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Abstract—We address distributed machine learning in multi-
tier (e.g., mobile-edge-cloud) networks where a heterogeneous set
of nodes cooperate to perform a learning task. Due to the presence
of multiple data sources and computation-capable nodes, a
learning controller (e.g., located in the edge) has to make decisions
about (i) which distributed ML model structure to select, (ii)
which data should be used for the ML model training, and (iii)
which resources should be allocated to it. Since these decisions
deeply influence one another, they should be made jointly. In
this paper, we envision a new approach to distributed learning
in multi-tier networks, which aims at maximizing ML efficiency.
To this end, we propose a solution concept, called RightTrain,
that achieves energy-efficient ML model training, while fulfilling
learning time and quality requirements. RightTrain makes high-
quality decisions in polynomial time. Further, our performance
evaluation shows that RightTrain closely matches the optimum
and outperforms the state of the art by over 50%.

I. INTRODUCTION

The combination of machine learning (ML) and 5G net-
works enables the so-called Internet of Intelligent Things,
whereby user equipments (UEs), such as smartphones and
smart-city devices, can leverage cloud-based ML services.

The diversity of the devices performing ML tasks will be
matched by the diversity of the tasks themselves. Different
applications and scenarios call for different ML approaches,
including supervised [1] and unsupervised [2] learning, as well
as hybrid approaches. A large number of these tasks can be
accomplished through deep neural networks (DNNs), built by
combining a sequence of layers of different types [1].

However, the performance of distributed learning depends
upon three major factors, namely, (i) the quantity of the data
used for learning, (ii) the learning strategy itself, e.g., the
distributed DNN structure employed, and (iii) the computa-
tional and network resources allocated to the learning task.
In this paper, we address such decisions by presenting a
framework, named RightTrain, that makes joint high-quality,
energy-efficient decisions about data usage, distributed DNN
structure selection, DNN layer-to-physical node mapping, and
resource allocation. Our framework can capture the nontrivial
(and, often, counter-intuitive) ways in which such choices
interact with each other, and yields decisions that are provably
close to the optimum, while keeping a low complexity.

Our work is related to studies on distributed ML in edge
scenarios. However, while those works [3]–[5] aim at finding
the right resources to implement a given and immutable
learning task, we take a more flexible approach, and address
the important challenge of adapting the DNN structure and the

resources it uses to one another, thus achieving unparalleled
learning efficiency. Besides proposing such new solution con-
cept, we also identify new research directions for distributed
ML in multi-tier networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model describes a DNN training task leveraging
distributed learning and exploiting the resources of the nodes
in the multi-tier network. Such nodes communicate with, and
are coordinated by, a central controller, typically running
at the edge of the network infrastructure, which collects
information on the nodes’ capabilities and position [3].

Input information. DNN learning tasks are performed
through an architecture composed of layers of different types
(e.g., fully-connected or convolutional). Each layer has a local
set of parameters defining its behavior (e.g., the weights of a
fully-connected layer), and training a DNN means finding the
parameter values that minimize a global loss function.

Thus, the input to our problem includes (see Fig. 1(a)):
• a set L = {l1, . . . , lL} of layers of the DNN architecture

to perform the learning task at hand;
• a set N of mobile, edge or cloud physical nodes with the

capability to run one or more DNN layers;
• a set D of data sources.
For each layer l ∈ L, we indicate with r(l) the com-

putational requirement, which is known and expresses (e.g.,
in CPU cycles/Mbit) the amount of computing resources
required to process one unit of traffic entering layer l, in-
cluding both forward and backward passes. We are also given
coefficients q(l), indicating the ratio between outgoing and
incoming data for layer l. Importantly, set L of DNN layers
is given as an input to our problem, as it comes from domain-
and application-specific knowledge. Adapting the DNN to the
available network resources is, instead, one of the decisions
we make, as set forth next.

