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Abstract11

Surface electromyography amplitudes are commonly measured in acute sports and exercise science studies to12

make inferences about muscular strength, performance, and hypertrophic adaptations that may result from different13

exercises or exercise-related variables. Here, we discuss the presumptive logic and assumptions underlying these14

inferences, focusing on hypertrophic adaptations for simplicity’s sake. In doing so, we present counter-evidence for15

each of its premises and discuss evidence both for and against the logical conclusion. In view of the limited evidence16

validating the amplitude of surface electromyograms as a predictor of longitudinal hypertrophic adaptations, coupled17

with its weak mechanistic foundation, we suggest that acute comparative studies that wish to assess stimulus potency18

be met with scrutiny.19

In view of the growing popularity of surface electromyography (sEMG) studies in sports science, we voiced our concerns20

in our 2018 review paper on sEMG’s use and misuse [1]. Since its publication 3.5 years ago, the paper has garnered21

well over 150 citations, indicating that it has attracted much attention and the field may indeed be receptive to our22

concerns. However, over time we learned that many of these citation treated our concerns as minor, inconsequential23

limitations of sEMG amplitudes rather than serious flaws that undermine their conclusions. In retrospect, this may not24

be overly surprising as, admittedly, parts of the review were technically dense and required background knowledge of25

neurophysiology. Given these mis-citations and the continued, pervasive extrapolations of sEMG amplitudes,1 we wish26

to clarify and simplify our primary concerns regarding the interpretation of sEMG amplitudes in applied sports science27

studies, which are complementary to previous critical reviews on sEMG’s use and misuse.28

To achieve this goal, in this commentary, we solely focus on one study design which is especially popular29

and problematic in sports science: using sEMG amplitudes from acute studies to make inferences about30

∗Corresponding Author: Andrew Vigotsky (avigotsky@gmail.com)
1By sEMG amplitudes, we refer to statistics summarizing the average degree of variation of the amplitude of the raw sEMG over a given

period into a single value, with the most popular estimate being the root mean square amplitude.
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longitudinal adaptations, primarily concerning hypertrophy. Studies of this type are ubiquitous and easy to31

identify. They commonly involve placing surface electrodes on muscles of interest and comparing the sEMG amplitudes32

that result from two or more exercise variations, loading schemes, or some other exercise-related variable (e.g., exercise33

order) performed within a single or over a few sessions (i.e., without performing a longitudinal study). For example,34

researchers may place electrodes on the biceps brachii and have participants perform dumbbell preacher curls and35

dumbbell incline curls during a single session. Authors then make exercise recommendations based on their findings,36

indeliberately attributing predictive power to the acutely observed differences in sEMG amplitude; for instance, higher37

sEMG amplitudes observed during one of the exercises implies that the exercise will elicit greater hypertrophy in the38

long term. We note that other uses of sEMG, such as to investigate coordination and timing of muscle excitation,39

are unrelated to our discussion and thus will not be covered, nor will we discuss what information is contained in the40

sEMG signal. For information regarding the latter, we direct readers to reviews and texts on the topic (see Table 2 in41

[1]). Instead, our goal with this article is to break down the assertion that sEMG amplitudes can predict hypertrophic42

adaptations into three premises and a conclusion. Importantly, all three premises that we will cover are necessary for the43

conclusion that sEMG is a valid predictor of hypertrophy. Yet, only one is dependent on sEMG amplitudes. We argue44

that all three premises are weak, rendering the conclusion that sEMG amplitudes can be used to predict hypertrophic45

adaptations tenuous.46
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Operational Definitions

In this commentary, we simplify our language so as not to overburden the reader with terms with which

they may not be familiar. Although some of these terms require knowledge of muscle physiology, a deep

understanding of them is not required to grasp the key message of this article.

• Neuromuscular excitation – the electrical signal that causes calcium to be released into the sarcoplasm

to enable contraction. This includes the depolarization of the α-motoneuron (neural excitation) and

subsequent depolarization of the sarcolemma (muscle excitation). Neural excitation is influenced by

motor unit recruitment and rate coding while muscle excitation is affected by changes in the peripheral

muscle environment (e.g., [Ca2+] changes).

• Muscle activation – relative binding of calcium to troponin to facilitate cross-bridge attachment.

• Cross-bridge attachment – myosin binding to actin to produce active muscle force.

