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Hardy spaces on homogeneous trees

with flow measures

Federico Santagati1∗

Abstract

We consider a homogeneous tree endowed with a nondoubling flow measure µ of exponential
growth and a probabilistic Laplacian L self-adjoint with respect to µ. We prove that the
maximal characterization in terms of the heat and the Poisson semigroup of L and the Riesz
transform characterization of the atomic Hardy space introduced in a previous work fail.

1 Introduction

Let H1(Rn) be the Hardy space defined by

H1(Rn) = {f ∈ L1(Rn) : |∇∆−1/2f | ∈ L1(Rn)},

where ∇ denotes the standard Euclidean gradient and ∆ denotes the standard positive Euclidean
Laplacian. It is a well-known fact that H1(Rn) can be defined in several equivalent ways. Indeed,
a celebrated result of C. Fefferman and E.M. Stein [8, 20] states the equivalence between H1(Rn)
and the maximal Hardy spaces defined via the heat semigroup and the Poisson semigroup of the
Euclidean Laplacian. This result deeply depends on the doubling property of the Euclidean setting.
Moreover, R. Coifman proved in [4] that H1(Rn) admits an atomic characterization. Subsequently,
Coifman and G. Weiss [5] introduced an atomic Hardy space in the setting of spaces of homoge-
neous type; we refer to [10, 11, 22, 24] for various maximal characterizations of the Hardy space
in the context of such spaces. It is worth mentioning that, on Rn endowed with a nondoubling
measure of polynomial growth, X. Tolsa [21] introduced an atomic Hardy space and proved that it
can be characterized by a maximal operator as in the doubling setting. Furthermore, G. Mauceri
and S. Meda defined an atomic Hardy space in the context of a Gaussian measure and the Orn-
stein–Uhlenbeck operator in Rn and, in the one-dimensional case, a maximal characterization of
this space was proved in [16]. Many efforts have been made in order to study nondoubling (both
continuous and discrete) settings on which these characterizations fail. See for example [15, 18, 19]
for a contribution on a Lie group of exponential growth and on locally doubling manifolds and [3]
for similar results in the context of a homogeneous tree and the combinatorial Laplacian.
In [13] the authors define an atomic Hardy space on a tree endowed with a nondoubling, locally dou-
bling flow measure and they prove some classical results such as the duality between H1 and BMO
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and good interpolation properties. In this paper, we focus on the homogeneous tree Tq+1 = (V,E)
of order q + 1, i.e., a tree in which every vertex has exactly q + 1 neighbours. We consider the
metric measure space (V, d, µ) where d is the usual discrete distance on a graph and the measure µ
is the canonical flow measure on a homogeneous tree (see Section 2.3 for a precise definition). It is
worth recalling that (V, d, µ) is of exponential growth and does not satisfy the Cheeger isoperimetric
inequality (we refer to [13] Section 2).
Inspired by [12], in Section 2.3 we introduce a Laplacian L self-adjoint on L2(µ) that can be thought
of as the natural Laplacian in this setting. We define the heat semigroup (Ht)t>0 and the Poisson

semigroup (Pt)t>0 associated with L, given respectively by Ht = e−tL and Pt = e−t
√
L. It is a

natural task to investigate whether the Hardy spaces defined in terms of the heat semigroup and
the Poisson semigroup are equivalent to the atomic Hardy space H1

at(µ) defined in [13] or the equiv-
alent Hardy space defined in [2] (see Subsection 2.2 for its definition). We define the heat maximal
operator and the Poisson maximal operator as

Mhf = sup
t>0

|Htf |, (1)

MP f = sup
t>0

|Ptf |, (2)

respectively. The aim of the first part of this work is to establish that the spaces

H1
h(µ) = {f ∈ L1(µ) : Mhf ∈ L1(µ)}, ∥f∥H1

h
= ∥f∥1 + ∥Mhf∥1,

H1
P (µ) = {f ∈ L1(µ) : MP f ∈ L1(µ)}, ∥f∥H1

P
= ∥f∥1 + ∥MP f∥1,

do not coincide with the atomic Hardy spaces H1
at(µ) defined in [13] (see Section 2.2 for its precise

definition). The following theorem is one of the main results of this work. It states that, although
the inclusions H1

at(µ) ⊂ H1
h(µ), H

1
at(µ) ⊂ H1

P (µ) are valid, the maximal characterizations of the
atomic Hardy space fail in our setting.

Theorem 1.1. i) There exists a positive constant C such that

∥Mhf∥1 ≤ C∥f∥H1
at

∀f ∈ H1
at(µ);

ii) there exists a positive constant C such that

∥MP f∥1 ≤ C∥f∥H1
at

∀f ∈ H1
at(µ);

iii) there exists a function g ∈ H1
h(µ) ∩H1

P (µ) which does not belong to H1
at(µ).

It is possible to define the analogue of the Riesz transform in our setting, which we shall denote
by R (see Section 5 for its precise definition). We introduce the Riesz Hardy space H1

R(µ) defined
by

H1
R(µ) = {f ∈ L1(µ) : Rf ∈ L1(µ)}, (3)

which we endow with the natural norm ∥f∥H1
R
= ∥f∥1 + ∥Rf∥1.

The following theorem establishes that the Riesz characterization of the atomic Hardy space
fails.
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Theorem 1.2. i) There exists a positive constant C such that

∥Rf∥1 ≤ C∥f∥H1
at

∀f ∈ H1
at(µ);

ii) there exists a function g ∈ H1
R(µ) which does not belong to H1

at(µ).

We point out that the function g in the above statement coincides with the function which
appears in the statement of Theorem 1.1 iii).

This paper is organized as follows. In Section 2, we introduce the notation, preliminary notions
and we provide useful estimates concerning the heat kernel and its gradient. Section 3 is devoted
to the proof of Theorem 1.1 i) and ii), while in Section 4 we construct the function g of Theorem
1.1 iii). Finally, in Section 5, we prove Theorem 1.2.

Along the paper, C denotes a positive constant which may vary from line to line. However, when
the exact values are unimportant for us, we use the standard notation f1(x) ≲ f2(x) to indicate
that there exists a positive constant C, independent of the variable x but possibly depending on
some involved parameters, such that f1(x) ≤ Cf2(x) for every x. When both f1(x) ≲ f2(x) and
f2(x) ≲ f1(x) are valid, we will write f1(x) ≈ f2(x).

2 Setting

2.1 Homogeneous trees and canonical flow

Let T be an unoriented tree, i.e., an unoriented connected graph with no cycles. We denote
by V the set of vertices and by E the set of edges of T and we write x ∼ y when (x, y) ∈ E. If
x ∼ y we say that x is a neighbour of y. Consider a sequence of vertices {xj} such that xj ∼ xj+1.
This naturally identifies an associated sequence of edges {ej}, where ej is the edge connecting xj to
xj+1. We say that {xj} is a path if {ej} does not contain repeated edges. If the path γ = {xj}nj=0

is finite, x0 and xn are called the endpoints of γ. The discrete distance d(x, y) counts the minimum
number of edges one has to cross while moving from x to y along a path. In a tree, for every couple
of vertices (x, y), there exists a unique path (which we call geodesic) realizing such a distance. In
this case, we denote by [x, y] the geodesic connecting x to y. We denote by Γ the family of geodesics
and by Sr(x) and Br(x) the metric sphere and ball of center x ∈ V and radius r ≥ 0 respectively.
Let Tq+1 denote the homogeneous tree of order q + 1, namely, a tree such that each vertex has
exactly q+1 neighbours, where q ∈ N \ {0}. Hereinafter, we assume T = Tq+1 = (V,E) with q ≥ 2.

