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Abstract: Dynamic programming (DP) is currently the reference optimal energy management ap-
proach for hybrid electric vehicles (HEVs). However, several research concerns arise regarding the
effective application of DP for optimal HEV control problems which involve a significant number
of control variables, state variables and optimization constraints. This paper deals with an optimal
control problem for a full parallel P2 HEV with constraints on battery state-of-charge (SOC), battery
lifetime in terms of state-of-health (SOH), and smooth driving in terms of the frequencies of internal
combustion engine (ICE) activations and gear shifts over time. The DP formulation for the considered
HEV control problem is outlined, yet its practical application is demonstrated as unfeasible due to a
lack of computational power and memory in current desktop computers. To overcome this drawback,
a computationally efficient version of DP is proposed which is named Slope-weighted Rapid Dynamic
Programming (SRDP). Computational advantage is achieved by SRDP in considering only the most
efficient HEV powertrain operating points rather than the full set of control variable values at each
time instant of the drive cycle. A benchmark study simulating various drive cycles demonstrates
that the introduced SRDP can achieve compliance with imposed control constraints on battery SOC,
battery SOH and smooth driving. At the same time, SRDP can achieve up to 78% computational time
saving compared with a baseline DP approach considering the Worldwide Harmonized Light Vehicle
Test Procedure (WLTP). On the other hand, the increase in the fuel consumption estimated by SRDP
is limited within 3.3% compared with the baseline DP approach if the US06 Supplemental Federal
Test Procedure is considered. SRDP could thus be exploited to efficiently explore the large design
space associated to HEV powertrains.

Keywords: battery state-of-charge (SOC); battery state-of-health (SOH); electrified powertrain; energy
management; hybrid electric vehicle (HEV); optimal control

1. Introduction

Hybrid electric vehicles (HEVs) are a fundamental technology to reduce the fuel
consumption and pollutant emissions of road vehicles [1–3]. Nevertheless, a remark-
able research effort is required for developing optimal and accurate energy management
approaches for HEV powertrains [4,5]. Off-line HEV energy management strategies char-
acterize by the a priori knowledge of the entire driving mission in terms of vehicle speed
and road altitude profiles over time. They can be used to assess the fuel economy capabil-
ity of given HEV powertrain architectures and component sizes, and to provide optimal
benchmarks for real-time capable HEV control approaches [6].

Dynamic programming (DP) is by far the most popular off-line energy management
approach for HEV powertrains. DP lays its foundation on the principle of optimality
introduced by Bellman and it has been demonstrated capable of finding the global optimal
solution for the HEV control problem [7]. Nevertheless, the main shortcoming of DP
refers to its significant computational cost that is involved in exhaustively sweeping all the
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possible discretized control actions and vehicle states at each simulation time step [8,9].
Moreover, DP suffers from the curse of dimensionality: as the number of control and
state variables increases, the computational time required to complete the algorithm raises
exponentially [10]. These shortcomings have forced the engineers to compromise when
implementing DP for optimal HEV control throughout the years. For example, the number
of considered control and state variables has been limited, thus introducing important
limitations in modeling HEV powertrain operation over time [11].

The abovementioned simplifications currently restrain the effective application of
DP to design and size HEV powertrains at an industrial level, which is generally per-
formed by considering computationally efficient real-time capable sub-optimal control
approaches [12,13]. For example, in 2019 the author of this paper introduced a rapid near-
optimal HEV powertrain energy management approach named slope-weighted energy-
based rapid control analysis (SERCA). SERCA has been demonstrated to be capable of
identifying near-optimal HEV control trajectories in terms of fuel economy when compared
with DP. However, SERCA requires a computational effort which is remarkably lower than
DP by around two orders of magnitude. The potential of SERCA has been proved over a
wide range of HEV powertrain architectures including power-split layouts [14], parallel
layouts, and series-parallel layouts [10]. Recently, the SERCA approach has been extended
to plug-in HEVs while accounting for battery state-of-charge (SOC) limits and smooth
driving conditions in terms of restricting the frequency of internal combustion engine (ICE)
activations and gear shifts over time [15].

In a first attempt, the employment of the SERCA algorithm may be suggested for
mild and full HEV powertrain layouts as well. Nevertheless, a major obstacle arises when
attempting to straightforwardly apply the SERCA algorithm to many mild and full HEV
configurations. The SERCA algorithm does not allow for controlling the instantaneous
value of battery SOC throughout the entire drive cycle under analysis. Instead, only
balancing the net battery energy consumption for the drive cycle is performed in order
to reduce the computational cost of the algorithm [14]. When considering plug-in HEVs
operating in charge-sustaining mode, this approach may not have a significant impact
on the SOC window, which is generally contained within allowed limits for typical type-
approval drive cycles (for example, the reader can refer to the SOC trajectories generated
by SERCA for plug-in HEVs and illustrated in the figures in [10]). On the other hand, due
to reduced battery pack capacity, limiting the used SOC window within allowed values
may not always be guaranteed in the case of mild and full HEVs. For example, Figure 1
illustrates the SOC trajectory generated by SERCA for a parallel P2 full HEV powertrain
embedding a 1.37 kWh battery pack. Even though charge-sustaining operation is achieved
using the algorithm, the resulting SOC trajectory is found to exceed the upper allowed limit,
hitting more than 120% of battery SOC, which clearly represents an unreachable value.

The main objective of this paper thus involves solving the drawbacks of both algo-
rithms, i.e., reducing the computational cost of DP and allowing SERCA to comply with
battery SOC physical limits. A dedicated control methodology therefore needs development
to predict the near-optimal fuel economy benchmark of mild and full HEVs while ensuring
computational light-weighting and compliance with SOC allowed boundaries. Additional
requirements which need fulfillment in this paper involve smooth driving (e.g., related to
the number of ICE activations and gear shifts) and battery lifetime. Indeed, preserving bat-
tery state-of-health (SOH) is a key requirement in electrified road vehicles [16]. It has been
demonstrated how remarkably increasing the battery lifetime could indeed be achieved
for mild and full HEVs at a low expense in terms of fuel consumption in the case that a
proper multi-objective energy management strategy is implemented [17]. In this way, an
effective downsizing of the battery pack while preserving improved fuel economy can be
achieved [18].
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Figure 1. SOC trajectory generated by SERCA in WLTP for a parallel P2 full HEV powertrain
embedding a 1.37 kWh battery pack.

The key idea implemented here to achieve the predefined target involves exploiting
the computational rapidness of SERCA to significantly decrease the computational load of
DP while preserving near-optimality in terms of fuel economy and compliance with smooth
driving constraints, battery SOC constraints and battery lifetime target. The proposed
HEV energy management strategy is named slope-weighted rapid dynamic programming
(SRDP) and its workflow is inspired from both SERCA and DP control approaches. The
novelty of the proposed SRDP approach relies in combining SERCA and DP to exploit the
specific advantage of each HEV control method. SERCA is used first to rapidly identify
few predefined HEV powertrain optimal operating points at each time step of the driving
mission, while a DP problem is solved to optimize the HEV powertrain operation in the
overall driving mission while complying with smooth driving constraints and battery
SOC physical limits. Moreover, an iterative procedure allows reducing the net battery
SOH variation until the considered battery lifetime requirement is met. Battery lifetime is
particularly predicted here by means of a dedicated numerical battery ageing model. The
rest of this paper is organized as follows: implemented numerical approaches to model
the parallel P2 HEV powertrain and the high-voltage battery ageing process are described
first. The following section illustrates the optimal control problem for full HEVs with
constraints on smooth driving, battery SOC and battery lifetime in terms of SOH. The
baseline formulation of DP for solving the retained optimal control problem is illustrated,
and the reasons that restrain its practical application are discussed. The workflow of the
proposed SRDP algorithm is then proposed and illustrated in detail to solve the encountered
roadblock. Simulation results are finally presented, and conclusions are drawn.

