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Multi-class Sparse Centroids
with Application to Fast Time-Series Classification

Tommaso Bradde, Student Member, IEEE, Giulia Fracastoro, Member, IEEE, Giuseppe C. Calafiore, Fellow, IEEE

Abstract—In this paper, we propose an efficient multi-class
classification scheme based on sparse centroids classifiers. The
proposed strategy exhibits linear complexity with respect to both
the number of classes and the cardinality of the feature space.
The classifier we introduce is based on binary space partitioning,
performed by a decision tree where the assignation law at
each node is defined via a sparse centroid classifier. We apply
the presented strategy to the time series classification problem,
showing by experimental evidence that it achieves performance
comparable to that of state-of-the-art methods, but with a
significantly lower classification time. The proposed technique
can be an effective option in resource-constrained environments
where the classification time and the computational cost are
critical, or in scenarios where real-time classification is necessary.

I. INTRODUCTION

In the last years, the increasing pervasiveness of sensing
devices and monitoring services allowed machine learning
technologies to be successfully exploited in a growing number
of different fields. Boosted by the efforts of both industry
and academia, this trend is likely to be maintained in the
near future. From a technological standpoint, the scarcity of
computational resources represents today a serious limitation
for the applicability of such techniques in areas where their
potential could be exploited.

In this perspective, this work presents a computationally
efficient classifier which may represent a convenient choice
whenever the classification time or the computational cost are
critical for the application. The proposed classifier is a feature-
based method that relies on a binary tree classifier, where each
node discerns between two sets of classes to which the upcom-
ing sample might belong. Based on the recent developments
of [1], the binary classification rule performed at each node is
driven by a sparse nearest-centroid classifier, which relies on
an optimal subset of available features, specifically selected
during the training phase.

Since the feature selection is embedded in the tree con-
struction, the upcoming samples can be classified by means of
only low-dimensional euclidean distances, whose computation
requires a negligible amount of time. The classification com-
plexity of the proposed classifier is linear in both the number of
classes of the problem and in the number of features retained
after the selection stage. Besides the desirable reduction of
the classification complexity, the sparsification process allows
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neglecting the features that retain no discriminating properties
and that could lead to misclassifications, thus improving the
accuracy of the classifier.

As a reference field of application for the proposed ap-
proach, we shall here refer to the problem of time series
classification, which is a staple of the research in data mining
and machine learning. The classification of time series per-
formed in real-time or in resource-constrained environments
is highly limited by the scalability of the employed technol-
ogy since, in these cases, guaranteeing a high classification
accuracy and computational efficiency, even with very high
dimensional samples, is of primary importance. Applications
where these constraints are critical include power grid data [2],
predictive maintenance [3], and human activity recognition
through portable devices [4].

In the available literature, virtually all of the most important
general purpose classifiers, such as Support Vector Machines,
K-Nearest Neighbors, Gaussian Mixture Models, and Random
Forests, have been applied to time series classification [5].
Moreover, deep learning methods have also been tested, [6], a
multitude of possible ad-hoc solutions have been proposed to
tackle this problem, and the topic has been covered extensively
in a number of reviews, see, e.g., [7], [8]. These tailored
methods perform the classification on the basis of different
criteria, ranging from the exploitation of a suitably defined
distance metric computed over the raw time series, [9]–[12],
or over a suitably defined approximation of the raw data [13]–
[15]; others have been specifically designed to operate on
discriminatory sub-sequences of the whole time series, referred
to as shapelets [16].

Such a large number of proposed solutions suggests that it
is not possible to identify a unique method that can be a valid
choice for all the various application scenarios of time series
classification. Contrary, the choice of the right technique must
be evaluated on the basis of the specific application and the
related technological constraints, thus making this problem a
meaningful test bench for the strategy we are proposing.

The performance of the proposed classifier has been ex-
perimentally evaluated both on well-known benchmark data
sets and on the specific problem of human activity recognition
based on smartphone-acquired data. The obtained results show
that the proposed classifier is on par with state-of-the-art
time series classification methods from the point of view of
classification performance, while it requires only a fraction of
their computational cost.

The paper is organized as follows. In Section II we set the
notation and we recall some background notions. In Section III
we introduce and discuss the proposed classifier, which is
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experimentally tested in Section IV. Conclusions are finally
drawn in Section V.