We fix a distinguished point o ∈ V which we call the origin of the tree. When x ∈ V we denote
the distance between x and o by |x|. We write Γ0 for the family of half-infinite geodesics having an
endpoint in the origin, Γ0 = {γ = {xj}∞j=0 ∈ Γ, x0 = o}. The boundary of the tree ∂T is classically
identified with the set of labels corresponding to elements of Γ0,

∂T = {ζγ : γ ∈ Γ0}.

It is standard to denote a half-infinite geodesic starting at the vertex x and ending at ξ ∈ ∂T by
[x, ξ). A point ξ0 ∈ ∂T can be chosen to play the role of root of the tree. The role of such a point
is to induce a partial order relation on V . We say that x ≥ y if and only if x ∈ [y, ξ0). We define
the projection of x on the half-infinite geodesic [o, ξ0) as

Πξ0(x) = argminy∈[o,ξ0) d(x, y),
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and the level of x as
ℓ(x) = d(o,Πξ0(x))− d(Πξ0(x), x).

The fixed point ξ0 ∈ ∂T is called mythical ancestor. Note that x ≥ y if and only if ℓ(x) − ℓ(y) =
d(x, y).
The predecessor of x is the unique vertex p(x) such that x ∼ p(x) and ℓ(p(x)) = ℓ(x) + 1, while
y is a son of x if it belongs to the set s(x) = {y ∼ x : ℓ(y) = ℓ(x) − 1}. More generally, for any
integer m ≥ 2 we denote by pm the composition p ◦ pm−1, where p1 = p. We define the confluent of
x, y ∈ V as the point

x ∧ y = argmax{ℓ(z) : z ∈ [x, y]} = argmin{ℓ(z) : z ≥ x, z ≥ y}.

We denote by C(V ) the set of complex-valued functions on V . If A ⊂ V we write |A| to denote
the cardinality of A. We endow V with the measure µ defined as

µ(A) =
∑
x∈A

qℓ(x),

where A ⊂ V. We recall that µ is a flow measure in the sense that

µ(x) = qℓ(x) = qqℓ(x)−1 =
∑

y∈s(x)

µ(y) ∀x ∈ V,

(see [13] for more information about flows). The measure µ was introduced by W. Hebisch and T.
Steger in [12] and it represents the canonical flow measure on T, since it equally distributes the
mass of a vertex among its sons.

For p ∈ [1,∞) we define Lp(µ) =
{
f ∈ C(V ) : ∥f∥p =

(∑
x∈V |f(x)|p µ(x)

)1/p
< +∞

}
. We

also define L∞(µ) = {f ∈ C(V ) : ∥f∥∞ = supx∈V |f(x)| < +∞} and denote by # the counting
measure on V . Finally, if f ∈ C(V ) we define the gradient of f as

∇f(x) = f(x)− f(p(x)) ∀x ∈ V .

2.2 Atomic Hardy space

In [13] the authors develop a Calderón–Zygmund theory with respect to locally doubling flow
measures and a family of sets F which are called admissible trapezoids. Hereinafter, we say that a
set R belongs to F if either R = {y} for some y ∈ V or there exist a vertex yR and two positive

integers h′, h′′, such that R = {y ≤ yR : h′ ≤ d(y, yR) < h′′} = Rh′′

h′ (yR) and 2 ≤ h′′

h′ ≤ 12.

It is worth noticing that µ(Rh′′

h′ (yR)) = qℓ(yR)(h′′ − h′). We introduce the atomic Hardy space
H1

at(µ) and its dual (we refer to [13] and [1] for more details). A function a is a (1,∞)-atom if the
following hold:

(i) a is supported in a set R ∈ F ;

(ii) ∥a∥∞ ≤ 1
µ(R) ;

(iii)
∑

x∈R a(x)µ(x) = 0.
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The atomic Hardy space is defined as

H1
at(µ) =

{
f ∈ L1(µ) : f =

∑
j

λjaj , {λj}j ∈ ℓ1(N), aj (1,∞)− atom

}
,

endowed with the norm ∥f∥H1
at

= inf{
∑

j |λj | : f =
∑

j λjaj , aj (1,∞)− atom}.
The space of functions of bounded mean oscillation is

BMO(µ) =

{
f ∈ C(V ) : sup

R∈F

1

µ(R)

∑
x∈R

|f(x)− fR|µ(x) < +∞
}
,

where fR denotes the average of f on R.
The dual ofH1

at(µ) can be identified with BMO(µ), see [13, Th. 4.10]. In particular, if f ∈ BMO(µ)
and a is a (1,∞)-atom, then ∣∣∣∣ ∑

x∈V

f(x)a(x)µ(x)

∣∣∣∣ ≲ ∥f∥BMO∥a∥H1
at
, (4)

where ∥f∥BMO = supR∈F
1

µ(R)

∑
x∈R |f(x)− fR|µ(x).

2.3 Laplacians and Heat kernel

Let ∆ denote the combinatorial Laplacian, namely the operator defined on every f ∈ C(V ) by

∆f(x) =
1

q + 1

∑
y∼x

(f(x)− f(y)) ∀x ∈ V.

The Laplacian ∆ is bounded on Lp(#) for any p ∈ [1,∞]. Moreover, the L2(#) spectrum of ∆

is [b, 2 − b], where b =
(
√
q−1)2

q+1 (see [6]). We refer to [9] for more information about ∆ and the
spherical analysis on T .

Consider the operator A : C(V ) → C(V ) defined on f ∈ C(V ) by

Af(x) =
1

2

(
1

q

∑
y∈s(x)

f(y) + f(p(x))

)
∀x ∈ V. (5)

Observe that we can associate to A a probabilistic transition matrix, in the sense that

Af(x) =
∑
y∈V

A(x, y)f(y) and
∑
y∈V

A(x, y) = 1, (6)

where A(x, y) =


1
2q y ∈ s(x),
1
2 y = p(x),

0 otherwise.

We define the operator

L = I −A, (7)
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which is the natural Laplacian in our setting. By (6), it is clear that L is a Laplacian from the
probabilistic viewpoint (for more information about random walks and Laplacians on graphs we
refer to [23]). It is also easy to see that L is self-adjoint on L2(µ). Such operator was originally
introduced in [12]. It is worth noticing that

L =
1

1− b
µ−1/2

(
∆− bI

)
µ1/2. (8)

Using the fact that the pointwise multiplication by µ1/2 is a surjective isometry between L2(#) and
L2(µ) and the pointwise multiplication by µ−1/2 is its inverse, the previous identity implies that
L2(µ)-spectrum of L is [0,2].
Next, we shall define the heat kernel associated to L and provide some useful estimates. We denote
by Ht the operator e−tL, t > 0. Its integral kernel with respect to the measure µ is the function
Ht(·, ·) such that for f ∈ C(V )

Htf(x) =
∑
y∈V

Ht(x, y)f(y)µ(y) ∀x ∈ V.