2. HEV and Battery Numerical Modeling

This section describes the parallel P2 full HEV powertrain architecture first. Then,
the HEV numerical modeling approach adopted in this study is discussed. Finally, the
considered battery ageing model is illustrated. All the numerical models and algorithms
are implemented in Matlab® software in this work.

2.1. Parallel P2 HEV Powertrain

Figure 2 illustrates the representative parallel P2 full HEV powertrain architecture
retained in this study, while Table 1 lists all the corresponding relevant parameters. In
this parallel P2 HEV powertrain, the electric motor/generator (MG) is placed between
the ICE and the automated manual transmission (AMT) gearbox. A clutch connection is
included between ICE and MG. Both ICE and MG can directly deliver tractive power to the
driven wheel shaft. Two variables need to be controlled in the parallel P2 HEV powertrain
retained in this work. They particularly relate to the gear number to be engaged in the AMT
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and to the torque split between ICE and MG. This latter control variable here corresponds
to controlling the ICE torque. Indeed, in a backward HEV modelling approach such as
the one described in sub-Section 2.2, controlling the ICE torque allows for automatically
determining the value of MG torque required to comply with the instantaneous driver’s
torque demand.
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Figure 2. Parallel P2 full HEV powertrain architecture.

Table 1. HEV parameters.

Component Parameter Value

Vehicle Mass 948 Kg
RLA 104.49 N/m
RLB 2.428 N/(m/s)
RLC 0.410 N/(m/s2)

Wheel dynamic radius
(

rdyn

)
0.317 m

ICE Capacity 1.0 L
Configuration 3 cylinders, in-line

Type Spark ignition, naturally aspired
Maximum power 51 kW @ 6000 rpm
Maximum torque 90 Nm @ 3500 rpm

AMT Gear ratios (iAMT) [3.85; 2.27; 1.52; 1; 0.81]
Efficiency (ηAMT) 0.95

Final drive Gear ratio (iFD) 3.70
Efficiency (ηFD) 0.95

MG Maximum power 28 kW
Maximum torque 91 Nm

Auxiliaries Electrical subsystem power 500 W
Battery pack Configuration 120S 2P

Nominal capacity 1.82 kWh
Cell type and capacity A123 ANR26650M1-B, 2.5Ah

Looking at Table 1, retained vehicle chassis data are for an A-segment passenger car
and they can be found in the US EPA database [19]. The ICE data relate to a three-cylinder
in-line naturally aspired spark-ignition engine, while the interior permanent magnet MG
has been sized targeting a hybridization factor of around 35%. Operating maps for both
the ICE and the MG have been generated by means of Amesim® software according to the
procedures reported in [20,21]. A five-speed AMT configuration is retained. The modelled
battery pack is assumed including quantity 240 A123 26650 cells in 120S 2P configuration,
thus attaining a nominal capacity of 1.82kWh. Values of open-circuit voltage and internal
resistance as a function of battery state-of-charge (SOC) have been derived from [18],
retaining new cell conditions.
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2.2. HEV Numerical Model

In general, a quasi-static backward modeling approach is implemented here for the
HEV [22]. The requested torque at the wheels Twheels can be evaluated backwardly at each
time step using Equation (1):

Twheels =
(

Froad + mveheq ·a
)
·rdyn (1)

Froad is the total road resistance force, which can be evaluated using experimental road
load coefficients. mveheq stands for the vehicle equivalent mass evaluated at the driven
wheel shaft including the inertia of the powertrain rotating components (wheels, shafts, ICE
and MGs), while a is the value of vehicle acceleration as per the drive cycle requirements.
rdyn is the wheel rolling radius. The total road load Froad acting on the vehicle is expressed
in Equation (2) and it is given by the rolling resistance contribution Froll , the aerodynamic
drag Fair, the gravity’s component in the direction of motion Fg, and Fmisc which includes
various other forces such as side force or transmission losses. The equation is subsequently
reinterpreted highlighting the empirical road load coefficients (RLA, RLB and RLC) and
their dependence from the vehicle speed. Under the assumptions of flat road and no
winding, these coefficients can be experimentally derived through vehicle coast-down
tests. Subsequently, they can be used to express the overall horizontal resistance force as a
function of the vehicle speed. On the other hand, the contribution of Fg needs to maintain
an analytical formulation depending on the vehicle mass mveh, the gravity acceleration g
and the road slope α.

Froad = Froll + Fg + Fmisc(v) + Fair

(
v2
)
= RLA + RLBv + RLCv2 + mveh · g · sin(α) (2)

Looking at Figure 2, the torques of ICE and MG are additive and they follow Equation (3).

(TICE + TMG) · iAMT
(
ngear

)
· iFD =

Twheels

[ηAMT · ηFD]
sign(Twheels)

(3)

TICE and TMG are the ICE torque and the MG torque, respectively. iAMT and iFD
stand for gear ratios of the gear number engaged in the AMT (ngear) and of the final
drive, respectively. Finally, ηAMT and ηFD are efficiencies of the AMT and the differential,
respectively. Considering the sign of Twheels as the exponential of the driveline efficiency
values allows accounting for both propelling and braking cases.

Three operating modes are available for this HEV powertrain, namely pure electric,
torque assist and battery charging. Different operating modes are enabled depending on
whether the ICE is activated and employed to propel the vehicle or not and according to the
value of TICE. In torque assist mode, both TICE and TMG are positive and the overall torque
provided to the transmission shaft is represented by the sum of their partial contributions.
In battery charging mode, the ICE provides higher torque compared to the amount of
torque requested by the driver. The exceeding torque value is then absorbed by the MG,
which operates as generator to charge the battery.

As concerns the electrical energy path, the amount of power that the high-voltage
battery pack is requested to either deliver or absorb (Pbatt) can be determined as:

Pbatt =
PMG

[ηMG(ωMG, TMG )]sign(PMG)
(4)

where PMG and ηMG respectively denote the mechanical power and the overall efficiency
of the MG. The latter is evaluated by means of an empirical lookup table with speed (ωMG)
and torque (TMG) as independent variables. Retaining the sign of PMG as exponent in
the denominator allows capturing both depleting and charging battery conditions within
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this formula. The evolution of battery SOC over time (SOC) can then be evaluated by
considering an equivalent open circuit model, as in Equation (5):

SOC(ti) = SOC0 −
∫ ti

0

Ibatt(Pbatt, SOC)
Asbatt

dt

with Ibatt(Pbatt, SOC) =
VOC(SOC)−

√
[VOC(SOC)]2 − 4·RIN(SOC)·Pbatt

2·RIN(SOC)

(5)

where Asbatt is the battery pack capacity in ampere-seconds, while Ibatt stands for the
battery pack current. VOC and RIN are the open-circuit voltage and the internal resistance
of the battery pack, as obtained by interpolating in one dimensional lookup tables with
SOC and an independent variable.

Concerning the ICE, the instantaneous rate of fuel consumption in grams/second
.

m f uel can be evaluated using an empirical steady-state lookup table with torque and speed
as independent input variables.

