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Abstract: This work addresses the design, development and implementation of a 4.0-based wear-1

able soft transducer for patient-centered, vitals telemonitoring. In particular, first, the soft trans-2

ducer measures hypertension-related vitals (heart rate, oxygen saturation and systolic/diastolic3

pressure), and sends the data to a remote database (which can be easily consulted both by the4

patient and the physician). In addition to this, a dedicated deep learning algorithm, based on a5

Long-Short-Term-Memory Autoencoder, was designed, implemented and tested for providing an6

alert when the patient’s vitals exceed certain thresholds, which are automatically personalized7

for the specific patient. Furthermore, a mobile application (EcO2u) was developed to manage the8

entire data flow and facilitate the data fruition; this application also implements an innovative9

face-detection algorithm that ensures the identity of the patient. The robustness of the proposed10

soft transducer was validated experimentally on five individuals, who used the system for 30 days.11

Experimental results demonstrated an accuracy in anomaly detection greater than 93%, with a12

true positive rate of more than 94%.13

Keywords: wearable systems; wearable sensors; deep learning; LSTM; machine learning; remote14

health monitoring; vital sign monitoring; telemonitoring; health 4.015

1. Introduction16

The recent COVID-19 pandemic and the associated transition of patient care outside17

the hospital have boosted the development of systems for the remote monitoring of18

patient vitals signs [1–3], a task that has been favored also by the advancement of19

wearable technologies [4–9] and of the Internet of Things (IoT). These two technologies20

have contributed to the widespread adoption smart healthcare solutions (soft transducer),21

deployed either at hospitals or at home [10,11]. In fact, on one hand, the integration of22

IoT with wearable devices enables the doctor to monitor remotely the patients’ health.23

On the other hand, it also allows patients to gain awareness of their health status, which24

is particularly important when affected by chronic diseases. This approach facilitates an25

engaging and responsive patient experience, thus improving the patient’s journey.26

Among chronic diseases, one of the most widespread is certainly hypertension. In27

fact, the World Health Organization states that one in three adults in the world suffers28

from hypertension, and this proportion increases with age. Hypertension is frequently29

referred to as silent killer, because often it does not involve disturbing symptoms but still30

can degenerate suddenly and seriously. Even a moderate increase in blood pressure is as-31

sociated with reduced life expectancy. In this regard, monitoring patient vitals represents32

an important aspect of patient care, because these signs usually give first information33
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about abnormal physiology. In practice, this can be accomplished by employing soft34

transducers, which are wearable devices able to acquire and process a large amount of35

data in real time [12,13]. Indeed, it is crucial for physicians to be able not only to monitor36

hypertensive patients regularly, but also to predict the evolution of this condition.37

In the last few years, the processing of data related to patient vitals has been facili-38

tated by the adoption of Artificial intelligence (AI), which is one of the most promising39

enabling technologies of the 4.0 paradigm [14]. In fact, AI represents a strategic tool for40

supporting clinical decision and improving disease management [15], thus promoting41

the correct management, interpretation and use of multiple data collected from the indi-42

vidual patient [16]. The incorporation of AI, and in particular Machine Learning (ML)43

and Deep Learning (DL), has the potential to improve personalized, patient-centered44

care medicine, thus strengthening the effectiveness of therapies [17–19]. AI can be de-45

fined as a technology aimed to provide algorithms that learn from data without being46

programmed [20–22]. ML and DL are a sub-category of AI and refer to data processing47

oriented to (i) identify and design their relevant characteristics, and (ii) perform predic-48

tion on the output generated [23]. In Healthcare, the adoption of ML and DL can be49

considered as the best practice in designing decision support systems aimed to predict50

patients health [24].51

Starting from these considerations, this work presents the development of a DL-52

based soft transducer for the telemonitoring of patient vitals. In addition to the wearable53

sensors platform for remote monitoring of the vital signs, a DL algorithm, based on54

the Long-Short-Term-Memory (LSTM) Autoencoder, was implemented. This choice is55

driven by the potential of the DL to be able to automatically identify complex features56

even without having any prior knowledge of the domain. As detailed in the following,57

the implemented network allows to anticipate possible onset or worsening of the disease.58