• Muscle state changes – muscle activation and subsequent cross-bridge attachment.

We lump ‘neural excitation’ and ‘muscle excitation’ into ‘neuromuscular excitation’, which is the electrical

phase. Similarly, we sometimes lump ‘muscle activation’ and ‘cross-bridge attachment’ into ‘muscle state

changes’, which is the chemomechanical phase. This lumping is justified because the former in each is com-

monly—though not always—the rate-limiting step [2], and thus, the relationships are close to one-to-one for

the purposes of this commentary.

47

1 The logic of sEMG as a predictor of hypertrophic adaptations48

Similar to our 2018 review paper [1], here, we will briefly cover both mechanistic and applied interpretations of sEMG49

amplitudes. Although seemingly unrelated, these interpretations are closely linked—the latter follows directly from the50

former. That is, inferences that greater sEMG amplitudes are associated with more favorable hypertrophic adaptations51

stem from various mechanistic assumptions. The full, often implicit, logical argument is presented below and in Figure52

1.53

1. sEMG amplitudes are indicative of neuromuscular excitation of the target muscle(s).54

2. Neuromuscular excitation is directly related to the state of the muscle.55

3. Changes in muscle state drive hypertrophic adaptations.56

∴ Therefore, sEMG is predictive of hypertrophic adaptations.57
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Figure 1: Mechanistic logic for using surface electromyography (sEMG) as a predictor of hypertrophic
adaptations. sEMG serves as a proxy for neuromuscular excitation. Neuromuscular excitation induces muscle state
changes, which are said to drive hypertrophic adaptations. The implication of this logic is that acutely measured dif-
ferences in sEMG amplitudes can be used to predict hypertrophic adaptations. For this logical conclusion to be true,
either (a) all premises must strongly hold; (b) biases or poor relationships in one premise must be “cancelled out” by
the other premises; and/or (c) there is some other pathway. Prima facie, we consider (b) and (c) to be highly unlikely,
so we focus on (a).

1.1 Premise 1: sEMG amplitudes are indicative of neuromuscular excitation of the58

target muscle(s).59

A common assumption among sport and exercise scientists is that sEMG amplitudes are solely a combination of neu-60

romuscular excitation. However, a growing number of human, animal, and modeling studies have shown that sEMG61

amplitudes and neuromuscular excitation can be uncoupled. For instance, by simply plantar flexing the ankle, Vieira62

et al. [3] observed a marked decrease in tibialis anterior sEMG amplitude induced by nerve stimulation (M-wave).263

This indicates that changing a muscle’s shape or architecture (i.e., length and pennation angle) will drastically affect64

the sEMG signal, even when neuromuscular excitation is identical. The biophysical origins of this effect are fairly well65

understood. In particular, the muscle architecture-dependence of the sEMG signal is a consequence of how the action66

potentials travel through the muscle relative to the positions of the electrodes [12]. Similarly, electrode configurations,67

subcutaneous thickness, muscle lengths, and contraction modes will bias the surface electromyogram, resulting in an68

under- or over-representation of the electrical signal from the target muscle(s) that may vary throughout the range of69

motion [13–19].70

These inconsistencies challenge the premise that sEMG amplitudes collected across different exercises truly reflect71

differences in neuromuscular excitation. Although normalizing signals to a single maximal value (e.g., maximum volun-72

tary contraction, M-wave) is unlikely to attenuate this effect, the benefits of position-specific normalization remain to73

be investigated. Indeed, the excitatory origins of sEMG amplitude changes are clearer in well-controlled conditions but74

can impose an inferential barrier whenever changes in muscle architecture, length, or force are likely to take place [17].75

2Similar findings have been reported in other studies and muscles [4–11].
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1.2 Premise 2: Neuromuscular excitation is directly related to the state of the muscle.76

Neuromuscular excitation is the electrical signal that causes calcium to be released into the sarcoplasm to enable77

contraction. Following this release, the state of the muscle is altered by calcium binding to troponin (activation) to78

enable cross-bridging (attachment), which together determine the muscle’s state [20]. The distinction between neuromus-79

cular excitation and a muscle’s state is subtle but meaningful, as the two can be instantaneously decoupled by exploiting80

their dynamics.3 This challenges the premise that neuromuscular excitation provides clear insight into a muscle’s state.81