2.3. Battery Ageing Model

A weighted ampere-hour (Ah) model has been retained from [18] and implemented in
this work to estimate battery ageing. Ah models (also called performance-based models) as-
sume that a battery can accomplish an overall lifetime Ah throughput, which is commonly
weighted according to current magnitude, temperature, and other factors. These models are
computationally efficient and conveniently adaptable to various battery technologies [23].
Moreover, they allow for optimizing the battery operating conditions, which is a fundamen-
tal requirement for real-time on-board implementation [24,25]. As a minor disadvantage,
they are not based on the physical or chemical properties of the cell; instead, they are
extrapolated from ageing tests performed under several battery operating conditions.

The battery SOH can range from 1 to 0, respectively indicating beginning and end of
life. At a generic time instant ti, the battery SOH (SOH) can be evaluated using Equation (6):

SOH(ti) = SOH0 −
∫ ti

0

.
SOH(c, T) dt

with
.

SOH(c, T) = 0.2
c

3600·N(c, T)

(6)

where SOH0 is the initial SOH,
.

SOH stands for the instantaneous reduction rate in SOH,
and c is the instantaneous battery C-rate. c is evaluated here as the ratio between the battery
power in kilowatts and the rated battery capacity in kilowatt-hours. N stands for the
number of evaluated roundtrip cycles that can be achieved during the entire battery lifetime.
The factor of 0.2 is correlated with the factor N being evaluated for a 20% reduction in
residual capacity corresponding with a value of 0 for battery SOH. The factor of 3600 allows
converting the units of c from 1/h to 1/s. N is not a constant value, but rather it depends
on the battery operating conditions (i.e., temperature T and C-rate). Evaluating N requires
determining the percentage of battery capacity loss ∆Ahbatt%. This can be performed by
implementing the methodology introduced by Bloom et al. in 2001 [26], which takes
inspiration from the Arrhenius equation describing the evolution of the chemical reaction
of ideal gases. The traditional Arrhenius equation has been adapted as in Equation (7)
aiming at modeling battery ageing.

∆Ahbatt% = B(c) · e−
A f (c)

T · Ahtp
z (7)

The change in cell capacity ∆Ahbatt% is a function of an empirical pre-exponential
factor B, an ageing factor A f , the lumped cell temperature T, a power-law factor z and
the total lifetime ampere-hour throughput Ahtp. Factors B and A f are determined based
on the instantaneous battery c-rate c. The numerical values for the ageing parameters
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of an A123 26650 LiFePO4 chemistry cell were previously determined by performing a
one-year long experimental campaign. In particular, three ANR26650M1-B cells were
installed in a thermal chamber and connected to a battery cycler. Three current profiles
were determined by performing numerical simulations of an HEV controlled by dynamic
programming in the worldwide harmonized light vehicle test procedure (WLTP). Obtained
current profiles were then repeatedly fed to the battery testing cells using a 75 A and 0–5 V
rated channel of an MCT 75-0/5-8ME Digatron Power Electronics battery cycler. The cells
were characterized in terms of residual capacity, open-circuit voltage, internal resistance,
charge power capability and discharge power capability as they aged. Finally, the collected
experimental data were used to calibrate the battery ageing model. The interested reader
can consult [18] to obtain more details concerning the experimental campaign performed
and the tuning process for the numerical ageing model. Retained values for the parameters
of the described Ah battery ageing model are reported in Table 2. In particular, values for
the factor B reported in the third row of Table 2 correlate with the respective values of the
C-rate listed in the fourth row of Table 2.

Table 2. Parameters of the battery ageing model for A123 26650 cells.

Parameter Value Units of Measure

Ageing factor, Af 3814.7–44.6·c K
Power law factor, z 0.55 -

Empirical pre-exponential
factor B(c)

[21,681; 17,307; 12,934; 13,512; 15,512;
12,099; 11,380; 13,656; 16,342; 14,599] -

Current C-rate, c [2; 4; 6; 8; 10;
12; 14; 16; 18; 20] 1/h

As mentioned earlier, the battery is assumed here to reach the end of life (i.e., SOH = 0)
when 20% of its initial capacity is lost. Therefore, the overall value of ∆Ahbatt% can be set to
20% and Ahtp can be determined as a function of c and T using Equation (7). Subsequently,
the total number of lifetime roundtrip cycles N can be calculated using Equation (8):

N(c, T) =
Ahtp(c, T)
2 · Ahbatt

(8)

where Ahbatt stands for the rated battery capacity in ampere-hours. The factor 2 in the
denominator is to account for Ahtp including both the charge and discharge ampere-hours.
Figure 3 shows the number of allowed battery roundtrip cycles for different temperatures
on a logarithmic scale as predicted by the illustrated ageing model.
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(10)
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Figure 3. Number of allowed battery roundtrip cycles as function of the C-rate and temperature as
predicted by the implemented ageing model.
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The described Ah numerical model is implemented in Matlab® software and it allows
for predicting the battery capacity fading as a function of battery C-rate and temperature.
In this work, it is assumed that ageing is independent of SOC, as supported by the ageing
test results presented in [27]. This also is likely what happens for the retained case study
because the HEV powertrain is studied while operating in charge sustaining mode, where
the battery SOC stays within a narrow band.

3. Optimal Control of Full HEVs with Constraints on Smooth Driving, Battery SOC
and Battery SOH

This section aims at describing the mathematical formulation of the optimal HEV con-
trol problem considering constraints on smooth driving, battery SOC and battery SOH. Fur-
thermore, DP is discussed as a popular algorithm to solve the introduced control problem.

3.1. Optimal HEV Control Problem

The mathematical formulation of the optimal HEV control problem is illustrated from
Equations (9)–(14). Considering discretized time instants of a predefined driving mission,
this control problem aims at minimizing the cost functional expressed in Equation (9)
which corresponds to the sum of the equivalent fuel consumption value in the overall drive
cycle from its initial time instant t0 to the final on tend. Then, optimization constraints are
reported form Equations (10)–(14).

arg min

{
J =

tend
∑

t=1

[ .
m f uel(t) · ∆t

]
+

∑tend
t=1 [VOC(t) · Ibatt(t) · ∆t]

ηICE · LHVf uel

}
subject to :

(9)

Mechanical constraints:

1 ≤ ngear(t) ≤ 5

ICEon/o f f (t) = [0, 1]

ωICE

[
t, ICEon/o f f (t) = 0

]
= 0

ωidle ≤ ωICE

[
t, ICEon/o f f (t) = 1

]
≤ ωICEMAX

0 ≤ ωMG(t) ≤ ωMGMAX TICE

[
t, ICEon/o f f (t) = 0

]
= 0

TICEmin[ωICE(t))]≤ TICE

[
t, ICEon/o f f (t) = 1

]
≤ TICEMAX [ωICE(t)]

TMGmin [ωMG(t)] ≤ TMG(t) ≤ TMGMAX [ωMG(t)]
Pbattmin

≤ Pbatt(t) ≤ PbattMAX

(10)

Battery SOC constraints:

.
SOC(t) = f [SOC(t), ωMG(t), TMG(t)]

SOCmin ≤ SOC(t) ≤ SOCMAX

SOC(t0) ≤ SOC(tend) ≤ [SOC(t0) + δSOC]

(11)

Battery SOH constraint:

0.2·
Lcycle

SOH(t0)− SOH(tend)
≥ Li f ebatt,target (12)
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Smooth driving constraints:

TICE[t, Twheels(t) < 0] = 0
tend

∑
t=1

{
sign

[ .
m f uel(t)

]
> sign

[ .
m f uel(t− 1)

]}
≤ Ncranking,MAX

tend

∑
t=1

[
ngear(t) 6= ngear(t− 1)

]
≤ Nshi f ts,MAX

(13)

Parallel P2 HEV powertrain constraints:

ωICE(t) = ωMG(t) =
v(t) · iFD · iAMT

(
ngear, t

)
rdyn

TMG(t) =

{
Twheels(t)