By (8) we can explicitly write Ht in terms of the heat kernel associated to ∆ on T , which we
shall denote by ht. By the Spectral Theorem

Ht(x, y) = e
bt

1−b q(−ℓ(y)−ℓ(x))/2h t
1−b

(x, y) ∀t > 0, x, y ∈ V. (9)

Notice that, since A is a transition matrix∑
y∈V

Ht(x, y)µ(y) = 1, ∀t ∈ R+, x ∈ V ; (10)

moreover, since ht(x, y) = ht(y, x) we deduce that

Ht(x, y) = Ht(y, x) ∀t > 0, x, y ∈ V.

In the following, we denote by hZ
t the heat kernel associated to the combinatorial Laplacian on

Z and, with a slight abuse of notation, we denote by hZ
t (j) the function hZ

t (j, 0).
In the next proposition, we collect some results of M. Cowling, S. Meda, and A.G. Setti (see [6,
Lemma 2.4., Prop. 2.5]) which provide an explicit expression and a sharp approximation of ht that
will be useful in the sequel.

Proposition 2.1 ([6]). The following hold for all t > 0, x ∈ V and j ∈ N :

i) ht(x, y) =
2e−bt

(1− b)t
q−d(x,y)/2

∞∑
k=0

q−k(d(x, y) + 2k + 1)hZ
t(1−b)(d(x, y) + 2k + 1),

ii) hZ
t (j) ≈

e−t+
√

j2+t2

(1 + j2 + t2)1/4

(
t

j +
√

j2 + t2

)j

,

iii) hZ
t (j)− hZ

t (j + 2) =
2(j + 1)

t
hZ
t (j + 1).
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Using i) and (9), we easily get

Ht(x, y) = q−ℓ(x)/2−ℓ(y)/2ebt/(1−b)ht/(1−b)(x, y) = Q(x, y)Jt(x, y),

where

Q(x, y) = q[−ℓ(x)/2−ℓ(y)−d(x,y)]/2 (11)

and

Jt(x, y) =
2

t

∞∑
k=0

q−k(d(x, y) + 2k + 1)hZ
t (d(x, y) + 1). (12)

Then, by means of i), we obtain the following estimate for Ht

Ht(x, y) ≈
Q(x, y)

t
(d(x, y) + 1)hZ

t (d(x, y) + 1). (13)

We now introduce some notation. For every n ∈ N we define the function sn : R+ → R by

sn(t) = (n+ 1)

e−te
√

(n+1)2+t2
(

t

n+1+
√

(n+1)2+t2

)n+1

t(1 + (n+ 1)2 + t2)1/4
∀t > 0. (14)

Observe that by (13) and Proposition 2.1 ii)

Ht(x, y) ≈ Q(x, y)sd(x,y)(t). (15)

Let φ : R+ → R be the function defined by

φ(t) = −t+
√

1 + t2 + log t− log(1 +
√
1 + t2) ∀t > 0. (16)

We have that

sn(t(n+ 1)) =
e(n+1)φ(t)

t(1 + (n+ 1)2 + t2(n+ 1)2)1/4
.

It is easy to verify that φ is negative, increasing and

φ(t) ≤ 1

2t
− log

(
1 +

1

t

)
∀t > 0. (17)

We now state a technical lemma involving the function sn defined in (14).

Lemma 2.2. The following hold

i) supt>0 sn(t) ≲
1

(n+1)2 .

ii) supt>0
n
t sn(t) ≲

1
(n+1)3 .

7



Proof. We distinguish three different cases, namely, we estimate the supremum of the above func-
tions when t ≥ (n+ 1)2, n+ 1 ≤ t < (n+ 1)2 and 0 < t < n+ 1.
Case 1. Observe that

sup
t≥(n+1)2

sn(t) = sup
t>n+1

sn(t(n+ 1)) = sup
t>n+1

e(n+1)φ(t)

t[1 + (n+ 1)2(1 + t2)]1/4
.

Since φ is negative on R+ it follows

sup
t≥(n+1)2

sn(t) ≤
1

(n+ 1)2
and sup

t≥(n+1)2

n

t
sn(t) ≤

1

(n+ 1)3
.

Case 2. When t ∈ [n+ 1, (n+ 1)2) we can write t = (n+ 1)α with α ∈ [1, n+ 1) and

sup
n+1≤t<(n+1)2

sn(t) = sup
1≤α<n+1

e(n+1)φ(α)

α[1 + (n+ 1)2(1 + α2)]1/4
.

By using (17) and the fact that (1 + 1/α)α ≥ 2 for all α ≥ 1, we get

e(n+1)φ(α)

α[1 + (n+ 1)2(1 + α2)]1/4
≤

(
e1/2

(1+1/α)α

)(n+1)/α

α3/2(n+ 1)1/2
≤

(
e1/2

2

)(n+1)/α

α3/2(n+ 1)1/2
.

Next, we use that

(
e1/2

2

)(n+1)/α

≲ α3

(n+1)3 to obtain

sup
1≤α<n+1

e(n+1)φ(α)

α[1 + (n+ 1)2(1 + α2)]1/4
≲ sup

1≤α<n+1

α3/2

(n+ 1)7/2
≤ 1

(n+ 1)2

and

sup
1≤α<n+1

n

(n+ 1)α

e(n+1)φ(α)

α[1 + (n+ 1)2(1 + α2)]1/4
≲ sup

1≤α<n+1

α1/2

(n+ 1)7/2
≤ 1

(n+ 1)3
.

Case 3. In this last case t ∈ (0, n+1) thus we can write t = (n+1)α with α ∈ (0, 1). By using the
fact that φ is increasing and negative, we get

sn(α(n+ 1)) =
e(n+1)φ(α)

α[1 + (n+ 1)2(1 + α2)]1/4
≤ enφ(α) e

φ(α)

α

≲ enφ(1) ≲
1

(n+ 1)2
,

where we have used that eφ(α)

α ≲ 1 when α ∈ (0, 1). If n = 0, then ii) follows trivially. Assume
n ≥ 1 and by repeating the same argument

n

(n+ 1)α
sn(α(n+ 1)) ≲ e(n−1)φ(α) e

2φ(α)

α2
≲

1

(n+ 1)3
.

This concludes the proof.
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Combining the above lemma with (15), we obtain that

sup
t>0

Ht(x, y) ≲
Q(x, y)

(d(x, y) + 1)2
∀x, y ∈ V, (18)

and

sup
t>0

d(x, y)

t
Ht(x, y) ≲

Q(x, y)

(d(x, y) + 1)3
∀x, y ∈ V. (19)

In the next results we recall some pointwise and integral estimates concerning the gradient of the
heat kernel which were proved in [14].

Lemma 2.3. Assume x ̸≤ y where x, y ∈ V . Then,

i) |Ht(x, y)−Ht(x, p(y))| ≲ max

{
d(x, y)Ht(x, p(y))

t
,

Ht(x, y)

d(x, y) + 1

}
,

ii) sup
t>0

|Ht(x, y)−Ht(x, p(y))| ≲
Q(x, y)

(d(x, y) + 1)3
.

Proof. i) is proved in [14, Lemma 3.2]. Combining i) with (19), we obtain ii).