The most notable aspect is that, differently from the state of the art (see Sec. 2), the59

proposed algorithm is trained to identify patient-specific alert thresholds. In fact, the60

definition of personalized threshold values reduces false positives occurrence during61

normal operating conditions. Finally, to manage data flow and to facilitate data fruition,62

a dedicated mobile application was developed which also provides an alert to patients63

and physicians in case of aggravating conditions. The application also includes a face-64

recognition feature that allows to verify the patient’s identity. It is important to point out65

that, while the proposed system was developed and validated in case-study related to66

healthcare, the obtained results have broader generality and may be declined for other67

application contexts.68

The paper is organized as follows. In Sec. 2, several approaches similar with the one69

proposed in this work are discussed, showing strong and weak points. Then, in Sec. 3, a70

conceptual description of the proposed soft transducer is provided, and the design of71

the proposed soft transducer is presented. Section 4 addresses its implementation of the72

soft transducer, while in Section 5, the experimental results are reported and discussed.73

Finally, in Section 6, conclusions are drawn and future work is outlined.74

2. Related Work75

As mentioned in the Introduction, AI has been widely used as a solution for predict-76

ing patients’ health [24]. For example, in [25], 21 different ML algorithms were applied77

and compared in the field of hypertension. In [26], a prediction system characterized by78

the use of an artificial neural network was described to evaluate the risk of hypertension79

in rural residents over the age of 35 years in a Chinese area. In [27], the authors proposed80

a hybrid machine learning algorithm of k-Nearest Neighboor (k-NN) and Least-Squadre81

Support Vector Machine (LS-SVM) for predicting future values of monitored vital signs82

using wearable technologies. In [28], it was found that (i) predictive observation and83

real-time analysis of values of biomedical signals, and (ii) automatic detection of epileptic84

seizures before onset are beneficial for the development of warning systems for patients85

as they, once informed that an epilepsy seizure is about to start, can take safety measures86
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in useful time. In [29], a system based on LSTM network was used in order to monitor87

vital parameters and ensure an intelligent rehabilitation process. In [30], a novel DL-88

based anomaly detection approach, called DeepAnT, was presented for time series data.89

It consists of both a time series prediction module and an anomaly detection module.90

The time series prediction module uses a deep convolution neural network (CNN) to91

predict the next timestamp on the defined horizon. The expected value is then passed92

to the anomaly detector module, which is responsible for marking the corresponding93

timestamp as normal or abnormal. In [31], DL was applied to provide early prediction94

for type 2 diabetes and hypertension. To perform this analysis, the Isolation Forest al-95

gorithm was used to detect abnormal data from the data set, while SMOTETomek was96

used to balance the unbalanced data set. Finally, in [32], a forecasting system capable97

of predicting systolic blood pressure in real time, by means of a Bidirectional Short-Term98

Memory (BI-LSTM) algorithm, was described.99

All these aforementioned works have demonstrated to be a suitable solution to100

improve real-time patients’ health monitoring. However, a training phase of the al-101

gorithms was always required on generalized sets of data. Hence, the resulting alert102

values are not personalized for the specific patient. As a result, the development of103

a processing strategy to identify patient-specific features can represent an interesting104

solution to enhance the patient’s vitals monitoring and the accuracy of the alert provided105

in case of worsening of health status.106

3. Design and Overall Architecture107

This section addresses the conceptual description of the proposed soft transducer.108

In particular, the overall architecture and the development of the mobile application are109

described. Basically, the proposed soft transducer works as follows.110

1. The patient uses wearable sensors to measure the vitals.111

2. The measured data are sent to a cloud database and are made available, through a112

mobile application, for the patient and the remote physician.113

3. The data on the cloud are processed by means of a DL algorithm, which is trained114

on the basis of preliminary measurements of the patient vitals.115

4. If the patient vitals exceeds a certain threshold, an alert is sent to the physician and116

to the patient.117

The overall architecture of the proposed soft transducer is shown in Fig. 1. One118

or more Wearable Sensors are used to measure a set of the patient’s vitals. Then, the119

measurement results are sent to a Cloud Database. The obtained data are saved in the120

database and processed by an AI Processing algorithm. The system returns a Score, which121

is sent to the user Mobile App along with all the information regarding the data acquired;122

if the vitals exceed a pre-established threshold, evaluated after a training on preliminary123

measurements of the patient, an alert is sent both to the physician and the patient.124