[ηAMT · ηFD]
sign[Twheels(t)] · iAMT

(
ngear, t

)
· iFD

− TICE(t)

} (14)

ηICE and LHVf uel stand for the average ICE efficiency in the overall drive cycle and for
the fuel lower heating value, respectively. Mechanical constraints expressed in Equation (10)
ensure that the HEV powertrain operation complies with the operating limits of each power
component. ICEon/o f f is a binary variable that detects whether the ICE is activated or
de-activated (i.e., on-1 or off-0). Equation (11) considers battery SOC constraints, where the
battery SOC rate

.
SOC is a function of the battery SOC itself and of speed and torque values

for the MG. The battery SOC value should be contained within corresponding allowed
limits. Finally, charge-sustaining HEV operation is targeted by imposing similar values
of battery SOC at the beginning and at the end of the driving mission while assuming an
appropriate tolerance δSOC. The battery SOH constraint is considered in Equation (12) and
involves guaranteeing a certain value of battery kilometrical lifetime. This is performed by
assuming the same driving mission steadily repeated over the entire vehicle lifetime. Lcycle
and Li f ebatt,target are the spatial distance driven in the overall drive cycle and the battery
lifetime target, respectively. Both their values are expressed in kilometers. The factor of
0.2 is to account for 80% SOH being considered end of life. SOH is calculated using the
numerical ageing model illustrated in Section 2.3 and following Equations (6)–(8). Looking
at the smooth HEV driving constraints illustrated in Equation (13), the ICE torque is set
to 0 when the vehicle is decelerating (i.e., Twheels < 0). Indeed, the noise caused by the
ICE delivering positive torque could significantly undermine the riding perception when
the driver aims to slow down to vehicle. Furthermore, the frequency of ICE activations
and gear shifts over time in the overall driving mission should be restricted below the
predefined scalar thresholds Ncranking,MAX and Nshi f ts,MAX , respectively. An ICE activation
and a gear shift can be detected in those time instants in which the fuel consumption
switches from zero to a positive value and the selected gear number does not match with
the gear selected at the previous time instant, respectively. Finally, in a backward simulation
approach the speed and torque of ICE and MG are constrained from the vehicle speed,
the driver’s torque demand and the controlled values for gear number and ICE torque
following the parallel P2 HEV powertrain constraints.

It should be noted that an assumption has been made in this work that considers a
lumped model for the battery pack both in terms of electrical, thermal and ageing behaviors.
Moreover, the battery lumped temperature has been assumed constant over time. Even if
Figure 3 highlights a strong dependence of battery ageing effects on temperature, the con-
sidered representative HEV is equipped with an active battery pack cooling system which
is assumed to operate in ideal conditions and to guarantee a constant battery temperature
of 25 ◦C [17].
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3.2. Baseline DP Formulation

Assuming overall a priori knowledge of future driving conditions for the drive cycle
under analysis, the global optimal solution for the full HEV control problem with con-
straints on smooth driving, battery SOC and battery SOH can be found by exploiting the
Bellman’s principle of optimality [28]. Deterministic DP can be implemented in this frame-
work as a well-known procedure to evaluate global optimal HEV control trajectories [29,30].
In general, the optimal HEV control solution is evaluated by DP by exhaustively sweeping
all possible discretized control actions while solving an optimization problem backwardly
form the final time instant to the initial one of the considered driving mission [31,32]. In
this work, the retained DP tool relates to the generic DP Matlab® toolbox made available
by Sundstrom and Guzzella [33].

To solve an optimal control problem, DP notably requires the definition of a control
variable set, a state variable set and a cost-to-go-functional. The control variable set U
associated to the HEV powertrain layout retained in this study is reported in Equation (15)
and it includes the gear number selection and the controlled torque of the ICE.

U =

{
ngear
TICE

}
(15)

Combining the values of control variables comprised in U enables generating all
the possible discretized HEV control actions that satisfy the constraints introduced in
Equations (10)–(14). DP involves defining a state variable set X as well that comprises the
variables that are tracked over time throughout the drive cycle under analysis. Constraints
can be imposed both on the values of state variables at each time instant of the drive cycle
and on their final values at the end of the drive cycle [34]. Equation (16) illustrates the state
variable set considered for the optimal HEV control problem formulation introduced.

X =


SOC
ngear

ICEon/o f f
SOH

 (16)

X includes, in this case, the battery SOC which is monitored to ensure charge-sustaining
HEV operation, to comply with SOC constraints in Equation (11) and to properly evaluate
SOC dependent battery parameters such as open-circuit voltage and internal resistance for
example. Moreover, real-time tracking of the battery SOC value is performed on-board
electrified vehicles as well [35,36]. The gear number ngear and the ICE state ICEon/o f f are
comprised in X to recognize gear-shifting and ICE de/activation events, respectively. Com-
pliance with the smooth HEV driving constraints introduced in Equation (13) is allowed in
this way. As concerns battery SOH, it needs to be tracked throughout the drive cycle to
ensure that its final value fulfills the corresponding constraint expressed in Equation (12).

Finally, an instantaneous cost-to-go functional JDP is considered as shown in Equation (17):

JDP(t) =
.

m f uel + µICE ·
[

ICEon/o f f (t) > ICEon/o f f (t− 1)
]
+ µgear ·

[
ngear(t) 6= ngear(t− 1)

]
(17)

where the first term is the fuel consumption, while the latter two terms enable accounting
for smooth driving conditions. µICE and µgear are constant penalization factors applied at
each time instant in which gear shifting and ICE de/activation are triggered, respectively.
Both µICE and µgear require calibration to ensure satisfaction of smooth driving constraints
introduced in Equation (13) while avoiding excessive HEV fuel economy worsening. It
should be noted that the DP cost functional JDP expressed in Equation (17) does not include
a net battery energy variation term as the cost functional for the optimization problem
reported in Equation (9) did. This is performed in order to limit the overall number of
different terms included in the DP cost functional. The overall simplicity of the algorithm
can be enhanced in this way, which is beneficial for effectively handling the variety of
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control optimization constraints involved. Moreover, the battery energy content of the
considered full HEV powertrain is limited, which overall entails small net battery energy
variations at the end of a drive cycle in ideal charge-sustaining operation as predicted
by DP.

The main shortcoming of DP relates to its remarkable computational cost. Moreover,
the computational effort required by DP exponentially increases when increasing the num-
ber of control and state variables due to curse of dimensionality [37,38]. For this reason, the
formulation of DP introduced in this section cannot be implemented on the computational
platform used in this work, i.e., a desktop computer with Intel Core i7-8700 (3.2 GHz) and
32 GB of RAM. In particular, the reader can refer to [15] where the same DP formulation
was applied to a parallel P2 HEV powertrain layout similar to the one considered in this
work. The same DP Matlab® toolbox and the same computational platform were used.
The only difference is related to the battery SOH not being involved either in the optimal
control cost functional or among the DP state variables. The state variable set thus included
three variables only. In these conditions, it took up to 5.8 h to complete a DP simulation
considering the Worldwide-harmonized Light-vehicle Test Procedure (WLTP) as target
drive cycle. The reader can notice how limits in both computational power and memory
capabilities available on a desktop computer currently prevent considering a further state
variable associated to battery SOH for solving the optimal HEV control problem described.
Decreasing the computational load of DP is thus required for solving the optimal HEV
control problem considering constraints on smooth driving, battery SOC and battery SOH.

