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Matteo Sorrentia*, Marco Gherlonea and Marco Di Sciuvab

a Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b Former Professor of Aircraft Structures at the Department of Mechanical and Aerospace Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 11 November 2021, accepted 28 January 2022, available online 21 February 2022

© 2022 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution
4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0).

Abstract. The recent enhancement of the standard Refined Zigzag Theory (RZT), herein named the enhanced Refined Zigzag
Theory (en-RZT), has extended the range of applicability of the RZT to angle-ply multilayered and sandwich plates. The aim of the
present investigation is to assess the numerical performances of the en-RZT for the buckling analysis of angle-ply multilayered and
sandwich rectangular plates under in-plane normal loads. The linearized stability equations are obtained using the Ritz method in
conjunction with the principle of virtual work, by means of Gram–Schmidt orthogonal polynomials. In order to assess the accuracy
of the en-RZT, buckling loads of angle-ply laminated and sandwich plates are evaluated and compared with the numerical results
available in open literature. The numerical investigation highlights the high accuracy of the en-RZT in predicting buckling loads.
The study contains a parametric analysis aimed to investigate the influence of various design parameters, such as plate aspect ratio,
thickness, lamina orientations, in-plane load combinations and boundary conditions on the buckling loads.

Key words: Refined Zigzag Theory, angle-ply multilayered plates, sandwich plates, warping shear functions, buckling, Ritz
method.

1. INTRODUCTION

The use of multilayered composite and sandwich structures has been reported at an ever increasing rate in
the last decades not only in aerospace load-carrying structures but also in automotive, marine, military and
civil ones. This is due to their excellent specific properties (high strength-to-weight and stiffness-to-weight
ratios), good fatigue behaviour and damping characteristics, coupled with the possibility of tailoring to op-
timize their structural response.

On the other hand, a crucial issue is their transverse shear deformability and through-the-thickness
anisotropy. Therefore, particular attention should be paid when modelling their structural behaviour in or-
der to accurately predict the response (in-plane displacements, transverse deflection, through-the-thickness
stresses) and to achieve a reliable design.
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One of the main objectives of the research on structural modelling is to provide sufficiently accurate
models for designers and analysts, without increasing the computational cost. Relying on relevant literature,
it is worth noting that several researchers have tried to solve the three-dimensional elasticity equations for
the analysis of general laminates, but this task involves mathematical difficulties in obtaining analytical so-
lutions also for simple problems. However, three-dimensional analytical solutions for orthotropic cross-ply
or sandwich plates (see [1–5]) and for anisotropic laminated plates (see [6–8]) can be used as benchmarks to
verify the accuracy of axiomatic theories or approximate solutions. To the best of the authors’ knowledge,
few studies using three-dimensional approaches have been implemented to investigate the mechanical buck-
ling of multilayered angle-ply structures.

It is widely recognized that the displacement-based axiomatic approaches have raised much interest in
formulating accurate structural models when applied to complex problems with an affordable computational
cost. According to the literature survey of Abrate and Di Sciuva [9,10], the beam/plate/shell models based
on this approach can be grouped into the Equivalent Single Layer (ESL) theories and the Layer-Wise (LW)
theories. The former assumes a through-the-thickness distribution of the displacement field over the whole
laminate thickness. In the latter the displacement field is assumed to be independent for each layer, and it
is possible to ensure the continuity of transverse stresses at the interfaces (a condition that cannot be sat-
isfied directly in the ESL theories). Among the polynomial ESL theories used for the buckling analysis
of angle-ply multilayered plates the Classical Laminate Theory (CLT), the First Order Shear Deformation
Theory (FSDT) and the Reddy’s Third Order Shear Deformation Theory (TSDT) should be noted. Sev-
eral examples can be provided from literature. Jones et al. [11] and Sharma et al. [12] investigated the
analytical solution of antisymmetrically laminated angle-ply plates using the CLT. Buckling of antisymmet-
ric and symmetric angle-ply multilayered laminates was studied employing the FSDT by Khdeir [13] and
Kabir [14], respectively. Putcha and Reddy [15] and Ni et al. [16], using the TSDT, assessed the stability
analysis for anisotropic multilayered plates. Further numerical examples and comparisons were performed
by Reddy [17]. Generally, depending on the plate aspect ratio, these theories are more or less accurate in
predicting general quantities such as transverse displacements, fundamental frequencies, buckling loads, but
are generally not accurate in predicting local quantities, i.e. thickness-wise distributions of the in-plane dis-
placements, strain and stresses. On the other hand, the LW theories [18,19] are very accurate in predicting
previous global and local quantities, but the computational cost becomes prohibitive for plates with several
numbers of layers or general structures.

A good compromise between the reduced number of unknown generalized displacements of the ESL
and the good accuracy of the LW theories is represented by the Zigzag Theories (ZZTs), in which the kine-
matic field is a superposition of a coarse (global) and a finer (local) distribution of in-plane displacements.
The local improvement in the accuracy of thickness-wise distributions of the in-plane displacements and of
in-plane and transverse shear stresses is due to the so-called zigzag functions. The ZZT approach allows to
retain almost the same number of generalized displacements equal to that of the corresponding ESL theory,
while increasing the accuracy in the estimate of the thickness-wise distributions of in-plane displacements
and stresses typical of a multilayered plate. In the Di Sciuva’s pioneering paper [20], the global contribution
to the in-plane displacement field is represented by the FSDT, while the local enrichment is achieved by
linear zigzag functions, i.e. linear step-wise functions of the thickness coordinate, whose slope allows to
satisfy the continuity conditions on the transverse shear stresses.