For each node n ∈ N , we are given the total amount R(n)
of available computational resources therein, that can be allo-
cated to the layers running at n. Parameters µ(l, n) ∈ {0, 1}
express whether node n has enough memory to execute layer l.

Concerning data transmission, for any two nodes n1, n2,
S(n1, n2) indicates the amount of data that can be transferred
in a time unit over the link (assumed to be symmetric) between
the two nodes. Also, S(n1, n2) = ∞ if n1 = n2, and
S(n1, n2) = 0 if n1 and n2 cannot communicate. Finally, let
Δ(d) be the data generated by source d ∈ D at each epoch.
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Fig. 1. (a) Model elements: layers of the DNN architecture (lj , light blue), data sources (dj , green), and physical nodes (nj , orange); (b) a possible distributed
DNN structure whose nodes are data sources and layer instances; (c) layer instance-to-node mapping; (d) a resource allocation, using only some of d2’s data
and, accordingly, reducing the computing resources allocated to instance (l1, 2) as underlined by the shade of n5.

Decision variables. Given the DNN architecture at hand,
several distributed structures thereof can be envisioned, in-
cluding data sources and one or more instances of each layer
(see Fig. 1(b)); we refer to each of such structures as an
instance tree. To run an instance tree, we need to identify
the physical nodes to use, to allocate resources therein, and to
determine the quantity of data to be used for training.

Building the instance tree. For each layer l ∈ L, at least
one and at most α|D| layer instances shall be created, with
α ≥ 1. Each layer instance runs at a physical node, and is
identified as a pair (l, i), where i = 1, . . .α|D|; the set of layer
instances is denoted by I. As mentioned, layer instances and
data sources in D are connected to form an instance tree, with
binary variables y(l, i,m, j) ∈ {0, 1} expressing whether layer
instance (l, i) shall be connected to layer instance (m, j). As
depicted in Fig. 1(b), each data source d ∈ D can be associated
with at most one instance (d, 1), and not associating a source
with any layer instance means not using it.

Instance-to-node mapping and resource allocation. Given
the instance tree and the network topology, the coordina-
tor has to decide which node n ∈ N runs layer in-
stance (l, i) ∈ I; such a decision is expressed through binary
variables z(l, i, n) ∈ {0, 1}. Also, ν(l, i) denotes the node run-
ning instance (l, i), i.e., such that z(l, i, ν(l, i)) = 1. Another
decision concerns computational resources ρ(l, i) ≤ R(ν(l, i))
(in CPU cycles/s), to be assigned to each layer instance (l, i).

Training data and traffic. For each data source d, the
coordinator determines the quantity x(d, 1,m, j) of data to
be transferred towards layer instance (m, j). Given the x-
variables, we define χ(l, i,m, j) as the quantity of data flowing
over the link from instance (or source) (l, i) to instance (m, j).

Constraints and objective function. First, the
instance tree topology determined by the y-variables
must include at least one instance of each layer,
i.e.,

�
i∈[1...α|D|]

�
(m,j)∈I y(l, i,m, j) ≥ 1, ∀l ∈ L,

and only subsequent layers can be connected, i.e.,
y(l, i,m, j) ≤ 1[l is child of m] With regard to instance-
to-node mapping (i.e., z-variables), each layer
instance must be mapped onto exactly one node, i.e.,�

n∈N z(l, i, n) = 1, ∀(l, i) ∈ I and no layer instance can be
mapped onto a node lacking the required memory resources,
i.e., z(l, i, n) ≤ µ(l, n), ∀(l, i) ∈ I, n ∈ N .

As for the ρ- and x-variables, the available computing and

communication resources cannot be exceeded, i.e.,
�

(l,i)∈I : ν(l,i)=n

ρ(l, i) ≤ R(n), ∀n ∈ N , (1)

�

(l,i) : ν(l,i)=n
(m,j) : ν(m,j)=n�

χ(l, i,m, j) ≤ y(l, i,m, j)S(n, n�) , ∀n, n� ∈ N .

