployment of 5G and the inception of 6G stan-
dardization, there is an urgent need for end-to-end network
automation. Several initiatives were established to strive for
AI-driven self-managed networks, e.g., ETSI’s Zero-touch
network and Service Management group. XAI is deemed
a fundamental building block to bestow the next-generation
networks with self-managing, self-healing, and self-optimizing
capabilities. However, XAI still has many impediments to
overcome to unleash its full potential for automated network
management. This section addresses five fundamental perspec-
tives of XAI, including the network-specialized interpretation,
performance improvement, model refinement, robustness, and
trust fostering.

A. Specialized XAI for networking problems

As shown in Sec. III, most existing works directly adopt
state-of-the-art XAI methods such as LIME and SHAP which
are not natively designed to exploit the unique characteristics
of modern networking systems and can lead to inconsistent

results. For instance, as shown in [15], due to the unique
patterns of network data, LIME failed to produce consistent
interpretations when multiple features have similar impacts on
one prediction, which can cause undesirable consequences. It
is thus essential to consider the peculiarities of the target prob-
lem and implement bespoke XAI methods compatible with the
corresponding network and system settings. To this end, Meng
et al. [8] pioneered the design of specialized XAI methods
for DL-based networking systems. Despite the promising re-
sults, their methods cannot explain Recurrent Neural Network
(RNN)-based systems, and the performance for more complex
DNNs is still unexplored. With the ascending complexity of
modern networks, more XAI methods designed for diversiform
combos of AI models and network settings are expected to be
implemented to provide interpretations for AI-based network
services, applications, and systems.

B. XAI for performance improvement

Future XAI methods should generate more advanced in-
terpretations to facilitate performance improvement. Current
XAI methods only extract mappings between input features
and output predictions, which are subsequently analyzed and
extrapolated by human experts to uncover the decisive fac-
tors. XAI methods should produce advanced observations
and straightforward suggestions for automatic performance
optimization at both model and system levels. Specifically,
at the model level, XAI methods should explicitly indicate
the steps to improve the quality of predictions, e.g., fine-
tune parameters, augment the collected data, or simplify the
model. At the system level, XAI methods should pinpoint the
most desirable execution configurations for the deployed AI-
based solutions, such as the intended network environment
(e.g., data centers vs. ISP networks), traffic types, and model
serving schemes. In some cases, XAI should enable accept-
able tradeoffs between different performance metrics such
as accuracy, latency, and energy cost. For instance, a DNN
can be partitioned for collaborative training and inference
based on real-time network dynamics. Its responsiveness can
also be enhanced by adding multiple side branches with
different degrees of accuracy (e.g., early-exit). Thus, future
XAI methods need to integrate other cutting-edge analytic
tools to extract insights and associate actions with decisions
productively.

C. XAI for feasibility-oriented model refinement

Traditional network management runs in the control plane
to react to the network events within milliseconds which can
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only make decisions based on a few data and fail to capture
more fine-granular statistics. With the proliferation of AI in
networking, it is essential to leverage the abundant traffic
features in the data plane to build more cognitive solutions
for network management tasks such as traffic classification,
congestion control, and QoE management. Given the resource
constraints of network devices and the over-parameterization
of many AI models, it is necessary to distill the most relevant
features and reduce the model complexity to fit AI-based
solutions into production-grade data planes. Although XAI can
be used for model refinement, few prior research explicitly
addresses this issue. Future XAI methods should pinpoint the
most suitable model refinement strategy for different network
and system settings. For instance, given the available capacities
of a NetFPGA, a DNN’s computation and memory footprints
can be shrunk using model compression techniques such as
pruning, quantization, and knowledge distillation.

D. The robustness of XAI

Another critical challenge for AI-driven network manage-
ment is the robustness against malicious attacks. Although
XAI can enhance the robustness of the AI-based solutions by
exposing the vulnerabilities therein, XAI methods themselves
are also susceptible to adversarial attacks. By purposefully ma-
nipulating the input data, existing XAI methods (e.g., LIME)
can be misled to produce unreliable or irrelevant explanations.
The unique characteristics of networking problems further
introduce a different dimension to this challenge. Therefore,
to guarantee unbiased interpretations for AI-based networking
solutions, it is necessary to propose reliable benchmarks that
can comprehensively assess the consistency, correctness, and
scalability of the XAI methods. Besides, it is equally important
to defend the XAI methods against adversarial attacks. The
defense can be based on mechanisms designed to detect and
prevent malicious attacks. Proactive defense schemes, such as
shield execution and traffic encryption, are also viable options.

E. XAI for trust fostering

Most existing XAI methods are still evaluated in simulated
or controlled environments, and their performance cannot
sufficiently reflect real-world circumstances. This reality gap
immensely impedes the acceptance of AI-based solutions,
especially for the envisaged 6G networks where many mission-
critical services are expected to be managed [9]. Unfortunately,
existing XAI cannot be seamlessly integrated into network
systems to interpret models on the fly. To further promote the
trust of AI across the networking community, more system-
level supports, such as standard APIs and software develop-
ment kits, are needed to fuse XAI methods into the production
network environment and facilitate the real-time, automatic
inspection and validation of different AI-based solutions. By
continuously providing high-quality inference with justified
interpretations, the network operators and other stakeholders
will become more accustomed to the AI-based solutions and
more inclined to trust their decisions.

V. CONCLUSION

Despite the unprecedented success of AI techniques, most
AI-based solutions are built on non-transparent models that
are hard to interpret. Although XAI techniques keep gaining
momentum, little attention has been paid to their applica-
tions in modern networking systems. In this paper, we gave
a general overview of XAI in networking. We specifically
reviewed the current status of AI in networking and discussed
the motivations for XAI. We also reviewed existing XAI
research that interprets AI-based solutions and discussed future
challenges. Although XAI in networking is far from maturity,
this paper can serve as primitive guidance for the incremental
melioration of AI-based networking solutions.
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