Taking Di Sciuva’s approach as a starting point, Tessler and co-workers formulated a refined zigzag the-
ory, in the body of this paper named the standard Refined Zigzag Theory (RZT), for multilayered composite
and sandwich beams [21], plates [22] and shells [23]. The interested reader can find assessment of the good
performances of the standard RZT in [24–27]. Since the standard RZT requires only C0 continuity in finite
element formulation, which is very attractive from a computational point of view, many researchers have
formulated and assessed various finite elements for beams/plates/shells structures [28–33].

Based on the previous examples, the standard RZT has demonstrated to be very accurate for cross-ply
laminated and sandwich plates. Recently, Kreja and Sabik [34] showed that it is not possible to study mul-
tilayered angle-ply plates in which two adjacent layers have alternating orientations but the same absolute



value. Due to the derivation of zigzag functions in the standard RZT for these lamination schemes, the
slope of zigzag functions is constant for each layer and, in order to satisfy the null value for these func-
tions at the external surfaces, it results in that they are constant and null through-the-thickness. Thus, the
local zigzag displacement field is null, although it has been considered a multilayered structure and from a
computational point of view this leads to a singular stiffness matrix. Furthermore, the reader can easily see
that in the derivation of zigzag functions for the standard RZT, the coupling effect for a general oriented
layer between the two zigzag amplitudes is not considered at the level of local kinematics contribution. This
coupling effect was also shown in Di Sciuva’s ZZT [20] and it is present in other formulations, such as by
Whitney [35] and Loredo [36].

The importance of studying general laminated structures has been testified by many authors. Among
them Weaver [37] highlighted the key role represented by tailored structures in the industrial field. More-
over, it is well known by Adali et al. [38] that various lay-ups, especially the angle-ply sequences, are
evaluated in the design of structures due to the uncertainties of the applied loads. More recently, experimen-
tal and numerical assessments on the stability behaviour of multilayered angle-ply plates were performed
by Venkateshappa et al. [39]. A global-local higher order theory was applied by Zhen and Wanji [40] to
the buckling analysis of composite and sandwich plates. Xiaohui and Zhen [41] investigated the buckling
of soft-core sandwich plates with angle-ply face-sheets using third order zigzag finite elements.

In order to overcome the drawback of the standard RZT for some lay-ups highlighted by Kreja and
Sabik [34] and to implement a further mathematical tool for the study of general laminates, Sorrenti and Di
Sciuva [42] reformulated the standard Refined Zigzag Theory by introducing new zigzag functions in the
local contribution. The newly developed model, named the enhanced RZT (en-RZT), has shown excellent
predictive capabilities in [42] for the bending response of angle-ply multilayered laminate plates.

The aim of the present investigation is to assess the numerical performances of the en-RZT for the lin-
earized buckling analysis of angle-ply multilayered and sandwich rectangular plates under in-plane normal
loads.

The paper is organized as follows. Firstly, the en-RZT multilayered plate model is presented with the
new zigzag functions. Based on en-RZT kinematics, the linearized equations governing the buckling of mul-
tilayered and sandwich rectangular plates under in-plane normal loads are derived using the Ritz method in
conjunction with the principle of virtual work. Secondly, in order to assess the accuracy of the en-RZT, buck-
ling loads of angle-ply laminated and sandwich plates are evaluated by means of Gram–Schmidt orthogonal
polynomials and compared to the results of other refined plate models available in open literature, due to
the lack of exact three-dimensional or LW mechanical buckling results for angle-ply plates. The investiga-
tion contains a parametric analysis aimed to highlight the influence of various design parameters, such as
plate aspect ratio, thickness, lamina orientations, in-plane load combinations and boundary conditions on
the buckling loads. Finally, some considerations on the obtained numerical results are presented.

2. MULTILAYER PLATE MODEL

2.1. Geometrical preliminaries

We consider a multilayered flat rectangular plate made of a finite number N of perfectly bonded lay-
ers. V is the volume of the plate, h denotes thickness; a1 and a2 are the length and width, respectively.
The points of the plate are referred to an orthogonal Cartesian coordinate system defined by the vector
X = {xi},(i = 1,2,3). The vector x = {xα},(α = 1,2) represents the set of in-plane coordinates on the ref-
erence plane, here chosen to be the middle plane of the plate, and x3 is the coordinate normal to the reference
plane, so that x3 is defined in the range x3 ∈ [− h

2 ,+
h
2 ], see Fig. 1. The origin of the reference frame is fixed

at the centre of the middle plane of the plate, so that xα is defined in the range xα ∈ [−aα
2 ,+ aα

2 ]. In the body
of the paper, also the following nondimensional coordinates will be adopted: ξα = 2xα

aα
∈ [−1,+1]. The

thickness of each layer, as well as of the whole plate, is assumed to be constant. The material of each layer
is assumed to be elastic orthotropic with a plane of elastic symmetry parallel to the reference surface and
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whose principal orthotropy directions are arbitrarily oriented with respect to the in-plane reference frame.
The plate is subjected to uniformly distributed in-plane normal loads for unit length, P̄11, P̄22 are applied
along the edges x1 =±a1

2 and x2 =±a2
2 , respectively (see Fig. 1b).

If not otherwise stated in the paper, the notation (.)(k) is used to indicate quantities corresponding to
the kth layer (k = 1, ...,N), whereas the notation (.)(k) (k = 1, ...,N − 1) refers to (.) valued for x3 = z(k),
i.e. at the kth interface (k = 1, ...,N − 1) between the kth and the (k+ 1)th layer. In addition, we use the
subscripts (B) and (T) to indicate the bottom and top surfaces of the single-layer/whole plate, respectively;
specifically, z(1)(B) = z(B) and z(N)

(T) = z(T) denote the coordinates of the bottom and top surfaces of the whole

plate; thus, h = z(T)− z(B) is the plate thickness and h(k) = z(k)− z(k−1) = z(k)(T)− z(k)(B) (k = 1,2...,N) is the
thickness of the kth layer.