However, Premise 2 can hold in study designs that include non-fatiguing, isotonic, isometric contractions, as one can82

assume a linear and stable relationship between neuromuscular excitation and a muscle’s state.83

1.3 Premise 3: Muscle state changes drive hypertrophic adaptations.84

The logic that a muscle’s state begets its hypertrophy is predicated on the assumptions that (a) changes in muscle state85

induce muscle protein synthesis (MPS), and (b) MPS triggers a hypertrophic response. It is certainly the case that86

resistance exercise triggers robust MPS and hypertrophic responses relative to rest [22]. Unfortunately, comparisons to87

rest tell us little about the muscle state-hypertrophy dose-response relationship.88

The relationship between muscle state changes and MPS remains unclear, and the best available evidence suggests89

it is weak. Morton et al. [23] found that glycogen depletion following exercise, a marker of activation, was only weakly90

associated with anabolic markers (i.e., mTOR, p70 S6k, etc.; not MPS).4 Although the investigators did not study MPS91

directly, the weak relationship observed between muscle state changes and anabolic markers indicates that the muscle92

state-MPS relationship may indeed be tenuous.93

In contrast to the muscle state-MPS relationship, the link between MPS and hypertrophy is mixed and remains to94

be fully elucidated. Early work suggests little-to-no correlation between MPS and hypertrophy [25], but more recent95

work that accounts for some methodological shortcomings suggests much stronger correlations (r > 0.9) [26]. Although96

debates are ongoing [22], in some contexts, the jump from MPS to hypertrophy may indeed be a reasonable one.97

More broadly, the relationship between muscle state changes and growth—spanning both muscle state to MPS and98

MPS to growth, which are detailed separately above—is inconsistent across the literature. For example, changes in the99

muscle state are not necessary for muscle growth, as indicated by studies that have observed growth following stretch100

protocols in which changes in muscle state did not occur [27]. Evidently, the activation-hypertrophy relationship is not101

straightforward. The dearth of a clear-cut relationship between muscle state changes and muscle growth undermines102

Premise 3.103

104

Finally, even if the above premises held, the predictive value of sEMG would still need to be directly validated.105

3Changing a muscle’s state over time (e.g., dynamic contractions or changes in force) will complicate the otherwise straightforward neu-
romuscular excitation-muscle state relationship [2, 21]. Although this process can be modeled, it is typically not in applied sEMG studies in
sports science.

4Morton et al. [23] also demonstrate that sEMG amplitudes can be decoupled from (a) muscle state changes, as measured via muscle
glycogen depletion, which spans Premises 1 and 2, and (b) anabolic signaling, which spans Premises 1–3. However, the authors employed
between- rather than within-subject correlations. Here, we think the more relevant question is the within-subject relationship (see [24]),
which may be a fruitful avenue for future research.
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1.4 Logical Conclusion: sEMG is predictive of hypertrophic adaptations.106

The mechanistic rationale for sEMG being a predictor of hypertrophy is attractive, but as we briefly discussed in the107

previous sections, there are theoretical concerns that may yield the relationship to be tenuous. In fact, the assertion108

that sEMG has predictive validity is an example of a slippery slope argument, the strength of which depends on two109

factors. As eloquently stated by philosopher David Kelley, “The first is the strength of each link in the causal chain;110

the argument cannot be stronger than its weakest link. The second is the number of links; the more links there are,111

the more likely it is that other factors could alter the consequences” (p. 123, [28]). Given both the number of links112

(premises) and their unstable mechanistic foundations, predictive validity arguments for sEMG amplitude are poor. It113

cannot simply be assumed that a clear relationship between sEMG and longitudinal outcomes exists.114

Indirect evidence indicates inconsistent relationships between sEMG amplitudes and growth. On one hand, evidence115

in favor of the sEMG-hypertrophy relationship is that sEMG amplitudes tend to correspond with growth in the rectus116

femoris [29–32] and hamstrings [33–36]. For example, multi-joint movements yield low sEMG amplitudes and little117

growth in the rectus femoris, whereas single-joint movements yield high sEMG amplitudes and marked growth [29–32].118

However, one could argue that these results are expected based on biomechanics, meaning there was no clinical equipoise119

and the sEMG results did not provide novel insight. On the other hand, sEMG amplitudes were not clearly indicative120

of growth when comparing different contraction modes [15, 37], fatiguing conditions [23, 38–44], and muscle lengths [4,121