II. BACKGROUND AND NOTATION

The goal of a classification task is to define a map that links
observed feature data to a class membership label. Let xi ∈
RK be a vector of features representative of an observation;
we define one element of our dataset D as the couple

di = (xi, ci), (1)

where ci ∈ {1, 2, .., C} is the class label of the i-th observa-
tion. Let DT and DV be the training and the validation set,
respectively, where DT ∪ DV = D and DT ∩ DV = ∅. The
core of the proposed classification algorithm is based on the
nearest-centroid classifier. For a binary classification problem,
i.e., C = 2, two centroids can be computed on the basis of
the training data DT as

x̄1 =
1

n1

∑
i∈I1

xi, x̄2 =
1

n2

∑
i∈I2

xi (2)

where I1=̇{i : ci = 1}, I2=̇{i : ci = 2}, and n1 and n2 are
the cardinalities of the sets I1 an I2, respectively.

The centroids can be used to define a classification rule.
The class predicted for an upcoming sample x is the output
of the function g : RK → {1, 2} defined as

g(x) =

{
1 if ||x− x̄2||22 − ||x− x̄1||22 ≥ 0

2 if ||x− x̄2||22 − ||x− x̄1||22 < 0
. (3)

When the number K of available features is very large, a
feature selection stage is commonly employed for reducing
the complexity of the problem and for retaining only the
information that is useful to effectively perform the classi-
fication, see e.g. [17]–[20]. Recent results in [1] proved that,
in the case of binary classification, it is possible to define
a sparse nearest-centroid classifier, which performs efficient
simultaneous feature selection and classification by detecting
the optimal subset of features for the classification task.

For a given sparsity level m ≤ K, we define the sparse
centroids as follows:

1) Compute the standard class centroids x̄1 and x̄2;
2) Compute the difference vector δ = x̄2 − x̄1 and the

centroids midpoint x̃;
3) Collect in the set R the indices associated with the m

largest elements of |δ|. Denote the complementary set
E = {1, ...,K} \ R;

4) The sparse centroids are given by θ̄m1 = xR1 + x̃E and
θ̄
m
2 = xR2 + x̃E , where we use the notation xR (xE )

to denote a vector of the same dimension as x which
coincides with x at the locations in R (E) and is zero
elsewhere.

Then, the optimal nearest-centroid classification rule is given
by the function fm : RK → {1, 2} defined as

fm(x) =

{
1 for ||x− θ̄m2 ||22 − ||x− θ̄

m
1 ||22 ≥ 0

2 for ||x− θ̄m2 ||22 − ||x− θ̄
m
1 ||22 < 0.

(4)

We highlight that, in the above equations, the centroids
elements associated to the set of indices E play no role

for the sake of classification; thus, the computational effort
required to compute (4) is reduced with respect to the one
associated to (3). This also enables the possibility to avoid
the computation of the corresponding features during the
classification task, thus reducing its time requirements.

The most appropriate level of sparsity for θ̄m1 and θ̄
m
2

(which we will denote in the following with k) can be found
by cross-validation. We highlight that the computational cost
required for training the above sparse centroid classifier is
O(Kn)+O(K logm), being n = n1+n2; we refer the reader
to [1] for a deeper analysis of the theoretical aspects of this
method.

III. SPARSE CENTROID TREE

In this section, we present the proposed method for ex-
tending the binary sparse centroid classifier to the multi-class
case. As the assignation rule described by (4) is intrinsically
binary, we propose a multi-class classification strategy based
of sequential binary partitions of the set of classes. This
strategy can be easily implemented by building a binary tree
where each node applies the sparse centroid classification
rule (4) in order to discern between two sets of potential
classes. By following the classification path from the root
node to one of the leaves, the appropriate sequence of binary
partitions will output the class label. The proposed binary tree
is thus able to handle simultaneously both the stages of feature
selection and classification.

The binary space partitions of the tree classifier are defined
in an iterative way. We explain next the procedure for per-
forming a binary partition over a generic classes set CR ⊆ C.
Building the proposed decision tree classifier will require to
apply such operation in an iterative way.