The symbol (•),i = ∂ (•)
∂xi

refers to the derivative of the function (•) with respect to the coordinate xi. In
the paper, if not otherwise specified, the Einsteinian summation convention over repeated indices is adopted,
with Latin indices ranging from 1 to 3, and Greek indices ranging from 1 to 2.

Fig. 1. General plate notation: (a) plate geometry and coordinate system and layer numbering, (b) in-plane loads

2.2. Enhanced RZT (en-RZT) kinematics

As usual in the axiomatic theories of plates and shells, the thickness-wise distribution of the three-dimensional
displacement field is assumed a priori. Therefore, adopting this axiomatic approach, in general, we write

d̃(X) = Zd(x3)d(x), (1)

where

d̃(X) =

⎧⎨
⎩

ũ1(X)
ũ2(X)
ũ3(X)

⎫⎬
⎭=

{
ũ(X)
ũ3(X)

}
(2)

is the vector of displacement components of the generic point along the orthogonal Cartesian coordinate
system X = {xi},(i = 1,2,3);

d(x) =

⎧⎨
⎩

u1(x)
u2(x)
u3(x)

⎫⎬
⎭=

{
u(x)
u3(x)

}
(3)

Fig. 1. General plate notation: (a) plate geometry and coordinate system and layer numbering, (b) in-plane loads
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is the vector of the generalized displacements, independent of the x3-coordinate, and Zd(x3) is the matrix of
the assumed thickness-wise distributions. Both d(x) and Zd(x3) are plate/shell theory dependent.

In the kinematics of the RZT (see [42]), the transverse displacement is assumed to be constant through-
the-thickness, i.e.

ũ3(X) = u3(x). (4)

The in-plane kinematics is based on the superposition of a global (G) first order kinematics (which is
continuous with its first derivatives with respect to the x3-coordinate) and a local (L) layer-wise correction
of the in-plane displacements (which is continuous and piecewise linear with respect to x3, but with jumps
in the first derivative at the interface between adjacent layers). Thus,

ũ(X) = ũG(X)+ ũL(X), (5)

where
ũG(X) = u(x)+ x3θ(x), (6)

ũL(X) = φ(k)(x3)ψ(x). (7)

The local layer-wise correction (7) vanishes on the top and bottom surfaces of the plate.
Substituting Eqs (5), (6) and (7) into Eq. (1) yields

dT =
[
u1 u2 u3 θ1 θ2 ψ1 ψ2

]
=
[
uT u3 θT ψT

]
, (8)

Z
(k)
d (x3) =

[
I 0 x3I φ(k)

0 1 0 0

]
(9)

with

φ(k) (x3) =

[
φ (k)

11 (x3) φ (k)
12 (x3)

φ (k)
21 (x3) φ (k)

22 (x3)

]
; ψ (x) =

[
ψ1 (x)
ψ2 (x)

]
. (10)

In Eq. (6), u(x) and θ(x) are the global uniform in-plane displacements and rotations of the normal to the
reference plane about the positive x2 and the negative x1 directions, respectively. In Eq. (7), ψ(x) denotes
unknown spatial amplitudes of the φ (k) (x3) zigzag functions, the latter being the assumed piecewise linear
functions through-the-thickness, vanishing on the top and bottom surfaces of the plate.

In Eq. (9) and in the body of the paper, I represents the identity matrix and 0 the null rectangular matrix,
the dimensions of which follow from the rule of the matrix product and partitioning, and the superscript T
attached to a matrix refers to transpose.

For the kth layer of thickness h(k), the generalized zigzag functions’ matrix φ (k) (x3) has the following
recursive expression (see Sorrenti and Di Sciuva [42]),

φ(k) (x3) =
(
x3 − z(B)

)(
S
(k)
t G− I

)
+

k

∑
q=1

h(q)
(

S
(q)
t −S

(k)
t

)
G

=
(
x3 − z(B)

)
β(k) +

k

∑
q=1

h(q)
(
β(q)−β(k)

)
,

(11)

where

β(k) = φ
(k)
,3 = S

(k)
t G− I;G = h

(
N

∑
k=1

h(k)S(k)
t

)−1

(12)

and S
(k)
t is the matrix of the transverse shear compliance coefficients.

Eq. (11) shows that the four zigzag functions φ (k)
απ are a priori known piecewise linear continuous

functions of x3, vanishing on the bottom
(
x3 = z(B) =−h

2

)
and top (x3 = z(T) = + h

2) surfaces of the plate.
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2.3. Strain-displacement relations

In analogy with Eq. (1), we put the strain-displacement relations in the following general form:

ε̃ (X) = Zε (x3)ε(x), (13)

where ε̃(X) is the vector of the strain at a point of the body; ε(x) refers to the vector of the strain measures,
independent of the x3-coordinate, and Zε(x3) is the matrix giving the thickness-wise distributions of the
strain components. As for Eq. (1), both ε(x) and Zε(x3) are plate/shell theory dependent. Moreover, ε(x)
are the linear strain-displacement relations. Thus, by taking into account that (see Eq. (4)) ε̃33 = u3,3 = 0,
we can write