Figure 1. General architecture of the proposed soft transducer.
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The mobile application was developed considering the essential requirements of125

the healthcare context, including the description of the services offered by the system,126

the sensor connection, the vital parameter reading, the parameter processing, and the127

activation of emergency alarms. Overall, the application was designed with a six-level128

structure, dedicated to:129

1. Patient registration.130

2. Vitals measurements.131

3. Management of the patient’s Medical History.132

4. Remote Vitals visualization.133

5. AI processing.134

6. Delivery of the Score results to the patient and the physician.135

The design of the user interface was carried out taking into account the principles of136

good system design as reported in [33]: guaranteeing a minimalist design to prevent137

cognitive overload, using large and readable icons to facilitate user interaction, and,138

finally, using a clear, concise and intuitive language to help users identify their clinical139

status.140

4. Implementation141

4.1. Wearable Sensing Platform142

Fig. 3 shows the schematization of the wearable sensing platform as implemented143

in this work.

Figure 2. Implementation of the proposed telemonitoring system
144

Heart rate (HR), oxygen saturation (SpO2), and systolic and diastolic pressure (SP,145

DP) were considered as vitals-to-be-monitored. To this aim, for the monitoring task, the146

MAX30100, a low-cost SpO2 and HR monitor sensor was used [34].147

In order to retrieve the diastolic and sistolic pressure values, the patient is also148

required to measure his/her blood pressure through a sphygmomanometer. As detailed149

in the following section, it is used only once for calibrating the sensor for the successive150

automated evaluation of the blood pressure starting from HR values.151

The wearable sensing platform also includes a low-cost microcontroller with inte-152

grated Wi-Fi and dual-mode Bluetooth, namely the ESP32 [35], to allow the wireless153

transmission of the measured patient data.154

The patient vitals are transmitted via Wi-Fi to the database by MQTT protocol. Such155

database was created and managed in Node-RED and works on the AWS (Amazon Web156

Services) cloud platform.157

The vitals monitoring and the real-time anomaly detection is carried out by means of158

the developed AI-based algorithm. First, a Multivariate Linear Regression (MLR) algorithm159

is used to estimate the value of SP and DP starting from the HR and SpO2 values coming160

from the MAX30100, and taking into account the age and the presence of diabetes for161

each patient. The MLR was chosen since it is one of the most consolidated approaches162

adopted at the state of the art [36–38]. However, also other algorithms, based on Support163

Vector Machine, Support Vector Regression [39], and Regression Tree [40] can be suitably164
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used to estimate systolic and diastolic pressure values. Then, an LSTM Autoencoder is165

implemented to process the entire set of obtained data (HR, SpO2, SP, DP).166

Once the measured data are classified, the result is sent in real time to the mobile167

application (available to the user and to the physician). In case of hypertension risk, an168

alert is also sent to the physician to allow his/her prompt intervention. As shown in169

Fig. 3, the interactions between the mobile application and Node-RED are managed as170

HTTP calls.171

4.2. Mobile application172

The mobile application (which was called Eco2u) was developed in Java, and it is173

compatible with Android (from version 4.4 onward). As aforementioned, the application174

is structured in six levels, as shown in Fig. 3.

Figure 3. Application level of the proposed telemonitoring system.
175

1. Patient registration: Fig. 4(a) shows the window for registration and/or log in.176

During registration, the patient inserts his/her tax code (which is automatically177

verified) and the patient is associated to the reference physician. The user also178

enters additional personal information (such as name, surnames, date of birth).179

The association to the wearable measurement devices is carried out by scanning a QR180

code generated specifically for a single device. These sensitive data are treated181

in full compliance with anonymity requirements. In fact, only when an anomaly182

is detected the doctor is warned and is able to trace the patient identity. Fig. 4(b)183

shows the window that summarizes the user’s data, before they are sent to the cloud184

database, which checks the data and sends a feedback on the correct registration.185

Once the registration phase is completed, the patient is brought back to the log-in186

window to make the first log in. Also at this stage, there is a check with the database187

to verify that the password and tax code entered are correct.

(a) (b) (c)

Figure 4. Window of the EcO2u mobile application: Main menu of the application (a); Patient
registration (sensitive data are hidden) (b); Data calibration (c).