Let P(CR) be the set of all the possible binary partitions of
the set CR. We denote one of its elements as P = {P1, P2},
where P1∪P2 = CR and P1∩P2 = ∅. The two sets of classes
P1 and P2 represent the current candidate binary partitions of
CR. We can define a binary representation of the data based
on this binary partition. let X be a place-holder for either T
or V ; then for each data sample d = (x, c) ∈ DX we build the
binary dataset DX|P associated with the partition P according
to the following rule:

(x, 1) ∈ DX|P if c ∈ P1;

(x, 2) ∈ DX|P if c ∈ P2; (5)

if none of the above condition is satisfied, then the observation
x is not included in DX|P . After having defined the binary
representations for the training and validation datasets, we can
apply the sparse nearest-centroid classifier for evaluating the
quality of the candidate classes partition. Given a maximum
allowed degree of cardinality m̄ < K, the accuracy of
the assignation rule in (4) is evaluated on the validation
samples for different levels of cardinality m = 1, ..., m̄. The
performance index of the split P = {P1, P2} is chosen to be
the highest reachable level of accuracy, attained for a given
sparsity degree k ≤ m̄. By repeating the process for all the
elements of P , we choose the partition of the class space CR
that shows the highest performance index. The chosen partition
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is denoted as P ∗ = {P ∗1 , P ∗2 }. The steps required to partition
the class space are reported in Algorithm 1. A standard cross-
validation scheme can be applied within Algorithm 1 in order
to guarantee a meaningful evaluation of the quality of each
possible split of the classes set.

Algorithm 1 Nearest-centroid binary space partitioning
Input: Training dataset DT , validation dataset DV , set of

classes to be partitioned CR, set of all the classes C,
maximum feature vector cardinality m̄.

Output: Best class space partitioning, P ∗ = {P ∗1 , P ∗2 }, car-
dinality level k.

1: for each element P = {P1, P2} ∈ P(CR) do
2: Build the set DT |P by applying the class partition (5)

to DT

3: Build the set DV |P by applying the class partition (5)
to DV

4: compute the centroids x̄1, x̄2 on DT |P as in (3)
5: for m = 1, 2, ..., m̄ do
6: Apply (4) with cardinality degree m to the samples

that belong to DV |P . Define am as the number of properly
classified samples.

7: Define the performance index a(P,m) = am

|DV |P |
8: end for
9: kP = argmaxm a(P,m)

10: end for
11: P ∗ = argmaxP∈P a(P, kP ).
12: k∗ = kP .
Return: P ∗ and k∗.

Algorithm 2 Training of Nearest-centroid binary tree
Input: Set of classes C, Dataset partition DT , DV , maximum

cardinality degree m̄.
Output: Decision tree classifier.

1: Set C1 ← C as input class for the root node N1.
2: Initialize the set of tree leaves L = {N1}.
3: while dim(L) < dim(C) do
4: for each Nl ∈ L do
5: if dim(Cl) > 1 then
6: Set CR ← Cl. Apply Algorithm 1
7: Assign the decision rule fk to Nl.
8: Define the two nodes Nl+1, Nl+2 as children of

Nl.
9: Set Cl+1 ← P ∗1 and Cl+2 ← P ∗2 .

10: Remove Nl from L.
11: Add Nl+1 and Nl+2 to L.
12: else
13: Do nothing
14: end if
15: end for
16: end while
Return: Decision tree classifier

After having defined the above partitioning strategy, the
construction of the decision tree classifier is straightforward.
The root node performs the first binary partition of the set C.
By applying Algorithm 1, we compute the optimal set partition

P ∗ = {P ∗1 , P ∗2 }, which will be assigned as input classes
for the two children nodes. The same procedure is applied
iteratively on each of the children nodes until the number of
tree leaves equals the number of classes in C. Algorithm 2
summarizes the procedure for the generation of the decision
tree classifier, where we denote with Cl the set of input classes
of the l-th node of the tree.

Once the classifier tree is defined, the classification of an
incoming sample can be performed by following, from the root
to one of the leaves, the path imposed by the assignation rules
associated to each node. By following this path, we compute
only the features required by the nodes of such path. We
remark that the overall number of features required to classify
a given sample is the sum of all the features required by the
assignation rules that are computed along the classification
path, from the root node to one of the leaves, which is
different for each output class. As shown by the experiments
of section IV, the decision tree structure implicitly carries out
a hierarchical partitioning which also gives information about
the linear separability of the classes.

We conclude this section with an analysis of the com-
putational complexity of the proposed algorithm. Since the
complexity of both the training and the classification stages
relies on the chosen class space partitioning and the optimal
sparsity degree associated to the sparse centroid classifiers
at each node, we will state the computational complexity
considering the worst-case scenario.