ε̃T =
[
ε̃T

p γ̃T ], (14)

where
ε̃T

p =
[
ε̃11 ε̃22 γ̃12

]
=
[
ũ1,1 ũ2,2 ũ1,2 + ũ2,1

]
(15)

is the vector of the in-plane strain components, and

γ̃T =
[
γ̃13 γ̃23

]
=
[
ũ1,3 +u3,1 ũ2,3 +u3,2

]
(16)

is the vector of the transverse shear strain components. Within the kth layer, substituting the assumed in-
plane displacements, Eqs (6) and (7), into Eqs (15) and (16) yields

ε̃
(k)
p = ε(m) + x3ε

(b) +Φ(k)(x3)ε
(φ), (17)

γ̃(k) = γ(0) +φ
(k)
,3 ψ = γ(0) +β(k)ψ, (18)

where

ε(m) =

⎧⎪⎨
⎪⎩

ε(m)
11

ε(m)
22

γ(m)
12

⎫⎪⎬
⎪⎭=

⎧⎨
⎩

u1,1
u2,2

u1,2 +u2,1

⎫⎬
⎭ ,ε(b) =

⎧⎪⎨
⎪⎩

ε(b)
11

ε(b)
22

γ(b)12

⎫⎪⎬
⎪⎭=

⎧⎨
⎩

θ1,1
θ2,2

θ1,2 +θ2,1

⎫⎬
⎭, (19)

ε(φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε(φ)
11

ε(φ)
22

ε(φ)
12

ε(φ)
21

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

ψ1,1
ψ2,2
ψ1,2
ψ2,1

⎫⎪⎪⎬
⎪⎪⎭ ,Φ(k) =

⎡
⎢⎣φ (k)

11 0 0 φ (k)
12

0 φ (k)
22 φ (k)

21 0
φ (k)

21 φ (k)
12 φ (k)

11 φ (k)
22

⎤
⎥⎦, (20)

γ(0) =

{
γ(0)1

γ(0)2

}
=

{
θ1 +u3,1
θ2 +u3,2

}
= θ+∇u3,β

(k) = φ
(k)
,3 . (21)

In Eq. (21), ∇T =
[
(.),1 (.),2

]
.

Substituting Eqs (17) and (18) into Eq. (14) and rearranging the result, within the kth layer Eq. (13) reads

ε̃(X) =

{
ε̃
(k)
p (x)

γ̃
(k)
p (x)

}
=

{
Z
(k)
ε p (x3)ε(x)

Z
(k)
γ (x3)γ(x)

}
= Z

(k)
ε (x3)ε(x), (22)

where

εT (x) =
[
εT

p (x) γT (x)
]
,Z

(k)
ε (x3) =

[
Z
(k)
ε p 0

0 Z
(k)
γ

]
, (23)

and
εT

p (x) =
[
ε(m)T ε(b)T ε(φ)T

]
;γT (x) =

[
γ(0)T ψT

]
, (24)

Z
(k)
ε p (x3) =

[
I x3I Φ(k)

]
;Z

(k)
γ =

[
I β(k)

]
. (25)
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2.4. Stress-strain relations

As usual in axiomatic plate theories, we assume σ̃33 = 0. According to this assumption, the reduced local
elastic Hookean constitutive equations read

σ̃
(k)
p = Q

(k)
p ε̃

(k)
p ; σ̃(k)

t = Q
(k)
t γ̃

(k)
p . (26)

In Eq. (26),
σ̃
(k)T
p =

[
σ̃11 σ̃22 σ̃12

]
; σ̃(k)T

t =
[
σ̃13 σ̃23

]
(27)

are the in-plane and transverse shear stresses; and

Q
(k)
p =

⎡
⎣Q11 Q12 Q16

Q12 Q22 Q26
Q16 Q26 Q66

⎤
⎦
(k)

,Q
(k)
t =

[
Q44 Q45
Q45 Q55

](k)
. (28)

In Eq. (28), Q(k)
i j (i, j = 1,2,6) denote the transformed plane stress elastic reduced stiffness coefficients;

Q(k)
i j (i, j = 4,5) refer to the transformed transverse shear elastic reduced stiffness coefficients (see Reddy

[17]).

2.5. Linearized stability equations and boundary conditions

The principle of virtual work is used herein to derive the linearized stability equations and the variationally
consistent boundary conditions. The principle can be stated as follows (here δ represents the variational
operator):

δWint = δWinp, (29)

where

δWint =
∫ +a1/2

−a1/2

∫ +a2/2

−a2/2
〈σ̃(k)T δ ε̃(k)〉dx1dx2 =

∫ +a1/2

−a1/2

∫ +a2/2

−a2/2
〈σ̃(k)T

p δ ε̃(k)p + σ̃
(k)T
t δ γ̃(k)〉dx1dx2 (30)

is the virtual variation of the internal work given by the stresses σ̃(k);

δWinp =
∫ +a1/2

−a1/2

∫ +a2/2

−a2/2

(
−
[

P11 0
0 P22

]
δ∇u3

)T

dx1dx2 =
∫ +a1/2

−a1/2

∫ +a2/2

−a2/2

(
Pδ∇u3

)T dx1dx2 (31)

is the virtual variation of the work done by the in-plane applied loads in the buckling mode (linearized sta-
bility equations).

Proceedings of the Estonian Academy of Sciences, 2020, 71, 1, 84–10290

It is assumed that the plate is loaded by uniformly distributed in-plane normal loads for unit length,
P11,P22 are applied on the edges (see Fig. 1b). Moreover, it is assumed that P11,P22 vary neither in magni-
tude nor in direction during buckling.

