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A methodology for co-simulation-based
optimization of biofabrication protocols

Leonardo Giannantoni1[0000−0002−2741−0160], Roberta
Bardini1[0000−0002−1809−3212], and Stefano Di Carlo1[0000−0002−7512−5356]

Politecnico di Torino, Control and Computer Engineering Department, 10129, Torino,
Italy. E-mail: {name.surname}@polito.it

Abstract. Biofabrication processes are complex and often unsatisfac-
tory. Trial-and-error methods are costly and yield only incremental in-
novation, starting from sub-optimal and poorly represented existing pro-
cesses. Although computational techniques might support efficient pro-
cess design to find optimal process configurations, intelligent computa-
tional approaches must comprise biological complexity to provide mean-
ingful insights. This paper proposes a novel co-simulation-based opti-
mization methodology for the systematic design of protocols for cell cul-
ture and biofabrication. The proposed strategy integrates evolutionary
computation and simulation for efficient design space exploration and as-
sessment of candidate protocols. A generic library supports the modular
and flexible composition of multiscale and multidomain co-simulation
scenarios. The feasibility of the presented approach was demonstrated
in the automatic generation of protocols for the biofabrication of an
epithelial cell monolayer. The results are twofold. First, the prototype
co-simulation library helps build flexible, loosely coupled simulation sce-
narios. Second, the in-silico experimentation on the use case shows that
the proposed approach is a viable first step towards standard and auto-
mated design in biofabrication.

Keywords: Computational systems biology · Optimization via simula-
tion · Biofabrication.

1 Introduction

Biofabrication is “the automated generation of biologically functional products
with the structural organization from living cells, bioactive molecules, bioma-
terials, cell aggregates such as micro-tissues, or hybrid cell-material constructs,
through Bioprinting or Bioassembly and subsequent tissue maturation processes” [8].
Biofabrication in Tissue Engineering and Regenerative Medicine (TERM) has
the potential to disrupt clinical and pharmacological research [19]. Yet, biofab-
rication of complex and large tissues and organs is still out of reach.

Biofabrication processes are highly complex biologically and technologically.
Biofabrication requires the application of specific protocols representing the dy-
namic configuration of relevant process control parameters, emphasizing the val-
ues they assume in space and time. However, the large number of critical param-
eters implies a vast design space, whose exploration is prohibitive and impairs
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the results obtainable by common in vitro trial-and-error experiments [4]. These
include brute-force experimental campaigns and One Factor at A Time (OFAT)
strategies exploring ranges of relevant system parameters one at a time while
holding the others constant [7]. This approach is expensive in terms of time and
resources. Also, it overlooks inter-dependencies among system variables, which
impedes linking experimental results with process designs controlling multiple
variables at a time. This can result in sub-optimal processes [26].

Automation [10] and digitalization [9, 26] make trial-and-error approaches
more efficient, reducing operator-dependency and human errors, thus support-
ing process tracking and control. This dramatically increases the yield of in vitro
experimental campaigns, allowing a more significant number of experiments, thus
a broader exploration of the design space. Yet, making the execution of exper-
iments more efficient does not affect the underlying trial-and-error paradigm.
In silico Design Space Exploration (DSE) approaches can instead support re-
search design and optimization to maximize information extraction, and process
improvement efficiency [12].

This work presents the first step towards optimization via simulation (OvS)
for generating optimal biofabrication protocols for defined target products. In
particular, the proposed framework follows the model-based simulation-optimization
paradigm in which DSE and simulation modules are tightly integrated. The DSE
selects the solutions which need to be evaluated by simulation [1]. The proposed
method exploits heuristic DSE based on Genetic Algorithms (GA) to increase
computational feasibility and combines it with a co-simulation environment rely-
ing on white-box simulation models to maximize expressivity and explainability.
The original contribution of this paper also includes a library of generic compo-
nents supporting the modular and flexible composition of co-simulation scenar-
ios. Therefore, the co-simulation can easily combine different models, including
the target biological entities (e.g., cells), the biofabrication environment, and the
possible stimuli delivered during the biofabrication process. The entire frame-
work is presented, resorting to a selected use case to generate optimal protocols
for cultivating two-dimensional epithelial sheets with specific shapes relying on
a model including both intracellular and extracellular processes. Experimental
results show the capability of the proposed approach and identify a set of signif-
icant challenges to stimulate further research in this field.