Lemma 2.4. The following estimates hold

i)

∫ ∞

1

t−1/2|Ht(x, y)−Ht(p(x), y)| dt ≲
Q(x, y)

(d(x, y) + 1)2
∀y ̸≤ x,

ii)

∫ ∞

1

t−1/2 Ht(x, y)

(d(x, y) + 1)
dt ≲

Q(x, y)

(d(x, y) + 1)2
∀x, y ∈ V .

Proof. We refer to [14, Lemmas 3.4, 3.5] for a detailed proof.

We conclude this section with a technical lemma that provides an algorithm that we will apply
to integrate a certain class of functions.

Lemma 2.5. Let fx,n be the function in C(V ) defined by

fx,n(y) =
q−(ℓ(x)+d(x,y))/2

(d(x, y) + n)2
y ∈ V,

for some fixed x ∈ V and n ∈ N \ {0}. Then, for any m ∈ N \ {0}∑
y∈Sm(x)

qℓ(y)/2fx,n(y) =
1

(m+ n)2

(
2 + (m− 1)

q − 1

q

)
.

Proof. We introduce the family of sets {Ej
m}mj=1, Fm defined by

Ej
m = Sm(x) ∩ {y : ℓ(y) = ℓ(x) + 2j −m} = Sm(x) ∩ {y ≤ pj(x), y ̸≤ pj−1(x)}, j = 1, ...,m,

Fm = Sm(x) ∩ {y : ℓ(y) = ℓ(x)−m} = Sm(x) ∩ {y : y ≤ x}.

9



Clearly

{
{Ej

m}mj=1, Fm

}
is a partition of Sm(x). Moreover, |Ej

m| = (q − 1)qm−j−1 if j < m,

|Em
m | = 1 and |Fm| = qm. Thus,

∑
y∈Sm(x)

qℓ(y)/2fx,n(y) =

m∑
j=1

∑
y∈Ej

m

q(ℓ(x)+2j−m)/2fx,n(y) +
∑
y∈Fm

q(ℓ(x)−m)/2fx,n(y)

=
1

(m+ n)2

(m−1∑
j=1

q − 1

q
+ 2

)
.

Remark 2.6. The above proof illustrates the algorithm on which the computation of most of
the sums throughout this paper relies. Unfortunately, although the functions we will integrate are
usually of the form fx,n, the domain of integration might not coincide with the whole sphere Sm(x).
Thus, in each specific case, we will adapt the above idea to the particular geometry of the domain.

3 Proof of Theorem 1.1 i)-ii)

In this section, we shall prove that the L1-norm of the heat maximal operator Mh defined in
(1) is uniformly bounded on atoms and deduce that H1

at(µ) ⊂ H1
h(µ). By using the well-known

subordination formula for the Poisson semigroup, a standard argument shows that H1
h(µ) ⊂ H1

P (µ).
Thus, Theorem 1.1 ii) will follow immediately by Theorem 1.1 i).
We preliminarily need to show that Mh is of weak type (1, 1). It is worth recalling that the weak
type (1,1) boundedness of the heat maximal operator associated to the combinatorial Laplacian ∆
is a well-known fact proved by M. Pagliacci and M. Picardello in [17].
Before establishing the abovementioned properties, we define the local maximal heat operator by

Mlocf(x) = sup
0<t<1

|Htf(x)| ∀f ∈ C(V ), x ∈ V .

Proposition 3.1. The operator Mloc is bounded on L1(µ).

Proof. Let f ∈ C(V ). By (15)

∥Mlocf∥1 ≤
∑
y∈V

|f(y)|
∑
x∈V

sup
0<t<1

Ht(x, y)µ(x)µ(y)

≲
∑
y∈V

|f(y)|µ(y)
∑
x∈V

sup
0<t<1

Q(x, y)sd(x,y)(t)µ(x).

It is easy to see that the term inside the second sum can be dominated as follows

Q(x, y)sd(x,y)(t)µ(x) ≲ q
−d(x,y)−ℓ(y)+ℓ(x)

2

(
et

d(x, y) + 1

)d(x,y)

≤ q
−d(x,y)−ℓ(y)+ℓ(x)

2

(
e

d(x, y) + 1

)d(x,y)

0 < t < 1.

10



Recalling that ℓ(x)− ℓ(y) ≤ d(x, y), it suffices to notice that

∑
x∈V

Q(x, y) sup
0<t<1

sd(x,y)(t)µ(x) ≲
∑
x∈V

(
e

d(x, y) + 1

)d(x,y)

=

∞∑
d=0

(
qe

d+ 1

)d

< +∞.

Proposition 3.2. The operator Mh is of weak type (1,1) and bounded on Lp(µ) for all p ∈ (1,∞].

Proof. It suffices to prove the weak type (1,1) boundedness of Mh and then use interpolation.
Pick f ∈ L1(µ) and assume without loss of generality f ≥ 0. Then, for every t > 0 we have

1

2t

∫ 2t

0

Hzf(x) dz ≥ 1

2t

∫ 2t

t

Hzf(x) dz =
1

2t

∑
y∈V

f(y)

∫ 2t

t

Hz(x, y) dzµ(y)

≳
1

2t

∑
y∈V

f(y)

∫ 2t

t

Q(x, y)sd(z) dzµ(y),

where d = d(x, y). Recall that sd(z) = (d+ 1) e(d+1)φ(z/(d+1))

z[1+(d+1)2+z2]1/4
where φ is defined in (16), and

R+ ∋ z 7→ e(d+1)φ(z/(d+1)) is increasing,

R+ ∋ z 7→ 1

z[1 + (d+ 1)2 + z2]1/4
is decreasing,

thus

1

2t

∫ 2t

0

Hzf(x) dz ≳
∑
y∈V

f(y)Q(x, y)
(d+ 1)e(d+1)φ(t/(d+1))

2t[1 + (d+ 1)2 + (2t)2]1/4
µ(y)

≳
∑
y∈V

f(y)Ht(x, y)µ(y) = Htf(x), (20)

where in the last line we have used (15). Observe that, by (10), (Ht)t is a strongly measurable
semigroup which satisfies the contraction property, namely, if f ∈ L1(µ)

∥Htf∥1 ≤
∑
x∈V

∑
y∈V

|f(y)|Ht(x, y)µ(y)µ(x) =
∑
y∈V

|f(y)|
∑
x∈V

Ht(x, y) µ(x) µ(y) = ∥f∥1.

Thus, by the Hopf-Dunford-Schwartz Theorem (see [7]), the ergodic operator associated to the heat
semigroup is of weak type (1,1). We conclude passing to the supremum in (20).

Proposition 3.3. There exists a positive constant C > 0 such that ∥Mha∥1 ≤ C for any (1,∞)-
atom a.

Proof. Let a be a (1,∞)-atom. If F ∋ R = Rh′′

h′ (yR) is the support of a, then we define its
enlargement R∗ = {x ∈ V : d(x,R) ≤ h′}. By the Cauchy-Schwarz inequality and the L2(µ)-
boundedness of Mh

∥Mha∥L1(R∗) ≤ ∥Mha∥2µ(R∗)1/2 ≤ C ′∥Mh∥2→2

(
µ(R∗)

µ(R)

)1/2

≤ C,
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where we have used the fact that µ(R∗) ≲ µ(R), see [13].
We now split (R∗)c in two regions, namely,

Γ1 = {x ∈ (R∗)c : x ≤ yR},
Γ2 = (R∗)c \ Γ1 = {x : x ̸≤ yR}.