It is known that for general laminated plates there is a bending and stretching coupling [43]; thus, it is
impossible for the plate to remain flat in the pre-buckling state, as assumed by the linearized stability ap-
proach. However, as investigated by Leissa [44], Whitney [45] and later by Loughlan [46], simply supported
and clamped antisymmetric laminated plates under in-plane normal loads remain flat until the buckling load
is reached.
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In the previous equations, an overbar denotes the prescribed value of a quantity. All other symbols have

been defined above. Moreover, 〈•〉= ∑N
k=1

∫ z(k)
(T )

z(k)
(B)

(•)dx3.

Substitution of Eq. (22) into Eq. (30) yields

δWint =
∫

Ω

(
RT

p δεp +RT
t δγ

)
dΩ, (32)

where
RT

p =
[
NT MT M(φ)T ] ;RT

t =
[
TT T(φ)T ] . (33)

In Eq. (33), the following force and moment stress resultants for unit length have been introduced:

(
N,M,M(φ)T

)
=

⎛
⎜⎜⎜⎝
⎧⎨
⎩

N11
N22
N12

⎫⎬
⎭ ,

⎧⎨
⎩

M11
M22
M12

⎫⎬
⎭ ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M(φ)
11

M(φ)
22

M(φ)
12

M(φ)
21

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠=

〈(
1,x3,Φ

(k)T
)
σ̃
(k)
p

〉
, (34)

(
T,T(φ)T

)
=

({
T1
N2

}
,

{
T (φ)

1

T (φ)
1

})
=
〈(

1,φ(k)T
,3

)
σ̃
(k)
p

〉
. (35)

The plate constitutive relations of the enhanced RZT are derived by using Eqs (26) and (22) in Eqs (34)
and (35), and integrating them over the plate thickness. The resulting plate constitutive relations are⎧⎨

⎩
N

M

M(φ)

⎫⎬
⎭=

⎡
⎣ A B A(φ)

B D B(φ)

A(φ)T B(φ)T D(φ)

⎤
⎦
⎧⎨
⎩
ε(m)

ε(b)

ε(φ)

⎫⎬
⎭ ;
{

T

T(φ)

}
=

[
At B

(φ)
t

B
(φ)T
t D

(φ)
t

]{
γ(0)

ψ

}
, (36)

where

(A,B,D) =
〈

Q
(k)
p (1,x3,x2

3)
〉
,
(

A(φ),B(φ),D(φ)
)
=
〈
(1,x3,Φ

(k)T )Q
(k)
p Φ(k)

〉
(

A,B(φ)
)
=
〈

Q
(k)
t (1,φ(k)

,3 )
〉
,D

(φ)
t =

〈
φ
(k)T
,3 Q

(k)
p φ

(k)
,3

〉 (37)

Substitution of Eqs (31) and (32) into the principle of virtual work (Eq. (29)), integrating them by parts
and rearranging the various contributions, yields the two-dimensional statement of the principle of virtual
work for the linearized buckling problem. Note that the initial pre-buckling state of the plate is compatible
with the condition of uniform strain state.

2.6. Discrete buckling equations: Ritz method

Due to the difficulty in obtaining closed form solutions, we seek an approximate solution transforming the
differential problem into an algebraic one. To perform this, the discretization is accomplished applying the
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principle of virtual work previously stated in conjunction with the Ritz method.
Let us expand the unknown functions in the form

f̂ (ξ1,ξ2) =
M( f )

∑
m=1

C( f )
m g( f )

m (ξ1,ξ2) = g( f )T C( f ), (38)

,

.



where f̂ (ξ1,ξ2) denotes ûα(ξ1,ξ2), ŵ(ξ1,ξ2), θ̂α(ξ1,ξ2) and ψ̂α(ξ1,ξ2) (α = 1,2), respectively. In Eq. (38),
C( f )

m are unknown generalized coordinates to be varied, and g( f )
m (ξ1,ξ2) are the approximating functions. In

the Ritz method, these functions are required to be a complete set of admissible functions, i.e. at least linearly
independent and satisfying the geometric (prescribed, kinematic) boundary conditions (see Di Sciuva and
Sorrenti [47] for further details). Appendix A provides details of the admissible functions used in this work.

Thus, by taking Eq. (38) into account, Eqs (8), (9), (23), (24) yield

d =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1
u2
θ1
θ2
ψ1
ψ2
w

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

gu1T 0 0 0 0 0 0

0 gu2T 0 0 0 0 0

0 0 gθ1T 0 0 0 0

0 0 0 gθ2T 0 0 0

0 0 0 0 gψ1T 0 0

0 0 0 0 0 gψ2T 0

0 0 0 0 0 0 gwT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cu1

Cu2

Cθ1

Cθ2

Cψ1

Cψ2

Cw

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (39)

e =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε̂m
ε̂b
ε̂φ
γ̂(0)

ψ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
u1T
,1 0 0 0 0 0 0

0 g
u2T
,2 0 0 0 0 0

g
u1T
,2 g

u2T
,1 0 0 0 0 0

0 0 g
φ1T
,1 0 0 0 0

0 0 0 g
φ2T
,2 0 0 0

0 0 g
φ2T
,1 g

φ1T
,2 0 0 0

0 0 0 0 g
ψ1T
,1 0 0

0 0 0 0 0 g
ψ2T
,2 0

0 0 0 0 gψ1T 0 0

0 0 0 0 g
ψ1T
,2 0 0

0 0 0 0 0 g
ψ2T
,1 0

0 0 gφ1T 0 0 0 gwT
,1

0 0 0 gφ2T 0 0 gwT
,2

0 0 0 0 gψ1T 0 0

0 0 0 0 0 gψ2T 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cu1

Cu2

Cθ1

Cθ2

Cψ1

Cψ2

Cw

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (40)

In compact matrix format
d = GC, (41)

e = G∇C. (42)

Substituting this relation into Eqs (30) and (31) yields

δWint = δCT
∫ +a1/2

−a1/2

∫ +a2/2

−a2/2

⎛
⎜⎜⎜⎜⎜⎝GT

∇

⎡
⎢⎢⎢⎢⎢⎣

A B A(φ) 0 0

B D B(φ) 0 0

A(φ)T B(φ)T D(φ) 0 0

0 0 0 At B
(φ)
t

0 0 0 B
(φ)T
t D

(φ)
t

⎤
⎥⎥⎥⎥⎥⎦G∇dx1dx2

⎞
⎟⎟⎟⎟⎟⎠C = δCT KC (43)
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 Substituting this realation into Eqs (30) and (31) yields

 In compact matrix format

46 54 E

343 5 4E

! ! !