2 Background

Model-based simulation-optimization techniques are part of the broader field of
computational process design for biofabrication. Several computational method-
ologies for biofabrication process design exist in the state-of-the-art. Design-
of-Experiments (DoE) [23, 26] supports strategic and effective research design
by enabling efficient, systematic exploration and exploitation of complex design
spaces [7, 14]. A variety of DoE approaches exist [11], and they prove adequate
to tackle multi-factorial problems in the optimization of directed cell differen-
tiation [3, 18], and tissue engineering scaffolds [25]. DoE can be combined with
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Machine Learning (ML) and Artificial Neural Networks (ANN) to improve the
accuracy of the bioprocess model [23].

Yet, ML and ANN provide black-box models of the system. Comprehensive
modeling of biological complexity is critical for developing computational ap-
proaches for biofabrication [5]. To support informed decisions in process design,
the ideal model of biofabrication must be accurate, predictive, interpretable and
able to analyze process dynamics. Computer simulations provide white-box mod-
els of the process, a powerful tool for analyzing complex systems, and particularly
their trajectories under different conditions [1].

Simulation and optimization can work together. In optimization via simula-
tion (OvS) methods, optimization can leverage simulations to explore the process
design space, and DoE can support the design of simulations campaigns [11]. OvS
leverages the simulation model of a physical process to explore its dynamic be-
havior after specific stimuli, where the parameter values are systematically varied
to find the most performing combination towards a target objective [2]. OvS in-
cludes model-based and metamodel-based approaches [1]. In model-based OvS,
the optimization engine selects the solutions evaluated by simulation. Model-
based approaches combine the accuracy and interpretability of simulations with
the systematic exploration of the process design space provided by optimization.
This fulfills the requirements of biofabrication process optimization, yet it poses
strong limitations in terms of computational feasibility when the modeled system
is complex. A strategy to reduce the computational complexity of OvS is to in-
clude a metamodel that estimates input-output relations of the simulation model
to significantly reduce the computational time at the cost of accuracy [17] and a
partial fallback to black-box modeling. Also, in this case, white-box is preferable
to black-box modeling since interpretability and explainability of OvS results
build their relevance for the design of an actual biofabrication process. Heuristic
methods allow us to find an approximate solution faster than full-space search
methods by trading accuracy and completeness for speed while maintaining the
simulated model intact. Among them, the Genetic Algorithm (GA) mimics bi-
ological evolutionary dynamics where solutions in the design space undergo a
process similar to natural selection [15].

3 Methods

Figure 1 summarizes the main architecture of the presented framework, includ-
ing a Design Space Exploration (DSE) engine for the generation of biofabrica-
tion protocols and a simulation engine for testing them. The framework receives
the high-level specification of the target product and iteratively computes a
biofabrication protocol optimized to grow it. The DSE assembles potential bio-
fabrication protocols and feeds them to simulation instances. Simulation results
are compared against the specifications of the target product used to rank the
corresponding protocols and generate new ones at the next iteration. This pro-
cedure continues until an optimal protocol is produced, a predetermined number
of iterations is reached, or the protocol performance stalls for a given number
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of iterations. To help the reader, the paper introduces the proposed framework
using a running use case focusing on the fabrication of a human epithelial cells
monolayer with selected shapes.

Co-simulation
engine

generate and
optimize
protocols

end
optimization?

simulation
pipeline

NO

YES
optimized
protocol

simulation
products

target
product

description

candidate
protocols

DSE engine

Fig. 1. A high-level representation of the simulation-optimization pipeline.
Given a target product, the DSE engine generates a pool of candidate protocols to be
simulated. The products obtained by simulation are compared to the desired target.
The previous steps are iterated until an optimal protocol is found.