We start with ∑
x∈Γ1

Mha(x)µ(x) ≲
∑
x∈Γ1

sup
t>0

∑
y∈R

Q(x, y)sd(x,y)(t)|a(y)|µ(y)µ(x).

By exploiting (18) and the size condition of the atom, we get∑
x∈Γ1

Mha(x)µ(x) ≲
∑
x∈Γ1

∑
y∈R

q−ℓ(x)/2+ℓ(y)/2−d(x,y)/2

(d(x, y) + 1)2
1

µ(R)
µ(x).

If x ∈ Γ1, then

1

µ(R)

∑
y∈R

q−ℓ(x)/2+ℓ(y)/2−d(x,y)/2

(d(x, y) + 1)2
=

ℓ(yR)−h′∑
l=ℓ(yR)−h′′+1

1

µ(R)

∑
y∈R∩{ℓ(y)=l}

q−ℓ(x)/2+ℓ(y)/2−d(x,y)/2

(d(x, y) + 1)2
.

We briefly explain how to compute the above sum. Fix x ∈ Γ1 and an integer l ∈ [ℓ(yR) − h′′ +
1, ℓ(yR)− h′]. Then, there exist
• one vertex yl ≥ x in R at level ℓ(yl) = l. In this case d(x, yl) = ℓ(yl)− ℓ(x);
• q − 1 vertices which lie at the same level as yl which belong to Ul,1 = {y : ℓ(y) = ℓ(yl), y ≤
p(yl), y ̸= yl)}. In this case, for any y ∈ Ul,1, d(y, x) = d(yl, x) + 2;
• (q − 1)q vertices which lie at the same level as yl which belong to Ul,2 = {y : ℓ(y) = ℓ(yl), y ≤
p2(yl), y ̸≤ p(yl)}. In this case, for any y ∈ Ul,2, d(y, x) = d(yl, x) + 4;
...
• (q−1)qd(yl,yR)−1 vertices which lie at the same level as yl which belong to Ul,d(yl,yR) = {y : ℓ(y) =

ℓ(yl), y ≤ yR, y ̸≤ pd(yl,yR)−1(yl)}. In this case, for any y ∈ Ul,d(yl,yR), d(y, x) = d(yl, x)+2d(yl, yR).
We can rewrite the previous sum as

∑
y∈R∩{ℓ(y)=l}

q−ℓ(x)/2+ℓ(y)/2−d(x,y)/2

(d(x, y) + 1)2
= 1 · 1

(d(x, yl) + 1)2
+

d(yl,yR)∑
j=1

(q − 1)qj−1 · q
(d(yl,x)−d(yl,x)−2j)/2

(d(x, yl) + 2j + 1)2

= 1 · 1

(d(x, yl) + 1)2
+

d(yl,yR)∑
j=1

(q − 1)q−1 · 1

(d(x, yl) + 2j + 1)2

≲
h′′ + h′

(d(x, yR)− h′′)2
,

since d(x, yl) = d(x, yR) − d(yl, yR) ≥ d(x, yR) − h′′. Summing up over the h′′ − h′ level which
intersects R, we get

1

µ(R)

∑
y∈R

q−ℓ(x)/2+ℓ(y)/2−d(x,y)/2

(d(x, y) + 1)2
≲

h′′ − h′

qℓ(yR)(h′′ − h′)
· h′′ + h′

(d(x, yR)− h′′)2
≲

h′

qℓ(yR)(d(x, yR)− h′′)2
.
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We conclude that∑
x∈Γ1

1

qℓ(yR)

h′

(d(x, yR)− h′′)2
µ(x) =

∑
x∈Γ1

qℓ(yR)−d(x,yR)

qℓ(yR)

h′

(d(x, yR)− h′′)2

≤
∑
j≥h′

h′

j2
≲ 1.

Now we shall integrate on Γ2. In this case we need to use the cancellation condition of the atom.
It is worth noticing that the function R ∋ y 7→ Ht(x, y) with x ∈ Γ2 fixed, is radial (namely,

it depends only on d(x, y) or equivalently, in this particular case, it depends only on ℓ(y)). Let yL

denote a vertex of maximum level in R. We have d(x, yL) = d(x, yR) + h′ for any x ∈ Γ2. Given
a vertex y ∈ R, let y denote the predecessor of y of maximum level in R. An easy application of
Lemma 2.3 and the fact that ℓ(pj(y)) + d(x, pj(y)) = ℓ(yR) + d(x, yR) for every 1 ≤ j ≤ d(y, y),
x ∈ Γ2 and y ∈ R, yield

sup
t>0

|Ht(x, y)−Ht(x, y
L)| ≤

d(y,y)∑
j=0

sup
t>0

|Ht(x, p
j(y))−Ht(x, p

j+1(y))|

≲
d(y,y)∑
j=0

q−(ℓ(x)+ℓ(pj(y))+d(x,pj(y)))/2

(d(x, pj(y)) + 1)3

≤
d(y,y)∑
j=0

q−(ℓ(x)+ℓ(pj(y))+d(x,pj(y)))/2

(d(x, yR) + h′)3

≤ (h′′ − h′)q−(ℓ(x)+ℓ(yR)+d(x,yR))/2

(d(x, yR) + h′)3
, (21)

where in the second line we have used Lemma 2.3 ii) and p0(y) = y. By the cancellation and the
size condition of the atom and (21)

sup
t>0

∣∣∣∣∑
y∈R

Ht(x, y)a(y)µ(y)

∣∣∣∣ = sup
t>0

∣∣∣∣∑
y∈R

(Ht(x, y)−Ht(x, y
L))a(y)µ(y)

∣∣∣∣
≤

∑
y∈R

sup
t>0

|Ht(x, y)−Ht(x, y
L)| µ(y)

µ(R)
≲

(h′′ − h′)q−(ℓ(x)+ℓ(yR)+d(x,yR))/2

(d(x, yR) + h′)3
.

It follows that

∥Mha∥L1(Γ2) =
∑
x∈Γ2

qℓ(x) sup
t>0

∣∣∣∣∣∑
y∈R

Ht(x, y)a(y)µ(y)

∣∣∣∣
=

∑
x∈Γ2

qℓ(x) sup
t>0

∣∣∣∣∣∑
y∈R

(
Ht(x, y)−Ht(x, y

L)

)
a(y)µ(y)

∣∣∣∣
≲

∑
x∈Γ2

qℓ(x)/2−ℓ(yR)/2−d(x,yR)/2 (h′′ − h′)

(d(x, yR) + h′)3
.
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We can integrate over the intersection of the spheres Sm(yR) and Γ2 for m ≥ 1. Arguing as in
Lemma 2.5 we get

∑
x∈Γ2∩Sm(yR)

qℓ(x) sup
t>0

∣∣∣∣∣∑
y∈R

Ht(x, y)a(y)µ(y)

∣∣∣∣
≲

(h′′ − h′)q−ℓ(yR)/2−m/2

(m+ h′)3

[
(q − 1)

m−1∑
j=1

(
qm−(j+1)q(ℓ(yR)+2j−m)/2

)
+ q(m+ℓ(yR))/2

]
≲

(h′′ − h′)m

(m+ h′)3
≤ (h′′ − h′)

(m+ h′)2
.