188

2. Vitals measurement: to allow the successive automated estimation of the systolic189

and diastolic pressure, a preliminary calibration procedure has to be carried out.190



Version February 23, 2022 submitted to Sensors 6 of 12

(a) (b)

Figure 5. Vitals monitoring with face recognization (a); Vitals visualization after completing the
measurement (b).

In particular, the patient use a sphygmomanometer to measure the systolic and191

diastolic pressure values, while the wearable sensing platform sensor is measuring192

HR and SpO2. Then, the patient manually enters these data in the application (Fig.193

4(c)). This phase, which has to be carried out only once, is necessary to identify194

the parameters that will subsequently allow the soft transducer to estimate the195

pressure. After the calibration, the patient can start using the soft transducer.196

The mobile application was also endowed with an important identification feature197

that allows to associate (and later verify) the patient’s identity acquired through198

the smartphone camera, as shown in Figure 5(a). Finally, the monitored vitals are199

displayed to the patient, as shown in Fig. 5(b).200

3. Management of the patient’s Medical History: The management of the patient medical201

history is conducted by: (a) showing the daily progress by a graph of the mea-202

surements made, (b) reporting the symptoms during the day, (c) indicating any203

symptoms not present to study a certain correspondence. The cloud database is204

updated in real time after each measurement session.205

4. Remote Vitals Visualization: The physician can access the EcO2u mobile application206

with the master credentials to view his/her patient list; after selecting the specific207

patient, the physician can display the most recent medical parameters, the graph of208

past trends and the list of notes, which can be also entered by the patient, in order209

to see if there is an onset of new symptoms that require a change in therapy (see210

Fig. 5(b)).211

5. AI processing: the AI-based processing of the acquired vitals provides a diagnostics212

tool to detect anomalies in real time. In particular, as detailed in the following213

section, a multivariate linear regression is used to estimate the value of SP and DP214

starting from the HR and SpO2 values coming from the MAX30100, and taking into215

account the age and the presence of diabetes for each patient, while a DL algorithm,216

based on a LSTM Autoencoder, is used to process the entire set of obtained data217

(HR, SpO2, SP, DP).218

6. Delivery of the Score result: The Score result is a synthetic quantity which indicates219

if an anomaly is detected, on the basis of the patient history and current data. In220

that case, the physician and the patient are immediately warned about the patient221

condition.222
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4.3. Deep-learning Algorithm for Anomaly Detection223

The approach used in this work is the Semi-supervised learning; in fact, most of224

the originally available data imported from [41] were not labeled, but described the225

patients normal health conditions. However, with such data it was possible to train a226

robust model and evaluate its performance in the validation and test phase using a small227

amount of labeled data including normal and abnormal data.228

The operating steps of the procedure were the following.229

1. Data Set Creation: first, the reference data set for the anomaly detection was im-230

ported from [41]. The 50 subjects included are 80% men (40) and 20% women (10)231

with an age range ranging from 26 to 35 years. Oxygen saturation, heart rate, and232

identification are indicated for each user.233

2. Model Identification and Training: the second phase consisted in the construction of234

a normal behavior model using the 80% of the imported data set as training data.235

The identification of this model is necessary to allow the subsequent classification236

of anomalies when they occur. The model chosen was the LSTM Autoencoder.237

This structure is characterized by an Encoder, which learns to generate an internal,238

compressed representation of input data, and a Decoder, which tries to reconstruct239

the original input on the basis of this internal representation. The Autoencoder240

was developed with a LSTM neural network. This choice was dictated by the241

fact that LSTM is the most suitable approach to process data when effects from242

past events need to be taken into account, differently from CNN which does243

not depend on any previous information for prediction, since it uses only the244

current window [42]. The LSTM requires a pre-processing of the data based on245

a three-dimensional array which contains the number of observations, the time246

window, and the relevant information. To determine the LSTM architecture, it was247

considered that the number of layers, and the corresponding number of neurons248

should be high enough to avoid underfitting but, at the same time, should be as low249

as possible to avoid both overfitting and high computational complexity. Therefore,250

an input level with 16 nodes, two hidden layers with 4 nodes each, and an output251

level with 16 nodes was chosen. The number of epochs was set to 100 and the batch252

size to 10. The model was trained by minimizing the reconstruction error, defined253