3.1 Use case description

As a proof of concept, this work presents the generation of protocols for fab-
ricating human epithelial sheets. To this end, the proposed use case includes a
computational model of a population of epithelial cells, modeling intracellular
and extracellular processes.

The intracellular model is a Boolean Network (BN) based on a published
and well-documented work synthesizing epithelial cells behavior (i.e., survival,
proliferation, and apoptosis) in response to a combination of cues [22]. These
include environmental factors such as cell density, extracellular matrix stiffness,
and growth factor signaling. The high abstraction level of this model allows
for low computational complexity and easy integration of new knowledge. A
graphical representation of the used Boolean network is available in Fig. 3 of the
above paper.

The extracellular model describes interactions among cells and between cells
and the environment. It models a discrete 3D grid supporting cells evolving on
an extracellular matrix (ECM) surface and interacting with neighboring cells
and environmental stimuli.

Biofabrication of a target product can be guided in this model by administer-
ing growth factors (GF) at a given 3D coordinate, i.e., molecules that stimulate
cell proliferation, and by exposing it to TNF-related apoptosis-inducing ligand
(TRAIL), a protein inducing cell death by apoptosis [24]. The biofabrication
process can also control the deposition of cells in the culturing environment.



Simulation-optimization of biofabrication protocols 5

The two models are coupled and interact through specific inputs. For in-
stance, the intracellular model includes a CellDensity High node, which is used
by the Boolean equation to determine the value for the Replication node. If,
according to the extracellular model, a cell ends up in a very dense area, the
cell is informed by setting its CellDensity High to True. This, in turn, affects
the cell’s ability to replicate, thus simulating the inhibition of proliferation by
contact inhibition.

3.2 Co-Simulation engine

The co-simulation engine interacts with the DSE engine to simulate and evalu-
ate the candidate biofabrication protocols. It sets up and evolves the biological
system for a predetermined number of simulation steps, administering stimuli ac-
cording to the protocol under test. As described in subsection 3.1, biofabrication
requires the co-simulation of intertwined aspects, each based on a different for-
malism. Therefore, different simulators must be connected through an interface
to exchange data and handle different scales and domains. Several freely-available
libraries were tested to ease such implementation (e.g., mosaik [21]). However,
they cannot dynamically change the topology of the simulators required to han-
dle the intrinsic dynamical nature of biological systems.

To overcome this limitation, a prototypal co-simulation framework was de-
veloped. It is a Python library of generic components that can set up loosely-
coupled co-simulation scenarios, either standalone or associated with a DSE en-
gine. It supports multiscale and multidomain systems and provides mechanisms
for transparent distributed execution and third-party software encapsulation.

Event
Dictionary

Simulator

Simulation

Pipeline

1..1

1..*

1..1 1..1

1..1

1..*

1..1

1..1

<<external>>

Pyro4.Proxy

Model
1..1 0..*

(a)

Spatial Grid
Demiurgos

PROTOCOL

Intracellular
Environment

(b)

Boolean modelBoolean model

TranslationTranslation
Signal modelSignal model

3D grid model3D grid model

Cell modelCell model

ECM modelsECM models

SimulatorSimulator

Fig. 2. Co-simulation framework. (a) UML diagram of the simulation framework.
(b) Co-simulation scenario for the modeled use case.

Figure 2(a) depicts the overall architecture of the simulation framework. A
Simulation encapsulates a Pipeline of Simulators, each executing an ar-
bitrary number of Model entities. This design provides common interfaces to
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ensure interoperability between multiscale and multidomain simulators, either
custom or pre-existing, that can be transparently instantiated on local or re-
mote machines relying on the Pyro4 library [13]. Flexible composition and clear
separation are coupled with an ad-hoc loose-coupling mechanism (i.e., it does
not involve an orchestrator) for information exchange using a shared Event

Dictionary collecting and relaying all the events in the simulation pipeline. The
high degree of modularity and integration does not enforce consistent conceptual
interrelations. Therefore, the data exchanged between the simulators might need
suitable translation layers provided by intermediate simulators. With this archi-
tecture, a simulation scenario can be easily set up through a single file listing
the simulators, both local and remote, and their configurations (Listing 1.1).