Proposition 1 (Computational Complexity). The worst-
case computational complexity required by the Nearest-
centroid binary tree for classifying an upcoming da-
tum is O(Cm̄). The complexity of its training stage is
O(2CKn) +O(2CK log m̄).

To prove the above proposition for the testing stage, con-
sider that a binary tree with C leaves contains C − 1 inter-
nal nodes. Since the classification complexity of the single
sparse centroid classifier is O(m), the worst case classification
complexity for the binary tree is O(Cm̄), where m̄ is the
maximum cardinality degree set by the user. This means that
the classification time is linear with respect to the number of
classes and the feature cardinality.

To assess the computational complexity of the training
stage, we recall that the number of possible binary partitions
of a set with C elements is 2C−1 − 1. Thus, the training
complexity is O(2CKn) +O(2CK log m̄).

IV. EXPERIMENTAL RESULTS

In this section, we provide empirical evidence of the effec-
tiveness of the proposed method. The experimental validation
is performed in two stages. We first compare the performance
of our algorithm with state-of-the-art time series classifiers.
This first stage is performed using various benchmark time
series datasets. Then, in the second part of the experimental
validation, we show an application of the proposed method
in a resource-constrained scenario. In particular, we focus on
the specific problem of Human Activity Recognition, showing
that the proposed method can be successfully employed for
applications with strong resource constraints.



4

The numerical experiments are carried out in Mat-
lab (whenever not differently specified), making use
of the same machine, namely a laptop equipped with
2GHz CPU and 8 GB of RAM. The code and all
the datasets are available at https://github.com/tomBradde/
Fast-Time-Series-Classification-via-Sparse-Centroids.

A. Performance over Benchmark Datasets

The purpose of this experimental section is to show how
the proposed method can be effectively applied to generic
time series classification problems in order to guarantee major
speed up in terms of computation time. This speed up comes
together with accuracy scores that are compatible with those
of state-of-the-art time series classifiers. The proposed sparse
centroid tree classifier is evaluated on a set of benchmark time
series classification datasets. All the datasets are extracted
from the UCI Machine Learning Repository [21], which is
considered as a standard benchmark database for time series
classification problems, see, e.g., [6], [7]. We refer the reader
to [21] for further information about the processes used to
generate the time series and the references to their original
sources. In Table I we report some information about the
datasets considered in the experimental evaluation, namely
the dimension of test/training set, the number of classes, and
the length of the time series observations involved in the
problem. For all these datasets, we used the same train/test
split proposed in the UCI repository.

As the datasets are provided in the form of raw time
series, we map the observation into an initial set of features;
this strategy is commonly employed in time series classi-
fication, see, e.g., [22], [23]. The features we exploit have
been selected according to the literature and include statistical
properties [24], spectral representations [25], self-similarities
measures [26], and other characteristics related to the time
series.

For each dataset, we trained 10 different sparse centroid
classifiers, applying a standard cross-validation scheme within
Algorithm 1; each classifier has been trained by making use
of a different random sample partitioning for performing the
cross-validation. The resulting classifiers have been evaluated
on the test samples and from the resulting performances we
derived the mean value of the accuracy of the classifiers and
the associated variance.

In order to validate the effectiveness of the proposed feature
selection strategy, we included in our comparison also a
decision tree classifier built according to Algorithm 2, making
use of the the assignation rule (3) instead of (4). This decision
tree classifier makes use of all the available features, without
performing any feature selection.

As for terms of comparison, we selected some of the
state-of-the-art algorithms analyzed in [7], namely Derivative
DTW [11], 1-Nearest Neighbor with SAX [13], Proxim-
ity Forest [27], BOSS [28], cBOSS [29], VSM [15], Fast
Shapelets [16], and Time Series Forest [30]. In addition, we
also considered some deep learning methods, namely Fully
Convolutional Neural Networks (FCN), Residual Networks
(ResNet) [31], and Time Convolutional Neural Networks

(Time-CNN) [32]; to test these classifiers, we used the public
code provided in the repository [33]. The numerical exper-
iments for the deep learning methods are carried out in
Tensorflow 2.0 making use of a machine equipped with a
Nvidia TITAN RTX GPU.

Table II reports the test accuracy results and the cumulative
time required by each classifier to perform the training and
testing stages. Some values in the table are missing because the
classifier training and testing procedures required more than
10 minutes to be completed. For each classifier, we report the
average accuracy reached over the completed experiments (i.e.
those that required less than 10 minutes to be completed).