! !
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,
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with

K =
∫ +a1/2

−a1/2

∫ +a2/2

−a2/2
GT

∇

⎡
⎢⎢⎢⎢⎢⎣

A B A(φ) 0 0

B D B(φ) 0 0

A(φ)T B(φ)T D(φ) 0 0

0 0 0 At B
(φ)
t

0 0 0 B
(φ)T
t D

(φ)
t

⎤
⎥⎥⎥⎥⎥⎦G∇dx1dx2 (44)

and

δWinp = δCT
wλKGCw = δCT λKGC, (45)

where

λ = P11,r11 =
P22

P11
and kG =

∫ +a1/2

−a1/2

∫ +a2/2

−a2/2

[
gw
,1 gw

,2
][1 0

0 r11

][
gwT
,1

gwT
,2

]
dx1dx2 (46)

and

KG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 kG

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

is the geometric stiffness matrix.
Substitution of Eqs (43) and (45) into Eq. (29), taking into account that the virtual variations are arbitrary

independent variations, yields the following approximate discretized buckling equations:

(K+λKG)C = 0. (48)

2.7. Boundary conditions

With reference to a rectangular plate with dimensions of a1 and a2 along the edges parallel to the x1- and
x2-axes, the geometric boundary conditions (BCs) used in the numerical analysis are:

• Symmetric angle-ply plates simply supported on all edges: the boundary conditions indicated here as SS-1,
read
along the edges x1 =−a1

2 ,+
a1
2 : u2 = u3 = θ2 = ψ2 = 0,

along the edges x2 =−a2
2 ,+

a2
2 : u1 = u3 = θ1 = ψ1 = 0;

• Antisymmetric angle-ply plates simply supported on all edges: the boundary conditions indicated here as
SS-2, read
along the edges x1 =−a1

2 ,+
a1
2 : u1 = u3 = θ2 = ψ2 = 0,

along the edges x2 =−a2
2 ,+

a2
2 : u2 = u3 = θ1 = ψ1 = 0;

• The traction-free boundary conditions do not involve any values for the kinematic unknowns;
• The clamped boundary conditions (C) read

along the edges x1 =−a1
2 ,+

a1
2 : u1 = u2 = u3 = θ1 = θ2 = ψ1 = ψ2 = 0;

on the edges x2 =−a2
2 ,+

a2
2 : u1 = u2 = u3 = θ1 = θ2 = ψ1 = ψ2 = 0.
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3. NUMERICAL ANALYSIS

The accuracy and reliability of the enhanced RZT (en-RZT) for the static bending response was assessed
in [42]. Here the numerical investigation has been limited and performed on angle-ply multilayered and
sandwich plates in order to investigate the effect of various design parameters on critical buckling loads. Due
to the lack of exact three-dimensional and LW results, and for mechanical buckling of angle-ply multilayered
plates available in open literature, a numerical comparison with other higher order plate theories has been
made [48]. The results provided here have been obtained using the Ritz method where, according to the
numerical investigation performed in [47], the converged results for the critical buckling loads have been
reached with only eight orthogonal GS polynomials for both axial directions. If not otherwise specified, the
normalized critical buckling load (λcr) is computed as follows:

λcr =
λa2

1
E2h3 .

Table 1 and Table 2 report the mechanical properties and the stacking sequence, respectively, for the multi-

94 Proceedings of the Estonian Academy of Sciences, 2020, 71, 1, 84–102

3.1. Assessment of the en-RZT

In the first numerical assessment of the en-RZT, a simply supported (SS-2) antisymmetric angle-ply plate
subjected to a uniaxial compressive load is considered. In Table 3 the results obtained by the en-RZT
are compared with those obtained by Matsunaga [48] using a two-dimensional higher order theory. It is
important to note that the higher order theory developed by Matsunaga [48] underestimates the stiffness
of laminated structures with respect to the three-dimensional exact solution for bending problems. Thus, a
similar behaviour can be expected for critical buckling loads as well. Table 3 reports that the en-RZT critical
values are slightly higher than the reference ones. With increasing the span-to-thickness ratio, the results
of the en-RZT become closer and closer to [48], demonstrating that the effect of shear deformability is less
relevant but present in thin plates and verifying the accuracy of the en-RZT.

It is evident from Table 3 that the critical buckling loads for the uniaxial case are very sensitive to geom-
etry (aspect ratio) and to fibre directions. As expected, the critical buckling load increases with decreasing
the span-to-thickness ratio.

λcr =
λa2

1
E2h3 .

Table 1 and Table 2 report the mechanical properties and the stacking sequence, respectively, for the multi-
layered composite and sandwich plates considered in this numerical assessment.