4. Workflow of the Proposed Rapid Dynamic Programming Algorithm

Due to the increased number of considered vehicle states (i.e., battery SOC, battery
SOH, selected gear number and ICE state), an optimal state-sensitive control approach
such as DP may be suggested to account for their evolution over time. However, the
previous section highlighted the DP limits that currently restrain its application for the
considered optimal HEV control problem, i.e., excessive computational cost and the curse
of dimensionality. To overcome this drawback, a rapid version of DP is proposed in this
section to reduce the computational cost associated to DP and limit the related curse of
dimensionality. The key idea behind the proposed approach is to consider not all the
possible values of HEV powertrain control variables in terms of gear number and ICE
torque at each time instant, but rather to retain only the few most efficient HEV powertrain
operating points for each time step. As will be shown in the results section, this approach
enables the effective application of DP for the considered optimal HEV control problem with
constraints on smooth driving, battery SOC and battery SOH. Furthermore, computational
efficiency and proximity with the global optimal HEV control solution can be ensured. This
idea will be illustrated in detail in the follow up of this section and it has been inspired
by the SERCA algorithm for controlling HEV powertrains [10,14]. For this reason, the
DP-based rapid energy management approach for HEV powertrains introduced in this
paper is named Slope-weighted Rapid Dynamic Programming (SRDP). Its workflow is
illustrated in Figure 4 and detailed as follows.

The SRDP approach receives as input, other than the HEV powertrain parameters and
the driving mission under analysis, Ncranking,MAX, Nshi f tsMAX , λICE, λGS and αbatt. λICE,
λGS and αbatt are scalar coefficients that tune the ICE cranking frequency over time, the gear
shit frequency over time, and the severity of the battery ageing resulting from the control
actions performed, respectively. Values of λICE, λGS and αbatt are all initialized as 0 at the
beginning of the SRDP workflow illustrated in Figure 4 not to excessively deteriorate the
estimated fuel economy during the first iteration of the algorithm. Then, their values will
be iteratively updated to meet HEV control optimization constraints in terms of smooth
driving and battery lifetime, as will be described below for Step C.
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Figure 4. Workflow of the slope-weighted rapid dynamic programming (SRDP) algorithm for
HEV powertrains.

During Step A of SRDP, the first two stages of the SERCA algorithm are performed:
the sub-problems exploration and the optimal operating points definition. In the sub-
problems exploration, all the possible HEV powertrain control solutions are assessed for
each time instant in terms of estimated fuel consumption and use of battery energy. Then,
the optimal operating points are defined in the baseline SERCA algorithms as the ones that
maximize the ratio between battery SOC increase and fuel consumption [14]. However,
a limited number of operating points is retained at each time instant in SRDP. Therefore,
a dedicated procedure is required to adapt the selection of the optimal operating points
towards reflecting the adjustment of the HEV powertrain operation to overall guarantee
satisfactory battery lifetime. To this end, the approach proposed here involves adapting
the definition of the slope parameter θ used in the baseline SERCA algorithm to identify
the optimal hybrid electric operating points by including the variation in battery SOH
as well. The slope parameter θHEVk that characterizes the generic hybrid electric control
sub-solution in a generic time instant of the drive cycle is thus expressed in Equation (18).

θHEVk

( .
m f uel ,

.
SOC,

.
SOH

)
=

∆
.

SOC ·
(

1−αbatt · ∆
.

SOH
)

∆
.

m f uel
=

.
[SOC(k)−

.
SOC(optEV)].

m f uel(k)
·
{

1 + αbatt · µ ·
[ .
SOH(optEV)−

.
SOH(k)

]} (18)

optEV is the optimal pure electric operating point which can be identified as the gear
number that minimizes the battery electrical energy depletion in pure electric operation
for the given time instant of the driving mission. µ denotes a flag for battery life ex-
tension through hybrid operation compared with pure electric operation, i.e., µ = 1 if

.
SOH(k) <

.
SOH(optEV), while µ = 0 otherwise. A battery ageing sensitive slope parame-

ter θHEVk can be defined in this way that includes ∆
.

SOH, i.e., the variation in the rate of
battery SOH consumption between the pure electric optimal sub-solution and the hybrid
electric sub-solution k. The higher the reduction in instantaneous battery capacity fading
for the hybrid electric sub-solution k under analysis with respect to the optimal pure electric
sub-solution for the considered time instant, the higher the corresponding value of the
slope θHEVk in such a manner. The coefficient αbatt allows weighting the influence of battery
ageing when defining the slope values for the hybrid electric sub-solutions. Figure 5 shows
an example of how the optimal hybrid electric operating points selected in a given time
instant may vary when considering battery ageing as further criterion for a parallel P2 full
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HEV. Compared with the optimal operating points selected while considering fuel economy
only (i.e., αbatt = 0), a shift towards lower values of instantaneous fuel consumption and
battery charged energy can be observed for the optimal hybrid electric operating points for
both gears when retaining battery ageing as well (e.g., αbatt = 1). This correlates well with
the overall rate of battery capacity fading being proportional to the battery depth of charge
and discharge in the retained driving mission.
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(v = 27.5 km/h, a = 0.3 m/s2).

Step A in Figure 4 leads to identify a limited number of suitable optimal operating
points for each time instant of the retained driving mission. A variable with the structure
illustrated in Table 3 can thus be created that contains the set of values for control variables
u and state variables x related to each of the N+1 operating points identified at the generic
time instant i. In the next sub-section, a case study will be presented to determine the
number N+1 and the classification of the optimal operating points retained through SERCA
for each time instant of the retained driving mission.

Table 3. Stored variable for the target drive cycle in SRDP.

Target Drive
Cycle Point

Optimal Pure
Electric Point

Optimal
Hybrid
Electric
Point #1

. . .

Optimal
Hybrid
Electric
Point k

. . .

Optimal
Hybrid
Electric

Point #N

. . . . . . . . . . . . . . . . . . . . .

i − 1 xi−1,1, ui−1,1 xi−1,2, ui−1,2 . . . xi−1,k+1,
ui−1,k+1

. . . xi−1,N+1,
ui−1,N+1

i xi,1, ui,1 xi,2, ui,2 . . . xi,k+1, ui,k+1 . . . xi,N+1, ui,N+1

i + 1 xi+1,1, ui+1,1 xi+1,2, ui+1,2 . . . xi+1,k+1,
ui+1,k+1

. . . xi+1,N+1,
ui+1,N+1

. . . . . . .. . . . . . . . . . . . .

Only the variable illustrated in Table 3 is then considered as input for the control
variable set in DP executed at Step B in Figure 4. This method allows us to remarkably
shrink the search space that the DP is required to exhaustively explore for the driving
mission under analysis. The state variables considered here in SRDP are the battery SOC,
the ICE state and the selected gear number. On the other hand, the instantaneous cost
functional JSRDP whose value integrated throughout the considered driving mission needs
minimization by SRDP for a parallel P2 HEV can be expressed in Equation (19).
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JSRDP =
.

m f uel + λICE · (crankICE > 0) + λGS ·
(

gearshi f t
∼= 0

)
+ αbatt ·

.
SOH (19)

Three additional terms are included to the instantaneous fuel consumption in the
expression of the SRDP cost functional that enable reducing the number of ICE activations
and gear shifts and increasing the battery lifetime, respectively. crankICE and gearshi f t are
variables that can detect ICE cranking and gear shift events thanks to changes in the values
of corresponding state variables, respectively. Once the traditional workflow of DP has been
completed, Step C of SRDP aims to ensure that both smooth driving and battery lifetime
set criteria are satisfied by the generated control solution. This relates to the number of ICE
activations being less than or equal to NcrankingMAX , the number of gear shifts being less
than or equal to Nshi f tsMAX , and the kilometrical battery lifetime being equal to or greater
than Li f ebatttarget . The workflow of SRDP is concluded in case all the three listed conditions
are satisfied at once. Alternatively, weighting coefficients related to the unsatisfied criteria
are updated accordingly in Step D in Figure 4. Particularly, λICE is increased to reduce the
number of ICE activations, λGS is increased to reduce the number of gear shifts and αbatt is
increased to extend battery lifetime in case the corresponding criteria have not been fulfilled
in the concluded iteration of SRDP. It should be reminded that battery SOC constraints
are already straightforwardly fulfilled in SRDP by imposing appropriate constraints both
on the instantaneous and on the final values of the corresponding state variable. On the
other hand, a dedicated approach is proposed to extend the battery lifetime in SRDP
through increasing the value of αbatt, since the battery SOH is not included in the retained
state variables.