The results show that the proposed classifier offers training
and classification times that are order of magnitudes better
(lower) than the one required by state-of-the-art methods, all
the while achieving competitive accuracy levels. Additionally,
we notice that the performance of the centroid tree classifier
built without performing feature selection is worse than that of
the proposed approach, both in terms of accuracy and of time
requirements; this confirms that the proposed sparsification
strategy may improve both time efficiency and accuracy.

B. Application to Human Activity Recognition

In this section, we experimentally show the applicability
of the sparse centroid tree to the specific problem of Human
Activity Recognition (HAR) based on sampled sensors data.
Since this task is usually required to be performed by portable
instrumentation with low computational capacity, the potential
solutions must take into account the strong technological
constraints imposed by the hardware [4], [34].

Furthermore, due to the increasing number of sensors
embedded in devices of common use, the problem is more
properly tackled by taking into account multivariate time series
data. When multivariate time series are considered, the ensuing
amount of data readily becomes difficult to handle, and often
dimensionality reduction is desirable. These characteristics
motivated us to test the proposed method in such application
scenario. We used the public dataset provided by Anguita
et al. in [35]. The dataset considers six different activities,
namely walking, walking upstairs walking downstairs, sitting,
standing, and laying. Each sample is represented by a feature
vector of dimension 561. The observations were split in a
training set of dimension 9309 and a test set of dimension
1030.

The sparse centroid tree is trained in 32 s and the mean
accuracy over the test samples is 87%. The per-class classifica-
tion performance is shown in Table III, where we indicate also
the number of required features. We highlight that the classifier
achieves 100% accuracy for the laying activity, requiring only
1 feature. The overall number of features that are required by
the sparse centroid tree is 45, while the mean classification
time over all the test samples is only 38 µs.

We also provide a performance comparison between the
proposed method and the most commonly employed classifiers
for human activity recognition, namely Naive Bayes [36],
K-nearest neighbour and Random Kitchen Sinks SVM [37].
Since the proposed sparse centroid tree performs simultaneous

https://github.com/tomBradde/Fast-Time-Series-Classification-via-Sparse-Centroids
https://github.com/tomBradde/Fast-Time-Series-Classification-via-Sparse-Centroids
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TABLE I
BENCHMARK DATASETS CONSIDERED IN THE EXPERIMENTAL EVALUATION.

Trace Synthetic
control UMD TwoPatterns CBF Meat Car ProximalPhalanx

AgeGroup Plane BME

Training Samples 100 300 36 1000 900 60 60 400 105 30
Test Samples 100 300 144 4000 30 60 60 205 105 150
Length 275 60 150 128 128 448 577 80 144 128
Classes 4 6 3 4 3 3 4 3 7 3

TABLE II
COMPARISON OF CLASSIFIERS OVER UCI DATASETS.

Trace Synthetic
Control UMD Two

Patterns CBF Meat Car
Proximal
Phalanx
AgeGroup

Plane BME Average
Accuracy

Sparse
Centroid tree

Time 1.1 s 2.8 s 0.68 s 7 s 5.6 s 0.7 s 1.3 s 1.9 s 1.2 s 0.2 s
Accuracy 98 % 98% 87% 90% 100% 94% 70% 83% 97% 97% 91.4%
Variance 3e-5 0 1e-3 1e-5 0 1.4e-4 6e-4 5e-4 1e-4 0

Centroid Tree Time 2.3 s 5.6 s 2 s 36 s 8.4 s 1.6 s 1.8 s 5.8 s 2.7 s 2 s
Accuracy 78% 97% 70% 84 % 94 % 83% 53% 80 % 90% 70% 79.9%

Derivative
DTW [11]

Time 72 s 31 s 26 s - – 58 s 101 s – 19 s 4 s
Accuracy 100% 98% 97% - – 95% 68% – 99% 98% 93.6%

Sax 1NN Time 74 s – 157 s - – 27 s 33 s 342 s 63s 5 s
Accuracy 99% – 97% - – 95% 72% 80% 99% 87% 89.9%

Proximity
Forest [27]

Time 105 s 35 s 57 s - 281 s 125 s 314 s 66 s 37 11 s
Accuracy 99% 99% 100% - 100% 100% 73% 84% 99% 100% 94.9%