Summing up over m ≥ 1, we obtain

∞∑
m=1

∑
x∈Γ2∩Sm(yR)

qℓ(x) sup
t>0

∣∣∣∣∣∑
y∈R

Ht(x, y)a(y)µ(y)

∣∣∣∣ ≲ ∞∑
m=1

(h′′ − h′)

(m+ h′)2
≲ 1.

This concludes the proof.

Using the weak type (1,1) boundedness of Mh, it is easy to prove that the uniform boundedness
of ∥Mha∥1 where a ranges over (1,∞)-atoms, implies the boundedness of Mh from H1

at(µ) to
L1(µ). Indeed, the following can be proved by a standard argument.

Lemma 3.4. Let K : H1
at(µ) → L1(µ) be a positive sublinear operator, i.e., Kf ≥ 0, K(αf) =

|α|K(f) and

K(f + g)(x) ≤ K(f)(x) +K(g)(x), ∀x ∈ V,

where α ∈ C, f, g ∈ H1
at(µ). Suppose that there exists a positive constant C such that

∥Ka∥1 ≤ C,

for all (1,∞)-atoms a. If K is of weak type (1,1), then

∥Kf∥1 ≲ ∥f∥H1
at

∀f ∈ H1
at(µ).

Theorem 1.1 i) now follows combining Proposition 3.3 with Lemma 3.4.
We end this section with the proof of Theorem 1.1 ii). The kernel Pt(·, ·) of the Poisson semigroup
(Pt)t is given by the following well-known subordination formula

Pt(·, ·) = t

∫ ∞

0

(4πz)−1/2e−t2/(4z)Hz(·, ·)
dz

z
.

We recall that the Poisson maximal operator MP is defined by (2). By a change of variables and
an application of Fubini-Tonelli’s Theorem, it is easily seen that MP f ≤ Mhf for any f ∈ C(V ),
thus H1

h(µ) ⊂ H1
P (µ) and Theorem 1.1 ii) is proved.
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4 Proof of Theorem 1.1 iii)

In this section we introduce a sequence of functions {gn}n and we provide estimates of their
norms in H1

at(µ) and H1
h(µ). In particular, we shall obtain that ∥·∥H1

h
and ∥·∥H1

at
are not equivalent

norms. By means of the abovementioned estimates, we construct a function g which belongs to
H1

h(µ) but which does not belong to H1
at(µ). Exploiting the inclusion H1

h(µ) ⊂ H1
P (µ), we will

obtain also that g ∈ H1
P (µ).

We introduce a numeration on the set of vertices of level 0 as follows. For all n ≥ 2 if ℓ(x) = 0,
x ≤ pn(o) and x ̸≤ pn−1(o) we assign to x a unique label xi with i ∈ [qn−1, qn − 1]. If x ≤ p(o),
then we define x0 = o and the remaining q − 1 vertices xi with i = 1, ..., q − 1.
Define

gn(x) = δxn(x)− δo(x) ∀n ≥ 2. (22)

Since gn is supported in {xn}∪{o} and has zero average for every n ≥ 2, it follows that gn ∈ H1
at(µ).

In order to estimate ∥gn∥H1
at

from below, we shall construct a function f ∈ BMO(µ) and apply
(4). Consider the function f : V → R defined as follows

f(x) =

{
n log q if x ≤ pn(o), x ̸≤ pn−1(o), and n ≥ 2,

log q if x ≤ p1(o).
(23)

Proposition 4.1. The function f defined by (23) belongs to BMO(µ).

Proof. It is easy to see that f is constant on every admissible trapezoid with root not in [p2(o), ξ0).
Hence, to prove that f ∈ BMO(µ) we have to control the average of f on an admissible trapezoid
R with root in [p2(o), ξ0). We claim that it suffices to prove the uniform boundedness of

1

µ(R)

∑
x∈R

|f(x)− CR|µ(x),

where CR is a suitable constant depending only on R. Indeed, for any y ∈ R

|f(y)− fR| ≤ |f(y)− CR|+ |CR − fR| ≤ |f(y)− CR|+
1

µ(R)

∑
x∈R

|f(x)− CR| µ(x),

and it follows

1

µ(R)

∑
y∈R

|f(y)− fR|µ(y) ≤
2

µ(R)

∑
y∈R

|f(y)− CR|µ(y),

and the last inequality proves the claim.
Next, we distinguish two cases.
Case 1. Let R = Rh′′

h′ (p(n)(o)) with n ≥ h′′. We shall estimate from above

1

µ(R)

∑
x∈R

|f(x)− n log q|µ(x).
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Using the definition of f , it is convenient to compute the above sum on each level. Indeed, fix a
positive integer l ∈ [n− h′′ + 1, n− h′]. Then,

1

µ(R)

∑
x∈R∩ℓ(x)=l

|f(x)− n log q|µ(x)

=
ql

µ(R)

[(
(q − 1)

n∑
j=l+1

qj−1−l|j log q − n log q|
)
+ 1 · |l log q − n log q|

]

≤
n−1∑
j=l

ql

µ(R)
qj−l(n− j) log q

=

n−1∑
j=l

qj−n (n− j)

(h′′ − h′)
log q

≤
∞∑

m=1

q−m m

h′′ − h′ log q.

We get an estimate independent of l. Summing over the h′′−h′ levels which intersect R, we conclude
that

1

µ(R)

∑
x∈R

|f(x)− n log q|µ(x) =
n−h′∑

l=n−h′′+1

1

µ(R)

∑
x∈R∩ℓ(x)=l

|f(x)− n log q|µ(x)

≤ (h′′ − h′)

∞∑
m=1

q−m m

(h′′ − h′)
log q

≲ 1.

Case 2. Let R = Rh′′

h′ (pn(o)) with 2 ≤ n < h′′. We can follow the previous argument except for the
levels l ≤ 0. Thus, if 0 ≥ l ∈ [n− h′′ + 1, n− h′] is a fixed level,

1

µ(R)

∑
x∈R∩ℓ(x)=l

|f − n log q|µ(x)

=
ql

µ(R)

[(
(q − 1)

n∑
j=2

qj−1−l|j log q − n log q|
)
+ q1−l| log q − n log q|

]

≤
n−1∑
j=1

ql

µ(R)
qj−l(n− j) log q,

and we conclude as above.

This proves that f ∈ BMO(µ).

Remark 4.2. If we take n such that qm−1 ≤ n ≤ qm − 1 for m ≥ 2, then it is easily seen that
|xn| = 2m ≤ 2 logn

log q + 2 ≲ log n, while f(xn) = m log q ≥ log n.

We also underline that xn ∧ o = p|xn|/2(o) = p|xn|/2(xn) for all n ≥ 2.
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Since gn is a multiple of a (1,∞)−atom, by (4) we get

∥f∥BMO∥gn∥H1
at

≳

∣∣∣∣ ∑
x∈V

f(x)gn(x)µ(x)

∣∣∣∣ = |f(xn)− f(o)| ≳ log n,

which implies that

log n ≲ ∥gn∥H1
at
. (24)

Moreover, it is clear that ∥gn∥1 ≈ 1. Combining the previous inequalities with the following propo-
sition we conclude that the norms on H1

h(µ) and H1
at(µ) are not equivalent.