Steps A to D of SRDP can thus be recursively performed until all the smooth driv-
ability and battery lifetime criteria have been satisfied. After completion of the SRDP
algorithm, the output parameters of the algorithm in Figure 4 include time series of control
variables, time series of state variables and the estimated fuel consumption for the analysed
driving mission. A case study to determine the most suitable number and category of
hybrid electric operating points at each time instant will be presented in the next sec-
tion. Then, a comparison between SRDP and baseline DP will be discussed over different
driving missions.

5. Simulation Results

A case study to determine the most suitable number and category of hybrid electric
operating points at each time instant is presented in this section. Then, a comparison
between SRDP and baseline DP with the full set of control variable values will be discussed
over different driving missions.

5.1. Definition of Number and Type of Selected Hybrid Electric Optimal Operating Points

Step A of the SRDP workflow illustrated in Figure 4 involves identifying and selecting
at each time instant the optimal operating points to be considered for hybrid electric mode.
Once the given N hybrid electric points are defined at each time instant, these can then
be stored in the variable illustrated in Table 3 and constituted by a number of rows equal
to the number of time instants of the driving mission and a number of columns equal to
N + 1 corresponding to the pure electric optimal operating point and the N hybrid electric
operating points as defined by SERCA. In this framework, a comparative study needs
execution in order to determine the number and type of hybrid electric points selected
at each time instant of the driving mission. In case of stepped gear transmission HEVs,
SERCA generally identifies one optimal hybrid electric operating point for each operable
gear number of the transmission based on the value of the slope parameter [14]. However,
multiple optimal operating points may be considered as well in SRDP to enhance the
effectiveness of the algorithm when accounting for battery SOH sensitivity as well in the
HEV operation. The additional hybrid electric operating points may be identified in this



Energies 2022, 15, 1665 15 of 25

case according to the ranking of the slope values (e.g., the second-best slope value and
the third-best slope value). Furthermore, storing optimal operating points for each gear
number of the stepped gear transmission HEV at each time instant may reveal a redundant
and computationally inefficient approach in this case, since only a limited number of gears
typically operate in the most efficient conditions depending on the values of speed and
acceleration request for the sub-problem under analysis. However, a certain minimum
number of available gears may require consideration at each time instant in order to
effectively reduce the number of gear shifts operated throughout the entire driving mission.

To contribute solving the aforementioned uncertainties, a case study is performed
assessing different numbers of retained gears and optimal operating points per gear. The
main objective is to determine the most appropriate value of NU , i.e., the number of sub-
optimal operating points that SERCA needs to select at each time instant of the drive cycle
under analysis. Only the identified points will then be processed by the DP to identify the
optimal HEV control trajectory over the entire drive cycle. The overall number of selected
operating points at each time instant depends on two main factors:

1. The number of gears considered. For example, if only one gear is considered, its value
will be selected at each time instant as the one linked to the optimal hybrid electric
point #1 for the corresponding row in Table 3. If more than one gear is considered, the
additional gear numbers in each time instant are identified looking at the sub-sequent
optimal hybrid electric points (e.g., #2, #3 and following ones) in the corresponding
row in Table 3.

2. The number of optimal hybrid electric points considered per gear. Two categories of
hybrid electric points are considered here. The first one includes the θ operating points
identified by maximizing the SERCA slope parameter θHEVk defined in Equation (18).
The second category involves a single operating point per gear which is identified by
interpolating in the ICE optimal operating line (OOL), i.e., the line of operating points
that minimize the fuel rate for any given value of ICE mechanical power.

The best option needs therefore to be defined among the several possibilities that are
available in terms of NU for the proposed SRDP approach depending on both the number of
retained gears and the number of optimal hybrid electric points considered per gear. Near-
optimality in the estimated equivalent fuel consumption and computational light-weighting
are here the two metrics for identifying the best SRDP option. The following options have
particularly been considered for the SRDP based HEV off-line energy management strategy
in terms of the number of retained gears and the number of optimal hybrid electric points
considered per gear for the retained HEV powertrain:

1. Full set of control variable values in terms of gear number and ICE torque, i.e., without
pre-identifying optimal operating points with SERCA (baseline ‘DP’). Considering
an ICE torque discretization step of 5 Nm, 22 elements are required to cover the
range from 0 Nm to the maximum allowed ICE torque value (90 Nm in this case)
and to retain an extra term for pure electric operation. For a 5 gears P2 HEV layout,
110 elements therefore define the discretized control variable set U in the baseline DP
approach (i.e., NU = 110).

2. (3 gears)× (4 θ points + 1 ICE OOL point). This leads to consider a total of 16 operating
points (NU = 16) in the control variable set of SRDP (i.e., 1 pure electric point,
12 SERCA hybrid electric points and 3 ICE OOL points).

3. (3 gears)× (3 θ points + 1 ICE OOL point). This leads to consider a total of 13 operating
points (NU = 13) in the control variable set of SRDP (i.e., 1 pure electric point, 9 SERCA
hybrid electric points and 3 ICE OOL points).

4. (3 gears)× (2 θ points + 1 ICE OOL point). This leads to consider a total of 10 operating
points (NU = 10) in the control variable set of SRDP (i.e., 1 pure electric, 6 SERCA
hybrid electric points and 3 ICE OOL points).

5. (3 gears) × (1 θ point + 1 ICE OOL point). This leads to consider a total of 7 operating
points (NU = 7) in the control variable set of SRDP (i.e., 1 pure electric, 3 SERCA
hybrid electric points and 3 ICE OOL points).
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6. (3 gears) × (4 θ points). This leads to consider a total of 13 operating points (NU = 13)
in the control variable set of SRDP (i.e., 1 pure electric point and 12 SERCA hybrid
electric points).

7. (2 gears)× (4 θ points + 1 ICE OOL point). This leads to consider a total of 11 operating
points (NU = 11) in the control variable set of SRDP (i.e., 1 pure electric point, 8 SERCA
hybrid electric points and 2 ICE OOL points).

8. (2 gears)× (3 θ points + 1 ICE OOL point). This leads to consider a total of 9 operating
points (NU = 9) in the control variable set of SRDP (i.e., 1 pure electric point, 6 SERCA
hybrid electric points and 2 ICE OOL points).

9. (2 gears)× (2 θ points + 1 ICE OOL point). This leads to consider a total of 7 operating
points (NU = 7) in the control variable set of SRDP (i.e., 1 pure electric point, 4 SERCA
hybrid electric points and 2 ICE OOL points).

10. (2 gears) × (1 θ point + 1 ICE OOL point). This leads to consider a total of 5 operating
points (NU = 5) in the control variable set of SRDP (i.e., 1 pure electric point, 2 SERCA
hybrid electric points and 2 ICE OOL points).

11. (3 gears) × (1 ICE OOL point). This leads to consider a total of 4 operating points
(NU = 4) in the control variable set of SRDP (i.e., 1 pure electric point and 3 ICE
OOL points).