BOSS [28] Time 40 s 13 s 20 s - 541 s 42 s 67 s 31 s 14 s 2 s
Accuracy 100% 96% 100% - 97% 100% 80% 80% 99% 87% 93.2%

cBOSS [29] Time 14 s 13 s 13 s 320 s 142 s 12 s 16 s 27 s 10 s 3 s
Accuracy 100% 95% 100% 99% 100% 100% 76 % 84 % 99% 76% 92.9%

SAX
VSM [15]

Time 72 s – 153 s - – 27 s 33 s 343 s 62 s 5 s
Accuracy 99% – 97% - – 95% 71% 80% 99% 87% 91.1%

Fast
Shapelets [16]

Time 45 s 24 s 27 s 300 s 111 s 52 s 120 s 10 s 14 s 3 s
Accuracy 100% 95% 93% 91% 97% 92% 66% 82% 97% 63% 87.6%

TSF [30] Time 3 s 5 s 3.7 s 28 s 11 s 4 s 4.2 s 5 s 2.9 s 1.6 s
Accuracy 100% 99% 97% 98% 99% 99% 73 % 85 % 99% 97% 94.6%

FCN [31] Time 117 s 251 s 248 s - 504 s 161 s 160 s 219 s 153 s 236 s
Accuracy 100% 98% 100% - 99% 72% 89% 83% 100% 83% 91.6%

ResNet [31] Time 184 s 184 s 362 s - 311 s 238 s 224 s 173 s 259 s 356 s
Accuracy 100% 99% 98% - 100% 98% 90% 82% 100% 100% 96.3%

Time-CNN [32] Time 79 s 168 s 68 s - 279 s 72 s 73 s 144 s 79 s 73 s
Accuracy 94% 98% 95% - 100% 91% 77% 80% 95% 95% 91.7%

TABLE III
CONFUSION MATRIX OF THE SPARSE CENTROID TREE OVER THE HUMAN

ACTIVITY RECOGNITION DATASET.

Walking.
22 feat.

Walking
Upstairs
33 feat.

Walking
Downstairs

33 feat.

Sitting
15 feat.

Standing
15 feat.

Laying
1 feat.

Walking 165 3 4 0 0 0
Walking
Upstairs 13 135 6 0 0 0

Walking
Downstairs 7 9 125 0 0 0

Sitting 0 0 0 132 39 7
Standing 2 0 0 43 146 0
Laying 0 0 0 0 0 194

feature selection and classification, to ensure a fair comparison
the other classifiers considered in the evaluation have been
trained and tested after a feature selection stage, which selects
a number of features comparable to the one required by
the sparse centroid tree. We tested various feature selection
methods, namely Generalized Fisher, [38], infinite feature
selection [39] and infinite latent feature selection [40]. The
performance of these classifiers combined with the different
feature selection methods are compared with our proposed
sparse centroid tree. Table IV reports the results associated

with these experiments. In this table, the term ”Automatic
Feature Selection” indicates the feature selection performed
by the sparse centroid tree. We observe that the classification
time of the proposed method is approximately one order
of magnitude lower than the one obtained with the nearest
neighbor and SVM classifiers. Instead, we observe that the
classification time of the naive Bayes classifier is about twice
the one of the proposed method, and it shows less or equal
accuracy when compared to the Sparse Centroid Tree.

V. CONCLUSIONS

In this work, we proposed a simple and fast classification
scheme based on sparse centroids. This method guarantees
high accuracy and exhibits a classification complexity which is
linear in both the number of classes and the number of features
retained by the sparse classifier. The proposed approach has
been applied to the problem of time series classification, and
experimentally compared with most of the state-of-the art
classifiers: experimental evidence testifies that the method may
be a superior option in application scenarios that demand fast
processing times and low computational power.
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TABLE IV
CLASSIFIER COMPARISON WITH VARIOUS FEATURE SELECTION METHODS.

1-Nearest
Neighbour

Random Kitchen
Sinks SVM

Naive
Bayes

Sparse
Centroid Tree

Sparse
Centroid [1] 93% 96% 87% –

Generalized
Fisher [38] 93% 95% 85% –

Infinite FS [39] 89% 95% 83% –
Infinite Latent FS [40] 93% 96% 85% –

Automatic
Feature Selection – – – 87%

Mean Classification time
on test samples 290 µs 400 µs 83 µs 38 µs

Training time – 240 s 8 s 32 s
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