as the average absolute difference between the original input and the rebuilt output254

produced by the decoder.255

3. Alarm Value Identification: the third phase consisted in the identification of threshold256

values to allow to mark the data as standard or anomalous. These thresholds were257

determined by the reconstruction errors that the Autoencoder performs in the258

training phase. An anomaly occurs if the obtained reconstruction error exceeds259

that threshold; in that case, the corresponding data is marked as anomalous.260

4. Test Validation: the fourth phase allowed the validation of the threshold identified261

in the previous step. At this stage, the Autoencoder was provided with labeled262

data containing two anomalies to be identified. This test data is constituted by263

remaining 20% of the imported data set. The identification of an anomaly can be264

seen as a binary classification problem that provides as output a prediction score.265

The score indicates the certainty of the system that a given observation belongs to266

the standard class or that there is an anomaly.267

To this aim, the assessment of the obtained model was carried out using three268

figures of merit: the Area Under Curve-Receiving Operating Characteristic (AUC-ROC)269

curve; the F1 score; and the Binary Accuracy.270

• The ROC curve is plotted following two metrics: True Positive Rate (also known271

as Sensivity) and False Positive Rate. The True Positive Rate is defined as the272

number of true positive results divided by the number of all samples that273

should have been identified as positive. On the other hand, the False Positive274

Rate is defined as ratio between the number of negative results wrongly275

categorized as positive (false positives) and the total number of actual negative276
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results. The ROC curve shows the relationship between the True Positive Rate277

and the False Positive Rate. The closer Area Under Curve (AUC) is to 1, the278

more accurate is the model.279

• The F1 score is calculated based on two metrics: Precision and Recall (also280

known as Sensivity or True Positive Rate, and already defined in the previous281

item). The Precision is defined as the number of true positive results divided282

by the number of all positive results, including those not identified correctly.283

The F1 score is obtained as the harmonic mean of the Precision and Recall and284

it is a indication of test’s accuracy.285

• The Binary Accuracy represents how well a classification test correctly identi-286

fies or excludes a condition. Then, it is defined as the proportion of correct287

predictions among the total number of cases examined.288

5. Readjustment: Once the model was validated, it was readjusted after 30 days with289

further measurements provided by the user. The readjustment was aimed to290

identify customized threshold values for the personalized patient care.291

5. Experimental Results and Discussion292

In this Section, the obtained experimental results are presented and discussed. More293

specifically, a metrological characterization of the soft transducer, in terms of validation294

of (i) the telemonitoring system, and (ii) the DL algorithm performance, was conducted.295

5.1. Experimental Validation of the Telemonitoring System296

The telemonitoring application EcO2U was tested on five volunteers. Firstly, a func-297

tional testing was carried out to ensure each block worked properly. In particular, during298

this phase it was possible to verify 1) the correctness of Wearable Sensing Platform/Subject299

association within the database; and 2) the calls inserted in the database application to300

correctly use the information.301

Then, the correct estimation of systolic and diastolic pressure, obtained by means of302

the multivariate linear regression algorithm, was verified after inserting the parameters303

required during the calibration phase. Throughout the measurement, the mobile phone304

focused on the user and on the sensor in order to validate the procedure. Automatically305

the data is sent to the database and made visible to the user. If the measurement result,306

after appropriate processing, indicates a risk for the patient, then the application itself307

will manage this alarm by informing the doctor and the patient himself.308

For each subject, 30 HR and SP/DP values were recorded. Two different sessions were309

conducted. Table 1 summarizes the obtained results in terms of mean value and related310

1-σ repeatability. Results confirmed the proper functioning of the telemonitoring section311

of the soft transducer.312

Table 1. Average values of vitals acquired in two sessions with related 1-σ repeatability.