Each of the 11 listed HEV energy management approaches consider the same state
variable set which includes gear number, ICE state and battery SOC. Each version of the
SRDP algorithm is evaluated in WLTP considering the HEV powertrain data and layout
presented in Section 2 and reported in Table 1.

The ICE is set here not to deliver positive torque in the time instants of the driving
mission in which the output torque is negative, i.e., only pure electric operation or hybrid
electric operation with ICE idling are available. In this case, the discretized vector for the
ICE torque is converted into a vector having the same number of elements and containing
different values for the MG negative torque at different gears. Regulating the blending
between MG regenerative torque and friction brake torque is enabled in this way to allow
the DP optimizer selecting the best control actions in terms of electrical energy recovery and
battery lifetime preservation throughout the retained driving mission. The state variable
related to battery SOC has been discretized with 251 elements ranging from 0.3 to 0.9, while
the initial battery SOC has been set to 0.6. Li f ebatt,target is assumed here being 300 thousand
kilometers [17]. Finally, values of Ncranking,MAX and Nshi f ts,MAX have been set to 0.7 and
3.6 per minute of driving, respectively [15].

In order to identify the best option for SRDP control variables among the 10 listed
above, simulations have been performed for the retained P2 HEV layout in WLTP being
controlled off-line. The SRDP procedure has been particularly interrupted in case the
battery lifetime and smooth drivability requirements had not been met after the 20th
iteration of Step A to Step D of the algorithm. Obtained results in terms of estimated fuel
consumption, battery lifetime, number of ICE activations, number of gear shifts and CT
have been reported in Table 4 together with corresponding results for the normal DP.

Table 4. Results in WLTP for options of SRDP control variable set in terms of estimated equivalent
fuel consumption (EFC), battery lifetime, ICE activations, gear shifts, number of algorithm iterations
(nITER) and computational time (CT) considering a desktop computer with Intel Core i7-8700 (3.2 GHz)
and 32 GB of RAM.

Test # Algorithm EFFC
[L/100 km]

Battery
Lifetime
[103 km]

ICE
Activations [-]

Gear
Shifts [-] nITER

CTITER
[min]

CTTOTAL
[min]

1 Normal DP (NU = 110) 4.22 304 19 93 3 37.8 113

2 SRDP (NU = 16:
3 gears − 4 θ + OOL)

4.33
(+2.6%) 331 20 72 10 11.1 111

(−2.4%)
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Table 4. Cont.

Test # Algorithm EFFC
[L/100 km]

Battery
Lifetime
[103 km]

ICE
Activations [-]

Gear
Shifts [-] nITER

CTITER
[min]

CTTOTAL
[min]

3 SRDP (NU = 13:
3 gears − 3 θ + OOL)

4.31
(+2.1%) 314 18 99 8 7.2 57

(−49.6%)

4 SRDP (NU = 10:
3 gears − 2 θ + OOL)

4.30
(+1.8%) 336 20 88 4 6.3 25

(−78.0%)

5 SRDP (NU = 7:
3 gears − 1 θ + OOL)

4.49
(+6.3%) 413 20 102 12 8.3 99

(−12.7%)

6 SRDP (NU = 13:
3 gears − 4 θ)

4.57
(+8.1%) 442 32 154 20 6.7 135

(−18.7%)

7 SRDP (NU = 11:
2 gears − 4 θ + OOL)

4.31
(+2.0%) 352 18 106 6 8.5 51

(−55.3%)

8 SRDP (NU = 9:
2 gears − 3 θ + OOL)

4.31
(+2.1%) 347 18 106 6 7.0 42

(−63.0%)

9 SRDP (NU = 7:
2 gears − 2 θ + OOL)

4.32
(+2.2%) 366 19 102 6 6.2 37

(−67.5%)

10 SRDP (NU = 5:
2 gears − 1 θ + OOL)

4.33
(+2.6%) 350 20 99 5 4.9 24

(−78.5%)

11 SRDP (NU = 4:
3 gears − OOL)

4.38
(+3.8%) 235 32 237 20 5.2 104

(−8.0%)

The baseline DP with full set of control variables requires 38 min to complete a single
iteration on a desktop computer with Intel Core i7-8700 (3.2 GHz) and 32 GB of RAM,
and 3 iterations are demanded to satisfy all the considered battery lifetime and smooth
drivability requirements. On the other hand, significantly lower values of computational
time are required to complete an iteration of SRDP (i.e., ranging from 5 min to 11 min),
while a higher number of iterations nITER need to be performed (i.e., ranging from 4 to 12).
More iterations may particularly be required to compensate for the decreased number of
hybrid electric operating points available for each time instant of the considered driving
mission in Step B of SRDP. Only two SRDP cases are found not complying with imposed
battery lifetime and smooth drivability criteria once the maximum number of allowed
iterations for the algorithm is reached. Unsuccessful options for the SRDP control variable
set particularly relate to case 6 in which the operating points of the ICE OOL are not
considered, and to case 11 in which the optimal hybrid electric operating points identified
through the SERCA approach are not considered. Both the listed options have consequently
been discarded. This suggests that combining hybrid electric operating points identified
through SERCA (i.e., by optimizing the overall operation of the electrified propulsion
system) with points identified through the ICE OOL may be a viable approach. In general,
the SRDP estimated fuel consumption increase compared with DP is limited within 8.1%,
while the corresponding computational time in most SRDP cases is reduced by 50% to
80% despite the slightly increased number of iterations. The effectiveness of the proposed
SRDP approach in limiting the EFC increase with respect to the global optimal HEV control
solution while consistently reducing the computational cost may be suggested in this way.
Figure 6 illustrates the Pareto frontier for the options of SRDP control variable set assessed
in terms of WLTP EFC increase compared with DP and computational time normalized
according to the DP corresponding value. In general, lower values of computational
time are required for the SRDP options retaining 2 gears only compared with the SRDP
options retaining 3 gears, while the estimated fuel consumption increase as a function
of the different options for the SRDP control variable set does not show a uniformed
trend. A global optimal option can be clearly identified for the SRDP control variable
set that achieves simultaneous minimization of the normalized computational time and
the estimated equivalent fuel consumption increase with respect to DP. This particularly
corresponds to the test case number 4, i.e., SRDP with 10 elements in the control variable
set involving the best 3 gears at each time instant, and the 2 best hybrid electric operating
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points and the ICE OOL point per gear. The identified option appears producing a HEV
control solution comparable with the one from DP in terms of estimated fuel consumption,
battery lifetime, number of ICE activations and number of gear shifts while reducing the
corresponding computational time by around 78%. In the next sub-section, a case study
will be conducted assessing the performance of the identified option for the SRDP control
variable set in various driving missions.
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Figure 6. Pareto frontier for options of SRDP control variable set in terms of WLTP estimated
equivalent fuel consumption percentage increase (∆EFC) and percentage computational time (CT)
compared with DP.