 
              

         
           

               
  
  

 
              

         
           

               
  
  

E1/E2 E3/E2 GLT/E2 GTT/E2 &LT &TT

40 1 0.6 0.5 0.25 0.25 
15 1 0.5 0.35 0.3 0.35 
1 1 0.39 0.39 0.3 0.3 

 
              

         
           

               
  
  

Material name
A 
B 
C (isotropic) 

L – Longitudinal 
T – Transversal  

Table 1. Mechanical properties of materials 
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d thickness
)#$

Lamina materials Lamina orientations [°] 

5/0.25 A/A/A/A "! #%% # #!! #% 
(B/B)n "! #%% n

(B/B/B) (+45/%45/+45) 
/0.05/0.05 (A/A/C/A//AA) (+45/%45/0/%45/+45) 
/0.05/0.05 (A/A/C/A//AA) (+45/%45/0/+ /%%45) 

  
 

  

    
      
    
    
    

  

/1/(1/

k
Laminate Normalized

$(k))

L1 0.25/0.25/0.2
L2 /nn /n)n

L3 0.25/0.5/0.25 
S1 0.05/0.05/0.8/
S2 0.05/0.05/0.8/

Table 2. Stacking sequence for laminate and sandwich plates (from bottom to top)   

( 1
n/

1
n )n
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    a1/a2  

a1/h   [°]  0.5  1  2  

    [48] Present  [48] Present   [48] Present  

10  30   0.1592   0.1786  0.2889  0.3381  0.7939  0.9833  

45   0.1269   0.1425  0.3134  0.3714  1.0806  1.3760  

60  0.08547  0.09378  0.2889  0.3381  1.2924  1.6228  

    [48] Present  [48] Present   [48] Present  

20  30   0.5307   0.5512  0.1054  0.1115  0.3417  0.3751  

45  0.04114  0.04269  0.1169  0.1244  0.5078  0.5699  

60  0.02630  0.02706  0.1054  0.1115  0.6369  0.7142  

    [48] Present  [48] Present   [48] Present  

50  30  0.009377  0.009440  0.01939  0.01959  0.06927  0.07057  

45  0.007188  0.007234  0.02174  0.02199   0.1093  0.1120  

60  0.004503  0.004525  0.01939  0.01959   0.1416  0.1452  

Table 3. Critical buckling loads (in N/mm) for uniaxial compressive loads, 
laminate L1 simply supported on all edges (SS-2)

3.2. Parametric analysis

In this section the effect of various design parameters, such as the number of layers, ply orientation, aspect
ratio, boundary conditions, symmetry/asymmetry, has been investigated. For this purpose, by applying the
Ritz method, the converged results for the lowest critical buckling load have been reached with eight orthog-
onal polynomials.

In this first example (Figs 2 and 3), the normalized buckling loads as a function of lamination angle
and the number of layers are investigated. The effect of uniaxial and biaxial (r11 = 1) compressive load
cases is also assessed. Since the multilayered plates are antisymmetric with respect to the reference surface,
the simply supported conditions refer to the SS-2 case. The boundary conditions are the following: simply
supported on all edges (SSSS); simply supported (SS-2) on two edges perpendicular to x1-axis and the other
two edges are clamped (CSCS); a fully clamped plate (CCCC). All the plates have a span-to-thickness ratio
equal to 8.

As evident from Fig. 4, for a four-layered antisymmetric angle-ply (a1/a2 = 1) plate (L1) the high-
est compressive buckling load is reached by the fully clamped case. This is not surprising since a more
constrained structure has higher buckling loads.

Let us consider the effect of aspect ratio and boundary conditions on the buckling load parameter. For
this purpose we study a symmetric three-layered angle-ply plate (L3). The absolute value of the lamination
angle is 45◦. In Table 4 the buckling load parameters for uniaxial and biaxial compressive load cases are
reported. The span-to-thickness ratio is equal to 8.
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Table 4. Buckling load parameters for symmetric angle-ply rectangular plate (L3) 
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Fig. 2. Uniaxial buckling parameters for L2 squared plates

Table 4 shows that the aspect ratio and the load combination influence the critical buckling load. As
expected for both compressive in-plane loads, there is a significant reduction in critical values.

As a final comparison, the effect of the boundary conditions and the lamination scheme is investigated
for sandwich plates with symmetric and antisymmetric face-sheets. For this numerical example, two cases
are examined: simply supported on all edges (SS-1) and fully clamped on all edges (CCCC).

Table 5 reports the buckling load parameters for uniaxial and biaxial compressive load configurations.
Figure 5 demonstrates the corresponding buckling mode shapes for uniaxial compressive case. Table 5 and
Fig. 5 highlight the effect of the lamination scheme (symmetric/antisymmetric) on the value of the critical
buckling parameter and on the mode shape of the plate. It is interesting to note that for the lowest buckling
load value, the mode shapes do not correspond to the classical mode shape with one half-wave in each
direction.

Table 5. Buckling load parameters for symmetric (S1)
and antisymmetric (S2) sandwich angle-ply square plates

Uniaxial Biaxial
SSSS CCCC SSSS CCCC

Sandwich S1 0.0291 0.5643 0.0240 0.2957
Sandwich S2 0.8845 0.9015 0.7105 0.7522
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Fig. 3. Biaxial buckling parameters for L2 squared plates

4. CONCLUSIONS

In this paper, a linearized buckling analysis for angle-ply multilayered and sandwich plates has been per-
formed using the recently developed enhanced Refined Zigzag Theory (en-RZT). In this theory, the en-
hanced local displacement field with a new set of zigzag functions allows introducing the coupling effect
between the two in-plane displacements. This enhancement extends the possibility of symmetric and an-
tisymmetric angle-ply multilayered and sandwich plates. Based on the presented results, the en-RZT is
sufficiently accurate in predicting the critical buckling of various laminated angle-ply plates if compared to
the other solution available in literature. In the parametric analysis, the effects of the number of layers, lam-
ina orientations, plate geometry and boundary conditions have been thoroughly investigated by means of the
approximated Ritz method. The critical buckling load for uniaxial and biaxial in-plane loads is strongly in-
fluenced by the various aspects indicated above. The en-RZT is capable of predicting and assessing each of
these parameters in the design phase. The presented results computed according to the en-RZT confirm that
the widely used θ = 45◦ for the lamination scheme applied in aerospace structures is the best for carrying
in-plane loads.
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Fig. 4. Effect of BCs on buckling parameter for a) uniaxial (r11 = 0) and b) biaxial (r11 = 1) compressive loads.
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Fig. 5. Buckling mode shape for sandwich S1 (a–b) and sandwich S2 (c–d) under uniaxial compressive load.  