Proposition 4.3. Let {gn}n be the sequence defined in (22). Then, the following holds:

∥Mhgn∥1 ≲ log log n ∀n ≥ 2.

Proof. We split the proof into three steps.
Step 1.
Define B = B(o, |xn|). Our goal is to show that∑

x∈B

Mhδxj
(x)µ(x) ≲ log log n

for j = 0 and j = n.
Notice that for all x ∈ V , by (18)

Mh(δxj )(x)µ(x) = µ(x) sup
t>0

Ht(x, xj) ≲
Q(x, xj)µ(x)

(d(x, xj) + 1)2
. (25)

By (25) ∑
x∈B

Mh(δo)(x)µ(x) ≲
∑
x∈B

qℓ(x)/2
q−|x|/2

(|x|+ 1)2
.

We write B = ∪|xn|
m=0Sm(o) and apply Lemma 2.5 to obtain

∑
x∈B

Mh(δo)(x)µ(x) ≲
|xn|∑
m=0

1

m+ 1
≲ log |xn| ≲ log log n, (26)

where we refer to Remark 4.2 for the last estimate.
It remains to prove the same inequality which involves Mh(δxn). Again by (25)∑

x∈B

Mh(δxn
)(x)µ(x) =

∑
x∈B

µ(x) sup
t>0

|Ht(x, xn)| ≲
∑
x∈B

Q(x, xn)µ(x)

(d(x, xn) + 1)2
.

Denote by B∗ the ball B(xn, 2|xn|). Clearly, B ⊂ B∗. Hence∑
x∈B

Mh(δxn
)(x)µ(x) ≲

∑
x∈B∗

qℓ(x)/2q−d(x,xn)/2

(d(x, xn) + 1)2
.
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Exactly as in (26) we get

∑
x∈B

Mh(δxn
)(x)µ(x) ≲

2|xn|∑
m=0

1

m+ 1
≲ log 2|xn| ≲ log log n. (27)

This is the desired conclusion.

Step 2.
We divide the complement of B(o, |xn|) in two regions.

Γ1 = {x ∈ B(o, |xn|)c : x ≤ p|xn|(o)},
Γ2 = {x ∈ B(o, |xn|)c : x ̸∈ Γ1}.

We claim that ∑
x∈Γ1

Mh(δo)(x)µ(x) ≲ 1. (28)

The claim follows by a direct computation. Indeed, we estimate the above sum on Sm(o) ∩ Γ1

for every m > |xn| as follows∑
x∈Sm(o)∩Γ1

Mh(δo)(x)µ(x) ≲
∑

x∈Sm(o)∩Γ1

qℓ(x)/2−d(x,o)/2

(d(x, o) + 1)2

=
q−m/2

m2

[
(q − 1)

|xn|∑
j=1

(
qm−(j+1)q(2j−m)/2

)
+ qm/2

]
≲

|xn|
m2

(29)

where we integrate adapting Lemma 2.5. We conclude by observing that

∑
x∈Γ1

Mh(δo)(x)µ(x) =

∞∑
m=|xn|+1

∑
x∈Sm(o)∩Γ1

qℓ(x)Mh(δo)(x) ≲
∞∑

m=|xn|+1

|xn|
m2

≲ 1,

and (28) is proved.
We now claim that ∑

x∈Γ1

Mh(δxn
)(x)µ(x) ≲ log log n. (30)

For establishing it, in order to exploit the symmetries of Mh(δxn
), it is convenient to integrate on

a larger set than Γ1. Define Γ∗
1 = {y ∈ V : y ̸≤ p|xn|/2(o)} and observe that if x ∈ Γ1 ∩ Γ∗

1 then
d(xn, x) = d(o, x), (because xn ∧ o = p|xn|/2(xn) = p|xn|/2(o)), thus Mh(δxn)(x) = Mh(δo)(x).
Obviously Γ1 ∩ (Γ∗

1)
c ⊂ (Γ∗

1)
c = {y ∈ : y ≤ p|xn|/2(o)}.

It suffices to check that ∑
x∈(Γ∗

1)
c

Mh(δxn)(x)µ(x) ≲ log log n.
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It is convenient to think of the above sum as the sum over the disjoint sets {Sm(xn) ∩ (Γ∗
1)

c}m≥0.
Fix m ≥ 0 and by applying (18) we obtain∑

x∈Sm(xn)∩(Γ∗
1)

c

Mh(δxn)(x)µ(x) ≲
∑

x∈Sm(xn)∩(Γ∗
1)

c

qℓ(x)/2
q−d(x,xn)/2

(d(x, xn) + 1)2
.

Assume m > |xn|/2. In the same fashion as we computed in Lemma 2.5, we obtain∑
x∈Sm(xn)∩(Γ∗

1)
c

Mh(δxn)(x)µ(x)

≲
q−m/2

m2

[
(q − 1)

|xn|/2∑
j=1

(
qm−(j+1)q(2j−m)/2

)
+ qm/2

]
≲

|xn|/2
m2

.

If m < |xn|/2, the same computation still works with a slight modification,

∑
x∈Sm(xn)∩(Γ∗

1)
c

Mh(δxn)(x)µ(x) ≲
q−m/2

m2

[
qm/2 + (q − 1)

m−1∑
j=1

(
qm−(j+1)q(2j−m)/2

)
+ qm/2

]
≲

1

m
,

where the first term inside the square brackets is the contribution due to pm(xn) ∈ (Γ∗
1)

c. Summing
up over the positive integers, we conclude

∞∑
m=1

∑
x∈Sm(xn)∩(Γ∗

1)
c

Mh(δxn)(x)µ(x) ≲
|xn|/2−1∑

m=1

1

m
+

∞∑
m=|xn|/2

|xn|/2
m2

≲ log(|xn|) + 1 ≲ log log n,

which proves (30).

Step 3.
Notice that, if x ̸≤ xn ∧ o = p|xn|/2(o), then d(xn, x) = d(x, o). This is true because, for such a
vertex x

d(x, o) = d(x, xn ∧ o) + d(xn ∧ o, o) = d(x, xn ∧ o) + d(xn ∧ o, xn) = d(x, xn).

Observe that this together with (9) imply∑
x∈Γ2

Mh(δxn
− δo)(x)µ(x)

=
1

1− b

∑
x∈Γ2

qℓ(x)/2 sup
t>0

ebt/(1−b)|q−ℓ(xn)/2ht/(1−b)(x, xn)− q−ℓ(o)/2ht/(1−b)(x, o)| dx = 0, (31)

since qℓ(xn) = qℓ(o) = 1 and ht/(1−b)(x, y) = ht/(1−b)(d(x, y)).
In conclusion, (26), (27), (28), (30) and (31) yield

∥Mhgn∥1 ≲ log log n.

19



It follows that

lim
n→∞

∥gn∥H1
h

∥gn∥H1
at

= 0,

and in particular, ∥ · ∥H1
h
, ∥ · ∥H1

at
are not equivalent.

We are now ready to prove Theorem 1.1 iii).