1 # Composition of the simulation scenario
2 SIMS = {
3 ’Local_Sim_Name ’ : { ’python ’: ’library.simulator1:Sim1’ },
4 ’Remote_Sim_Name ’: { ’remote ’: ’myuser@remotemachine.domain.it:9999 ’ },
5 ... }
6 # Configuration parameters for local simulators
7 SIM1_CONFIG = {
8 "TIMESCALE": ...,
9 "PARAM2": ...,

10 ... }
11 # Configuration parameters for the simulation
12 SIMULATION_CONFIG = {
13 "SIMULATION_STEPS": 1000,
14 "SIM1_CONFIG": SIM1_CONFIG ,
15 ... }

Listing 1.1. Configuration example for the simulation engine.

The considered use case is implemented by the co-simulation setup illus-
trated in Figure 2(b), supported by the above-described library. Two separate
discrete-event simulators, Spatial Grid and Intracellular Environment are dedi-
cated to simulating a discrete 3D grid model with object instances (cells, ECM,
signals) and BN models of cells. A third simulator (Demiurgos) translates and
administers the protocol commands to the appropriate simulator. Demiurgos,
like its Platonic entity namesake, is the means through which protocols mani-
fest in and influence the simulation universe. It acts as a purely functional layer
(i.e., it does not simulate any entity) by translating and delivering the culturing
protocol under simulation.

The Spatial Grid instantiates cells, ECM, and signal objects, as instructed by
Demiurgos, and manages the assignment of unique universal identifiers (UUIDs)
to cells. It also mimics the diffusion of GFs and TRAIL in the culturing space
with a simplified algorithm. At each simulation step, each signal is displaced
according to its drift attribute, which decays over time. Signals are removed
from the simulation when their keepalive counter reaches zero. With a random
probability, each signal reaching the same coordinate of a cell is tagged to be
consumed by it and removed from the simulation. If a cell is in an area with a high
density of neighboring cells, Spatial Grid prevents replication and communicates
to the cell that it is in a high-density area. Such information, in turn, might affect
that cell’s behavior in the Intracellular Environment (see subsection 3.1). The
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Intracellular Environment is informed about a newly issued cell’s UUID if the
cell can replicate.

The Intracellular Environment manages Boolean network entities modeled
after [22] and relies on the PyBoolNet library [16]. It spawns new entities with
the UUID provided by Spatial Grid. It feeds them a Boolean input modified by
both the protocol and the events coming from the extracellular environment, thus
informing them about the cell density of their surroundings, the quality of their
supporting ECM, and the availability of nutrients and other signals. Suppose
a cell entity enters an apoptotic state. In that case, Intracellular Environment
removes it and broadcasts its UUID so that the other simulators in the pipeline
(in this case, Spatial Grid) remove the corresponding model too.

3.3 Design Space Exploration engine

A biofabrication protocol is a list of signals organized in time and space to
guide a specific biological product synthesis. Optimizing such arbitrary long lists
of instructions is a complicated combinatorial problem. Therefore, exhaustive
exploration is not an option. Our DSE component employs a Genetic Algorithm
(GA), an evolutionary computation metaheuristic, to generate populations of
candidate solutions or individuals (i.e., the protocols). In this context, a protocol
is an individual characterized by a genome whose genes are the signals composing
the protocol. Candidate individuals are ranked based on a fitness function and
mutated to evolve the population at each new generation. The proposed DSE
engine is built on top of the µGP (microGP) library, a tool tailored to problems
whose solutions can be expressed similarly to assembly programs [20].

The individuals defined for the proposed use case scenario are organized in
two sections (Listing 1.2). The placing section lists the 3D coordinates of the
cells to be deposited at the beginning of the biofabrication process. The signal
section lists nutrients and environmental stimuli organized in space and time.