λcr = 0.0291 λcr = 0.5643

λcr = 0.8845 λcr = 0.9015
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APPENDIX

The Ritz method – assumed trial functions

The Gram–Schmidt orthogonal polynomials are herein used as trial functions in the Ritz method. This
linearly independent set of polynomials can also accommodate the various kinematic boundary conditions,
and they present fast convergence characteristics, see [47]. Below a brief description of the procedure
for constructing such polynomials is initially established for a one-dimensional problem, whereas for two-
dimensional applications a simple product of one-dimensional polynomialis is used, employing the variable
separation technique.

Let g(ξ ) be the one-dimensional Gram–Schmidt polynomial with ξ ∈ [−1,1]; the recurrence formula is

gm+1(ξ ) = (ξ −Am)gm(ξ )−Bmgm−1(ξ ), (m = 1,2, ...) (A.1)

with

Am =

∫ +1
−1 ξ g2

m(ξ )dξ∫ +1
−1 g2

m(ξ )dξ
; Bm =

∫ +1
−1 g2

m(ξ )dξ∫ +1
−1 g2

m−1(ξ )dξ
; (A.2)

and
g0(ξ ) = 0; g1(ξ ) = b1(ξ )Ω1b2(ξ )Ω2 , (A.3)

where in general
bi(ξ ) = 0 (A.4)

is the equation of the edge ith. For the one-dimensional problem at hand,

b1(ξ ) = 1+ξ and b2(ξ ) = 1−ξ . (A.5)

In Eq. (A.3) the values of the exponents depend on the boundary conditions: 0 if the function does not
vanish, 1 if the function vanishes (for the problem at hand see Table A.1). As mentioned above, the two-
dimensional admissible functions are written as a product of one-dimensional Gram–Schmidt polynomials.
Thus, for the general unknown function (38), we write

f̂ (ξ1,ξ2) =
M( f )

∑
m=1

C( f )
m g( f )

m (ξ1,ξ2) = g( f )T C( f ) (A.6)

with
m = (p−1)R( f )+ r. (A.7)
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The first basis function is given by

g( f )
1 (ξ1,ξ2) =

nl

∏
j=1

[χ j(ξ1,ξ2)]
Ω( f )

j , (A.8)

where nl gives the number of the plate edges (for quadrilateral plate, nl = 4), χ j(ξ1,ξ2) = 0 is the equation
of the jth edge of the plate, the exponents Ω j are chosen such that the geometric (prescribed) boundary
condition on the edge for the function f̂ (ξ1,ξ2) would be satisfied.

For example, for the square plate shown in Fig. 1, the functions χ j(ξ1,ξ2) are

(A. 6)

where nl gives the number of the plate edges (for quadrilateral plate, nl = 4), χ j(ξ1,ξ2) = 0 is the equation
of the jth edge of the plate, the exponents Ω j are chosen such that the geometric (prescribed) boundary
condition on the edge for the function f̂ (ξ1,ξ2) would be satisfied.

For example, for the square plate shown in Fig. 1, the functions χ j(ξ1,ξ2) are

χ1(ξ1,ξ2) = (ξ1 +1), χ2(ξ1,ξ2) = (ξ2 +1), χ3(ξ1,ξ2) = (ξ1 −1), χ4(ξ1,ξ2) = (ξ2 −1).
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Table A.8. Exponents for the classical geometric bound-
ary conditions
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Laminaat-  ja  sandwich-tüüpi  plaatide  nõtkuse  analüüs,  kasutades  modifitseeritud   
Zigzag  teooria  edasiarendusi 

 
Matteo Sorrenti, Marco Gherlone ja Marco Di Sciuva 

 
Kaasaegsed modifitseeritud Zigzag teooria edasiarendused (en-RZT) on laiendanud teooria rakendatavust laminaat- ja 
sandwich-tüüpi plaatidele. Käesoleva töö eesmärk on hinnata numbrilise analüüsi efektiivsust en-RZT rakendamisel 
tasapinnaliselt koormatud mitmekihiliste ja sandwich-tüüpi ristkülikplaatide korral. Rakendades Ritz’i meetodit koos 
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virtuaalse töö printsiibiga ja Gram-Schmidt ortogonaalseid polünoome on tuletatud lineariseeritud stabiilsuse võrrandid.  
En-RZT täpsuse hindamiseks on võrreldud nõtkusele vastavaid kriitilisi koormusi kirjanduseset leitud tulemustega. 
Läbiviidud numbrilisest analüüsist järeldub en-RZT kõrge täpsus kriitilise koormuse määramisel. 

Käesolev töö sisaldab parameetrilist analüüsi, mille eesmärgiks on uurida ristkülikplaadi kuvasuhte, paksuse, kihtide 
materjali orientatsiooni, erinevate tasapinnaliste koormuste kombinatsioonide ja rajatingimuste mõju materjali nõtkusele 
ning vastavate kriitiliste koormuste väärtustele.
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