Proof of Theorem 1.1 iii). Define the function g on the set of vertices at level 0 as g(o) = c0,
g(x) = 0 if x ≤ p1(o) \ {o} and g(xn) =

1
n(logn)3/2

for every n ≥ q. Then we extend g = 0 outside

the level zero. Choose c0 such that
∑

x∈V g(x)µ(x) = 0. Clearly,

∥g∥1 = |c0|+
∞∑

n=q

1

n(log n)3/2
< +∞.

We now show that ∥Mhg∥1 is finite. Indeed, we observe that

g =

∞∑
k=q

ckgk,

where {gk}k is defined in (22) and ck is the value of g at xk. Then, by using Proposition 4.3

∥Mhg∥1 ≲
∞∑
k=q

ck log log k ≲
∑
k

log log k

k(log k)3/2
< +∞.

This implies that g ∈ H1
h(µ).

We now prove that g ̸∈ H1
at(µ). Indeed, suppose the converse by contradiction. Then it would be∑

x∈V

g(x)f(x)µ(x) < +∞, (32)

where f is the BMO function defined in (23). But using the estimate f(xn) ≥ log n (see Remark
4.2), (32) would imply

∞∑
n=q

1

n(log n)1/2
< +∞,

which is clearly false. Then g ̸∈ H1
at(µ).

5 Proof of Theorem 1.2

This last section is devoted to the proof of Theorem 1.2. We briefly recall some preliminary
notion.
We define the discrete Riesz transform R = ∇L−1/2, which corresponds to the integral operator
with integral kernel with respect to µ

R(x, y) =

∫ +∞

0

t−1/2(Ht(x, y)−Ht(p(x), y)) dt.
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Recall that the Riesz Hardy space is defined by (3). It is a well-known fact that R maps H1
at(µ)

to L1(µ), indeed, it is an easy consequence of the discrete version of Hörmander’s condition for
singular operators (see [2, Th. 3] or [13] and [12]). Thus, the inclusion H1

at(µ) ⊂ H1
R(µ) is trivial.

In order to show that such inequality is strict, we need the following result.

Proposition 5.1. The following holds

∥Rgn∥1 ≲ log log n ∀n ≥ 2,

where {gn}n is the sequence defined in (22).

Proof. We write

R(x, y) =

∫ 1

0

t−1/2(Ht(x, y)−Ht(p(x), y)) dt+

∫ ∞

1

t−1/2(Ht(x, y)−Ht(p(x), y)) dt

= R(0)(x, y) +R(∞)(x, y)

and consequently R = R(0)+R(∞). It follows from Proposition 3.1 that R(0) is bounded on L1(µ),
hence ∥R(0)gn∥1 ≲ 1. We now consider ∥R(∞)gn∥1. We recall that

∥R(∞)gn∥1 =
∑
x∈V

∣∣∣∣ ∑
y∈V

∫ ∞

1

t−1/2(Ht(x, y)−Ht(p(x), y)) dtgn(y)µ(y)

∣∣∣∣µ(x)
=

∑
x∈V

∣∣∣∣ ∫ ∞

1

t−1/2(Ht(x, xn)−Ht(x, o) +Ht(p(x), o)−Ht(p(x), xn)) dt

∣∣∣∣µ(x).
Arguing as in Step 3 of Proposition 4.3, we get that, if x ̸≤ xn ∧ o, the first difference inside the
integral in the last line vanishes. The same happens for the second difference if p(x) ̸≤ xn∧o. Since

{x ∈ V : x ̸≤ xn ∧ o} ⊂ {x ∈ V : p(x) ̸≤ xn ∧ o},

we can estimate the previous sum as follows

∥R(∞)gn∥1

≤
∑
x∈En

∫ ∞

1

|Ht(x, xn)−Ht(p(x), xn)|
t1/2

dt µ(x) +
∑
x∈En

∫ ∞

1

|Ht(x, o)−Ht(p(x), o))|
t1/2

dt µ(x)

= I1 + I2,

where En = {x ∈ V : x ≤ xn ∧ o}. Observe that En = Γ1 ∪ Γ2 = Σ1 ∪ Σ2, where

Γ1 = {x ∈ En : xn ̸≤ x},
Γ2 = {x ∈ En : xn ≤ x},
Σ1 = {x ∈ En : o ̸≤ x},
Σ2 = {x ∈ En : o ≤ x}.

We start studying I1. Exploiting the symmetry of the problem, the same computations are valid
for I2. It can be useful to split the sum which defines I1 as

I1 =

2∑
i=1

∑
x∈Γi

∫ ∞

1

|Ht(x, xn)−Ht(p(x), xn))|
t1/2

dt µ(x) = I11 + I21 .
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By Lemma 2.4 i),

I11 ≲
∑
x∈Γ1

Q(x, xn)

(d(x, xn) + 1)2
µ(x).

Since xn ∧ o = p|xn|/2(xn), we can think of the sum on Γ1 as the sum on the sequence of disjoint

sets {Γj
1}

|xn|/2
j=0 , where Γj

1 is defined by

Γj
1 =

{
{x ≤ xn} if j = 0,

{x ≤ pj(xn) and x ̸≤ pj−1(xn)} if 1 ≤ j ≤ |xn|/2,

with p0(xn) = xn. Observe that, for any j = 1, ..., |xn|/2, x ∈ Γj
1 implies that

d(x, xn) = 2j − ℓ(x),

where we have used that ℓ(pj(xn)) = j. Then, for any 1 ≤ j ≤ |xn|/2

∑
x∈Γj

1

qℓ(x)/2−d(x,xn)/2

(d(x, xn) + 1)2
≤

j∑
l=−∞

ql−j 1

(2j − l)2
(q − 1)qj−l−1 ≤ 2

j
,

where (q− 1)qj−l−1 corresponds to the cardinality of vertices in Γj
1 at the level l. The sum over Γ0

1

contributes to the sum as a constant independent of n. Summing up

I11 ≲
|xn|/2∑
j=1

1

j
≲ log log n.

It remains to estimate I21 . By Lemma 2.4 ii) and the fact that if x ∈ Γ2, then ℓ(x) = d(x, xn) and

Q(x, xn) = qQ(p(x), xn) = q−d(x,xn),

we get

I21 ≤
∑
x∈Γ2

∫ ∞

1

t−1/2 max{Ht(x, xn), Ht(p(x), xn)} dt µ(x)

≲
∑
x∈Γ2

q−d(x,xn)

d(x, xn) + 1
µ(x) =

|xn|/2∑
d=1

1

d
≲ log log n.

Similar computations can be repeated to estimate I2 if we replace Γi by Σi. In conclusion

∥Rgn∥1 ≲ log log n,

as required.

We conclude the proof of Theorem 1.2.
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Proof of Theorem 1.2 ii). Let g be the function constructed in the proof of Theorem 1.1 iii). Then,

∥Rg∥1 ≲
∞∑
k=q

ck∥Rgk∥1 ≲
∞∑
k=q

log log k

k(log k)3/2
< +∞.

Hence g ∈ H1
R(µ) but g ̸∈ H1

at(µ).

Remark 5.2. It is not clear whether H1
h(µ), H

1
P (µ) and H1

R(µ) are the same space or not. This is
an interesting open problem that we have not been able to answer and leave for further work.
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