1 % placing section
2 CELL (99, 72, 3), (150, 162, 3), (67, 56, 3), ...
3

4 % signals section
5 0: GF LOW (147 ,84 ,3), GF LOW (133 ,101 ,3), GF HIGH (26,22 ,3), GF LOW

(137 ,158 ,3), TRAIL (81 ,148 ,3), TRAIL (43,8,3), TRAIL (75 ,177 ,3), ...
6

7 5: TRAIL (5,24,3), GF HIGH (104 ,24 ,3), ...
8

9

.

.

.
10

11 300: ...

Listing 1.2. Sample protocol built by the DSE engine.

The language used to build the protocols for the epithelial cell model includes
CELL, GF LOW/HIGH, and TRAIL macros, each followed by 3D coordinates. They
derive from the inputs (cells deposition and exposure to stimuli) specific to the
model described in subsection 3.1. This abstract and compact representation
minimizes the resources required to compute and store the individuals that in
µGP are encoded as directed multigraphs constrained by user-defined rules [20].
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The DSE engine requires the specification of a target product, i.e., the bi-
ological construct obtained at the end of the simulation and a timescale. In
the example provided in Listing 1.3, a STRIPES target composed of two paral-
lel planar stripes is described using the sum of two CUBOID primitives from our
geometry library. An optional bounding box can provide cues to the DSE engine
for the assembly of new individuals. The timescale allows tuning the granularity
of the protocol for the simulated system. For instance, if the protocol step is set
to 5, the signal section of the protocol uses a simulation steps/5 length, and
Demiurgos issues one protocol instruction every five simulation steps.

The DSE engine uses three genetic operators to evolve the population of can-
didate protocols.When creating a new offspring, each operator is applied with
an initial probability equal to the strength parameter α, which in our setup
is equal to 0.9 (α ∈ [0...1]). Strength is a self-adapting parameter. µGP in-
creases it when an operator shows a high success rate (i.e., the mutated indi-
viduals’ fitness improved compared to its parents) and decreases it otherwise.
singleParameterAlterationMutation chooses a new random value for one pa-
rameter of an individual. For instance, it might alter the x coordinate for the
deposition of a signal at protocol step n. onePointCrossover generates two off-
spring individuals from two parent individuals by recombining them over a single
cut point. For instance, given two 100-step protocols, it might cut them at step
20 and swap the parts containing steps 21 to 100. twoPointCrossover operates
similarly. It chooses two cut points and swaps the middle portion.

The protocols’ fitness is assessed by comparing the product obtained by sim-
ulation with the target product. For the presented application, the fitness is
represented using two values:

f0 =
cellsInsideTargetArea ∗ 100

1 + cellsInsideTargetArea+ cellsOutsideTargetArea
(1)

f1 =
cellsInsideTargetArea ∗ 100

1 + targetAreaPoints
(2)

Equation 1 (f0) expresses the precision, i.e., the fraction of the biofabricated
product that matches the target. Equation 2 (f1) expresses the coverage, i.e.,
how much of the target product has been obtained. targetAreaPoints is defined
as the number of integer 3D coordinates included in the target shape. For in-
stance, given a square target covering am×n area (i.e.,m×n targetAreaPoints),
a fitness f = [84.1, 29.2] means that 29.2% of the desired product has been ob-
tained (i.e., it covers 29.2% of the m × n area), and 84.1% of the material is
where expected (inside the target area). That is, the remaining 15.9% of cells is
misplaced (outside the target area).

µGP provides two methods to evaluate a multi-parameter fitness functions,
Enhanced and MultiObjective. The Enhanced method attributes decreasing
importance to the fi parameters. The MultiObjective method attributes the
same weight to f0 and f1, thus leading to the choice of the best individuals
based on the joint evaluation of the two parameters. The best individual, in this
case, is chosen among those dominating the individuals belonging to the Pareto
frontier of the previous generation.
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The proposed implementation of the DSE engine employs the MultiObjective
method, as it is tailored to multi-objective optimization problems. That is, those
requiring trade-offs between multiple and potentially conflicting objectives. Cell
proliferation is helpful for coverage for the presented use case but must be re-
strained to avoid abnormal growth. Simultaneously, precision (summarizing a
proliferation process under control and limited to a well-defined area) should
not prevent obtaining the target product in the desired quantity and shape.