45–56]. For example, maximum isometric voluntary contractions across a range of knee joint angles produces discordant122

quadriceps sEMG amplitudes [4, 45–52]. However, greater hypertrophy is commonly observed when the quadriceps are123

trained isometrically at longer compared to shorter muscle lengths [53–56]. Perhaps the largest discrepancy between124

sEMG amplitudes and hypertrophy is in the high- versus low-load resistance training literature. When sets are performed125

to momentary failure, high- and low-loads produce similar growth [38–40] despite high-loads eliciting greater sEMG126

amplitudes throughout the entire duration of a set [23,41–44,57].127

As evident from these examples, indirect evidence is mixed regarding the link between sEMG amplitude and hy-128

pertrophic responses. Yet, no study has directly investigated and quantified the association between sEMG amplitude129

and longitudinal outcomes.5 In quantifying this relationship, several ancillary questions will be answered, including the130

sensitivity of sEMG as a predictor of hypertrophy. For example, when comparing two exercises, how much greater of a131

hypertrophic response can we expect from a 10% greater sEMG amplitude? Moderators of this relationship would also132

be of interest, including the effects of fatigue, contraction mode, and muscle being studied. However, predictive validity133

does not begin and end with associations.134

Establishing predictive validity is a grueling process. To do so, investigators must explicitly demonstrate that135

any observed relationship is predictive and generalizable to other populations and environments [62]. For sEMG to136

be validated and accepted as a predictor of longitudinal adaptations, it would need to be both associated with and137

5We also acknowledge the T2-weighted magnetic resonance imaging (MRI) and regional hypertrophy work by Wakahara et al. [58–60] in
the triceps brachii and quadriceps and Illera-Dominguez et al. [61] in the hamstrings, quadriceps, and adductors. Although their findings are
mixed, there are two caveats to note. Principally, this work used MRI rather than sEMG; to our knowledge, MRI has not been validated
against sEMG for intramuscular heterogeneity. Secondly, these studies did not model within-subject relationships directly.
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predictive of the outcomes of interest (hypertrophy). Without such work, it is unacceptable to treat sEMG as a138

validated predictor of longitudinal adaptations.139

2 Take-Home Points140

In light of the aforementioned limitations, the production of acute studies and reviews of comparative studies on141

acute sEMG amplitudes, with the implicit or explicit purpose of inferring longitudinal adaptations, should be greatly142

attenuated. The sheer number of these acute comparative sEMG amplitude studies are increasing at what seems to143

be an exponential rate, without complementary longitudinal studies. This is problematic: If one exercise leads to144

greater sEMG amplitude than another, the longitudinal implications of such findings are assumed, not evidenced. In145

the case of hypertrophy, these assumptions are largely unsupported, and similar scrutiny can also be applied to other146

longitudinal adaptations such as strength. These acute sEMG amplitude studies intended to inform exercise selection147

without measuring longitudinal adaptations use precious resources, including the time of the researchers, participants,148

peer-reviewers, editors, and readers, in addition to the costs involved in conducting research.149

To be clear,150

• At present, acute studies that compare sEMG amplitudes between, for example, two different exercise protocols151

cannot be used as evidence for longitudinal adaptations (e.g., hypertrophy);152

• Acute sEMG amplitude studies may be indicative of longitudinal adaptations, but evidence supporting this asser-153

tion is lacking. Arguments that contend otherwise are based on tenuous assumptions and are appeals to ignorance;154

• Instead of acute comparative sEMG amplitude studies, investigators should focus on longitudinal outcomes of155

interest (e.g., measures of hypertrophy);156

• Despite these limitations, sEMG is a useful tool for specific research questions, such as those related to coordination157

(e.g., timing of muscle excitation).158

3 Conclusion159

We contend that continued submissions and publications of acute comparative sEMG amplitude studies with inferences160

about longitudinal adaptations are flooding the literature. To help remedy this, we propose that journal editors keep161

the above points in mind before sending these papers out for review, and reviewers who receive such papers should162

be mindful of the limitations we mentioned. Unless authors communicate the value of their study independently of163

longitudinal outcomes and beyond that which would be expected from basic biomechanics or functional anatomy, their164

findings and implications should be appraised critically.165
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