5.2. Case Study: SRDP for a Full HEV

Once retaining 3 gears and 2 slope points with an ICE OOL point per gear at each
time instant has been identified as the best option for the SRDP control variable set, the
performance of the developed SRDP algorithm is assessed in this sub-section over various
driving missions. Values of estimated fuel consumption and predicted battery lifetime,
number of ICE activations and gear shifts and required computational time obtained from
the SRDP are particularly benchmarked with the corresponding results for the baseline
DP that consider the full set of control variable values in terms of gear number and ICE
torque. Both SRDP and DP here consider three state variables, namely the gear number,
the ICE state and the battery SOC. Retained driving missions in this case include the
New European Drive Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS),
the Highway Federal Test Procedure (HWFET), the WLTP and the US06 Supplemental
Federal Test Procedure (US06). Table 5 summarizes the obtained results for both HEV
control algorithms in the considered driving missions, while times series of cumulated fuel
consumption, battery SOC, battery SOH and gear shifting along with ICE operating points
for each driving mission have been illustrated in Figures A1–A5 in Appendix A. These plots
can help the reader to get more insight in the HEV powertrain control solutions identified
by both DP and SRDP. Despite both SRDP and DP provide comparable values of estimated
fuel consumption over the entire drive cycles (denoted by the final values of cumulated fuel
consumption in sub-figures a in Figures A1–A5), the two algorithms entail different HEV
powertrain operations. This especially holds for WLTP and UDDS drive cycles respectively
in Figures A1 and A4, where the time series of battery SOC (sub-figures b), battery SOH
(sub-figures d), gear shifting (sub-figures e) notably differ between DP and SRDP. In general,
looking at sub-figures c in Figures A1–A5, the ICE operating points set by DP are spread
near the best ICE efficiency region. As concerns SRDP, a similar behaviour can be observed
while it should be noted that several selected ICE operating points are located on the OOL.
This corroborates the effectiveness of considering operating points of the ICE OOL in the
proposed SRDP HEV control approach.
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Table 5. Comparing SRDP with DP in terms of estimated equivalent fuel consumption (EFC), battery
lifetime, ICE activation frequency, gear shift frequency and computational time (CT) over various
driving missions.

SRDP DP

Drive
Cycle

EFC
[L/100 km]

Battery
Lifetime
[103 km]

ICE Start
Frequency

[1/min]

Gear Shift
Frequency

[1/min]

CTTOTAL
[min]

EFC
[L/100 km]

Battery
Lifetime
[103 km]

ICE Start
Frequency

[1/min]

Gear Shift
Frequency

[1/min]

CTTOTAL
[min]

NEDC 3.50
(+0.8%)

371
(+8.2%) 0.3 2.0 9.6

(−54.8%) 3.48 343 0.3 1.3 21.2

UDDS 3.23
(+0.3%)

365
(+5.4%) 0.7 3.5 66.0

(−42.9%) 3.22 346 0.7 3.1 115.6

HWFET 4.11
(+0.7%)

332
(+1.5%) 0.6 2.6 11.2

(−67.4%) 4.08 327 0.7 1.9 34.2

WLTP 4.30
(+1.8%)

336
(+10.5%) 0.7 2.9 25.2

(−77.7%) 4.22 304 0.6 3.1 113.4

US06 5.69
(+3.3%)

334
(−2.9%) 0.7 3.6 37.2

(−36.9%) 5.51 344 0.7 3.6 59.0

Looking at results reported in Table 5, it can be seen how both SRDP and DP comply
with imposed constraints in terms of battery lifetime, frequency of ICE activations and gear
shifts over time in all the drive cycles considered. On average, the increase in estimated
fuel consumption for SRDP is limited in this case to 1.4% compared to DP over the retained
drive cycles, while on average the corresponding SRDP computational cost is reduced by
55.9% with respect to DP. Despite in general the values of computational time associated
to SRDP increases compared with the ones associated to the SERCA algorithm (i.e., 1 to
5 min per drive cycle using the same computational platform), it should be noted that the
developed SRDP approach allows complying with battery SOC boundaries for full HEVs
while ensuring compliance with smooth driving and battery lifetime requirements set.

Overall, the proposed SRDP algorithm exhibits the highest performance when bench-
marking with the baseline DP in NEDC, UDDS and HWFET cycles. This corresponds
to the fuel consumption estimated by SRDP in Table 5 being only 0.8%, 0.3% and 0.7%
higher compared with DP, respectively. Moreover, it should be noted that values of battery
lifetime predicted by SRDP in NEDC, UDDS and HWFET are 8.2%, 5.4% and 1.5% higher
than the corresponding values obtained using the baseline DP approach, respectively. This
contributes to further narrow the difference in the performance between the two algorithms.
On the other hand, slightly lower performance can be observed for the proposed SRDP
algorithm in WLTP and US06 cycles. This may relate to both cycles being known for
entailing more dynamic and demanding vehicle driving conditions in terms of speed and
traction power. Especially for the US06 cycle, the reader can refer to Figure A5c, where the
ICE operating points are more scattered and located in higher power regions compared
with corresponding sub-figures c for the remaining drive cycles shown in Figures A1–A4 in
the Appendix A. This notably increases the difficulty encountered by SRDP in replicating
the optimal HEV operation predicted by the baseline DP while reducing the computational
load thanks to limiting the number of HEV operating points considered.

6. Conclusions

Effective energy management is a crucial aspect in HEVs. An appropriate HEV
powertrain control approach must guarantee enhanced fuel economy while simultaneously
complying with constraints on battery SOC, battery SOH and smooth driving in terms of
limited frequencies of ICE activations and gear shifts over time. Furthermore, the overall
computational efficiency of the control algorithm needs to be preserved. This paper has
presented a rapid DP based energy management strategy for full HEVs which is named
Slope-weighted Rapid Dynamic Programming (SRDP). SRDP combines the computational
efficiency of the SERCA algorithm with DP as an effective approach to ensure compliance
with battery SOC constraints. Similarly as SERCA, SRDP considers only the most efficient
HEV powertrain operating points at each time instant of the drive cycle. This is significantly
beneficial for computational efficiency. A case study performed for a full parallel P2 HEV
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demonstrates that SRDP can effectively comply with battery lifetime and smooth driving
constraints, while limiting the estimated fuel consumption increase within 3.3% compared
with the baseline DP. Moreover, SRDP can attain notable savings in terms of computational
cost that range within 43% and 78% compared with the baseline DP.

The presented formulation of SRDP is general and it can be applied to any available DP
approach and available toolbox to enhance the computational efficiency of the overall HEV
powertrain control algorithm. Given the computational advantage and the demonstrated
near-optimality in terms of estimated fuel consumption, SRDP is a suitable candidate as
rapid energy management strategy to be employed in HEV powertrain design and sizing
methodologies. In particular, the computational efficiency of SRDP can be exploited to ef-
fectively explore the large design space associated with HEV powertrains. Moreover, SRDP
could be employed as a predictive powertrain controller on-board HEVs. In particular,
SRDP could be interfaced with a future vehicle velocity predictor to extract optimal HEV
control trajectories for near-future powertrain operation. Related future work can pursue
these directions.
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Abbreviations

AMT Automated manual transmission
DP Dynamic programming
EFC Equivalent fuel consumption
MG Electric motor/generator
HEV Hybrid electric vehicle
HWFET Highway federal test procedure
ICE Internal combustion engine
NEDC New European Drive Cycle
OOL Optimal operating line
P2 HEV Parallel P2 hybrid electric vehicle
SOC State-of-charge
SOH State-of-health
SRDP Slope-weighted Rapid Dynamic Programming
UDDS Urban dynamometer driving schedule
US06 US06 supplemental procedure
WLTP Worldwide harmonized light-vehicle test procedure

Appendix A. Time Series of Control and State Variables Generated by DP and SRDP
for a P2 Full HEV
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Figure A1. Time series of control and state variables and ICE operating points for the P2 full HEV
controlled by DP and SRDP in NEDC cycle.
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Figure A2. Time series of control and state variables and ICE operating points for the P2 full HEV
controlled by DP and SRDP in UDDS cycle.
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Figure A4. Time series of control and state variables and ICE operating points for the P2 full HEV
controlled by DP and SRDP in WLTP cycle.
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