1 from library.common import geometry
2 STRIPES = {"DESCR": {
3 "CUBOID 1":
4 {"width": 200, "depth": 25, "height": 1, "origin": (0, 0, 3)},
5 "CUBOID 2":
6 {"width": 200, "depth": 25, "height": 1, "origin": (0, 174, 3)} },
7 "BOUNDING_BOX": ((0, 200), (0, 200), (3, 4)) }
8 CIRCLE = {"DESCR": {
9 "CYLINDER": {"center": (100, 100, 3), "radius": 30, "height": 1}},

10 "BOUNDING_BOX": ((70, 130), (70, 130), (3, 4)) }
11 UGP_CONFIG = { "PROTOCOL_STEP": 5, "TARGET": STRIPES }

Listing 1.3. Configuration example for the DSE engine.

4 Results

This section presents the validation strategy employed to demonstrate the func-
tioning of the proposed approach.

4.1 Experimental setup

The experimental setup starts with the definition of a target product, that is, an
epithelial cells monolayer covering half the ECM surface (Figure 3). The cultur-
ing environment simulated by the Spatial Grid is a 200× 200× 200 cube, with
its base covered by a 200× 200× 3 layer of ECM entities. The target product is
then a 200× 100× 1 rectangle lying on the ECM layer. At the beginning of each
simulation, the Intracellular Environment sets all new cells in the proliferative
state defined in [22]. Demiurgos issues one protocol instruction every five sim-
ulation steps. The co-simulation engine evolves the system for 1,500 simulation
steps per simulation, stopping in advance if all cells die.

As for this experiment, the placing section of the protocols lists 1 to 15
(average = 8, sigma = 2) coordinates for cells deposition. The signals sec-
tion contains 300 (1500/5) instructions, and each instruction contains 0 to 50
(average = 15, sigma = 5) occurrences of macros (GF HIGH, GF LOW, and
TRAIL, as detailed in subsection 3.3). The population evolved by µGP is of
MultiObjective type, it has an initial size ν = 10 and a maximum size µ = 10.
The genetic operators described in subsection 3.3 can be applied λ = 10 times
at every step of the evolution, with a σ = 0.9 strength, and an α = 0.9 inertia.
To rank protocols by fitness, the DSE engine uses the pair of values f = [f0, f1]
(Equation 1 and Equation 2), measuring precision and coverage of the target,
respectively.
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X

Z
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target
(0, 0, 0)
(200,200,200)

Fig. 3. Target product. Left: top view, right: lateral view. The green and red dots
help figure out the orientation.

4.2 Experimental Results

As of the writing of this document, the experiments have been running for 39
days on an Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz with 64 GB RAM, eval-
uating 884 protocols along 50 generations.

Results obtained demonstrate that (1) the proposed framework proves ca-
pable of automatically generating a protocol for the simulated biofabrication of
the illustrated target product and use case and that (2) the DSE can drive the
optimization toward protocols with better fitness expressed as similarity to a
target product.
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Fig. 4. Fitness trend during optimization. Left: product obtained by the best
protocols at the beginning and end of the simulation. The dashed red box highlights
the target area. Right: fitness of the best protocols.

Figure 4 (left) shows a 2D view of the Spatial Grid at the beginning (t=0) and
end (t=1500) of the simulation of the best protocols identified during different
generations of the optimization process. On the right panel of the figure, the
chart shows the evolution of the fitness of best protocols along generations.
This plot highlights two trends for the fitness of the best protocols consistent
with observations performed on all the 884 best protocols (data not shown).
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Fig. 5. Evolution of the Pareto front. Each chart reports the fitness of the indi-
viduals from the same generation, with the Pareto-dominant protocols highlighted in
red. The green arrow pinpoints the best individual emerged from that generation. Only
generations 0, 1, 3 (top) and 11, 23, 27 (bottom) are shown.