Subject HR [Bpm] HR [Bpm] SP/DP [mmHg] SP/DP [mmHg]
1st session 2nd session 1st session 2nd session

#1 85 ± 3 82 ± 2 112/80 ± 2 112/79 ± 2
#2 71 ± 2 68 ± 2 130/82 ±1 128/82 ± 2
#3 88 ± 4 85 ± 4 125/85 ± 2 124/84 ± 1
#4 75 ± 1 73 ± 2 126/84 ± 2 125/84 ± 1
#5 70 ± 2 67 ± 1 136/82 ± 1 134/82 ± 2

5.2. Experimental Validation of the Developed DL Algorithm313

As mentioned in Section 4.3, the training of the LSTM Autoencoder was carried out314

for 100 epochs and allowed the identification of the appropriate threshold value. Fig.315

6 shows the behavior of the Autoencoder on the complete dataset, including the data316
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used for training and for test. These data were indexed day by day. As visible, during317

the observation period the score of the reconstruction error occasionally exceeded the318

threshold value, indicating an anomaly in the measured data.319

Figure 6. Reconstruction error (blue line) as a function of the training and test data. The identified
threshold for the anomaly detection is shown in red.

Table 2 summarizes the results of the binary classification (anomalous/standard320

data) on the test set in terms of True Positive Rate, False Positive Rate, and Precision.321

Table 2. Results of data classification.

Metric Result
True Positive 68
False Positive 1
False Negative 4
True Negative 2

True Positive Rate 0.94
False Positive Rate 0.33
Precision 0.99

Area Under Curve 0.81
F1 Score 0.96
Binary Accuracy 0.93

Starting from these metrics, the three figures of merit (AUC, F1 score, and Binary322

Accuracy) were evaluated. In particular, the AUC was equal to 0.81, while the F1 score323

was equal to 0.96, and the binary accuracy equal to 0.93. Figure 7 shows the resulting324

AUC. The obtained results confirmed the capability of the system to successfully identify325

the anomalies which can occurr during the monitoring phase.326

5.2.1. Patient-specific Customization and Validation of The Soft Transducer327

The patient-specific customization of the proposed soft transducer (Readjustment)328

was carried on the five volunteers. The operative steps, conducted separately for each329

volunteer, were the following:330

1. The user employed the soft transducer for 30 days. The acquisition of his/her vitals331

(twice a day) included also abnormal values, which were emulated by placing332

him/her under stress conditions (e.g., a short run).333
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Figure 7. Area under the curve

2. The obtained data set (60 samples) was splitted in 80 % training (48 samples) and334

20 % test (12 samples). Therefore, the LSTM Autoencoder was re-trained in order335

to identify the patient specific threshold value336

During the test phase, it was observed that the algorithm successfully identified all337

the labelled anomalies.338

After this 30-days phase, further tests were conducted in order to determine the339

optimal number of days to wait to update the model still keeping adequate performance.340

Results showed that 15 days is the optimal calibration interval necessary to personalize341

and update the model. In fact, this choice allowed to obtain a value of AUC equal to342

0.831 in the test phase, while after 30 days this value slightly increased to 0.836.343

6. Conclusion344

In this work, a soft-transducer for remote monitoring of patient’s health was de-345

signed, implemented and experimentally validated. The soft transducer measures in346

real time the patient’s heart rate, oxygen saturation and systolic/diastolic pressure, and347

sends the data to a remote database; this can be easily consulted both by the patient and348

the physician. To endow the soft transducers with predictive features, a DL algorithm349

(based on LSTM Autoencoder) was developed and implemented: the algorithm pro-350

vides an alert when the vitals exceed certain thresholds, personalized for the specific351

patient. Also, a dedicated application (named EcO2u) was developed (i) to manage the352

remote collection of the patient vitals and the communication with the physician, and353

(ii) to automatically detect anomalies by means of a patient-personalized, DL-based354

processing. After a validation on a public data set, the obtained experimental results355

on five volunteers showed an accuracy in anomaly detection greater 93% with a true356

positive rate higher than 94%, thus confirming the robustness of the proposed strategy.357

In practical applications, the proposed soft transducer can facilitate the monitoring358

of patients outside clinical facilities by providing advantages to the hospital in terms359

of resource management. Moreover, the proposed system manages to improve the360

quality of the patients life by allowing them to stay in their own family environment, in361

contact with family and friends. Such benefit is particularly important for children or362

elderly patients, for whom hospitalisation may have a severe emotional impact. Finally,363

it is worth mentioning that, although in this work a healthcare-related case-study was364

considered, the obtained results have broader generality and may be declined for other365

application scenarios.366

Future work will be addressed to integrate the developed soft transducer with an367

Augmented Reality-based interface, which has proven effective in the medical field368

[43–46], in order to further improve patient’s engagement and his/her journey.369
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