Some best protocols (generations 3, 11, 27) exhibit higher precision (f0), while
others (generations 1, 23) higher coverage (f1). Therefore, the best protocol
might be selected from both clusters, depending on the maximum lifetime of the
individuals and the advancement of the Pareto front.

Figure 5 shows the evolution of the Pareto front, taking into account only the
protocols evaluated in the same generation to which the best protocols belong.
The best protocol, indicated by a green arrow, is chosen by µGP among the
red dots in the image. According to µGP definition of the MultiObjective

optimization, “two fitness may be equal, may dominate each other, meaning that
all the components of one fitness are greater or equal to the corresponding parts
of the other, or they may be not comparable” [20].

Figure 6 shows per each generation (rows) different initial configurations of
the cells (blue), provided by the placing section of the protocols at the begin-
ning of each simulation. 2D views of the Spatial Grid at t=0 represent different
simulations for each generation, corresponding to other simulated protocols. At
the beginning of the optimization process (generations 0, 1, and 2, top three
rows), the DSE engine generates protocols as random individuals. After several
rounds of evolution (generations 48 and 49, bottom couple of rows), the initial
configuration of cell placing shows more consistency among different simulated
protocols.

Indeed, both Figure 4 and Figure 6 show that, through the generations,
the initial placing of the cells gradually shifts and concentrates towards the
target area. Figure 7 shows the same simulated protocols at the end of the
simulation (t=1500, or t corresponding to death of all the cells). In the first three
generations (top three rows), few protocols guarantee cells survival to the end
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of the simulation. Indeed, those simulations stopped before executing the 1,500
steps (we show the last simulation step with alive cells), corresponding to very
low protocol fitness. The two bottom rows (generations 48 and 49) demonstrate
that those very poorly fit individuals have permanently given way to protocols
that are indeed able to grow conglomerates of cells.

Figure 7 indicates the same two-fold tendencies that Figure 4 discovered:
some of the fittest protocols yield higher precision, others higher coverage.

The source code and the results obtained are available on GitHub and archived
in Zenodo [6].

0

1

2
.
.
.

48

49

Fig. 6. Initial configuration of the cells (blue) obtained from the simulated
protocols at the beginning of the simulation.At the beginning of the optimization
process, the top three rows are from generations 0–2 (random individuals). The bottom
two after several rounds of evolution (generations 48 and 49). The red and green clouds
represent Trail and GF signals, respectively. The dashed red box highlights the target
area.

Fig. 7. Final configuration of the cells (blue) obtained from the simulated
protocols after 1500 simulation steps. At the beginning of the optimization pro-
cess, the top three rows are from generations 0–2 (random individuals). The bottom
two rows (generations 48 and 49) show the progress after several rounds of evolution.
The red and green clouds represent Trail and GF signals, respectively. The dashed red
box highlights the target area.
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5 Conclusions

In this work, we presented a simulation-optimization methodology for generating
biofabrication protocols and a co-simulation framework supporting our strategy.
To the best of our knowledge, we are the first to propose this kind of approach.
We chose the human epithelium as a use case to validate our methodology and
demonstrate the developed framework’s usefulness.

Our results are twofold. First, the prototype framework backing our simula-
tions helps build flexible loosely-coupled co-simulation scenarios. Secondly, the
preliminary experimental results show that the proposed approach might provide
viable support to biofabrication process design.

In the future, we plan to expand this work in several directions, first, by
addressing hyperparameter optimization for the DSE engine. That is the ex-
ploration and tuning of optimal GA parameters. Second, by integrating better
quantitative models for the realization of more accurate digital twins for both
the biofabrication process and the modeled biological system. Finally, we plan
to extend our use case by adding cells differentiation so that their diverse func-
tional and phenotypical types let us build more complex products. We are al-
ready taking steps towards a massive parallelization, which would allow faster
experimentation of larger and more complex biological systems.

While still in its infancy, we can foresee this new methodology as the first
step towards standard and automated design in biofabrication.
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