(2)
Finally, the data fed by a data source into a layer instance

cannot exceed Δ(d), i.e., x(d, 1, l, i) ≤ Δ(d), ∀d, (l, i).
Decisions x, y, z and ρ fully describe the behavior of the

DNN training task. However, they do not directly express:
(i) the time taken by each learning epoch; (ii) the energy
consumed in each learning epoch; (iii) the number of epochs
needed to attain the required learning quality, i.e., the maxi-
mum allowable value of loss function �max. We account for
these quantities through functions T(x, y, z, ρ), E(x, y, z, ρ),
and K(y, x, �), respectively. Note that T(x, y, z, ρ) and
E(x, y, z, ρ) are straightforward to characterize using [6],
linking the CPU and memory resources associated with each
layer to the corresponding energy consumption. Furthermore,
E(x, y, z, ρ) values can be normalized to account for the
fact that saving energy is more critical for some devices, e.g.,
battery-powered ones, than for others. Finally, it is important
to highlight how T(x, y, z, ρ) captures the transfer times
between devices as well as the computation times. K(y, x, �)
can instead be obtained through different means, e.g., testbed
measurements [7], which also include the effect of the quantity
and quality of available data on accuracy. All such functions
represent inputs to our problem.

Given T, E, and K, we formulate our problem of minimiz-
ing the learning energy consumption, subject to the constraints
above and to achieving loss �max by time Tmax, as:

min
x,y,z,ρ

K(y, x, �max)E(x, y, z, ρ) (3)

s.t.K(y, x, �max)T(x, y, z, ρ) ≤ Tmax. (4)

III. THE RIGHTTRAIN SOLUTION

Directly optimizing (3) subject to constraints (4) is a
daunting task. We thus introduce the RightTrain solution
concept, whose main steps are summarized in Fig. 2. It takes
as an input the set of instance trees to consider (like the
one in Fig. 1(b)); such a set can be efficiently computed



offline, in a scenario- and application-dependent manner. Then,
temporarily assuming that all data and resources will be used,
RightTrain iterates over the instance trees, selecting at each
step the one requiring the least amount of total processing
(Step 1 in Fig. 2, detailed in Sec. III-A). For each tree, the
y-variables are given, hence, in Step 2 (Sec. III-B) RightTrain
makes the mapping decisions z, still keeping the temporary
assumption that all data and resources will be used. This
assumption is dropped in Step 3 (Sec. III-C), which seeks
to refine the solution obtained in Step 2 by using less data
and/or less computing power, thereby reducing the energy
consumption without jeopardizing the learning performance.
If a feasible solution is obtained, then the algorithm terminates
(Step 4); otherwise, it goes back to Step 1 and moves to the
next instance tree.

A. Instance tree ordering

Ideally, in Step 1 of the RightTrain solution one would
like to select a tree minimizing the energy consumption (3);
however, this is not possible as instance-to-node mapping and
resource assignment decisions (respectively, Steps 2–3) have
yet to be made. Nonetheless, the instance tree – along with
information on layer and data source characteristics – allows
estimating the total quantity of processing entailed by the tree
itself, which can be expressed as:

K(y,Δ, �max)
�

l : (l,i)∈I
r(l)

�

d∈D : (l,i) is
an ancestor of d

Δ(d)
�

m∈L in path
from d to l

q(m). (5)

Looking at (5) from right to left, the processing required by a
given layer l of a DNN for each epoch depends upon [8]:
(i) the incoming data (which in turn depends upon the q-
coefficients of the layers traversed before l) and (ii) the layer
complexity. Such quantities are then summed across all layer
instances, and multiplied by the number of epochs to run.

B. Layer instance-to-node mapping

Step 3 of RightTrain maps layer instances in I onto nodes
in N . As mentioned, initially such decisions are made as-
suming that all available data and computational capabilities
are used. The resulting problem is combinatorial and, in
general, hard to approach; on the positive side, however, we
can leverage the tree structure connecting layer instances, as
exemplified in Fig. 1(b). We do so by:
(i) building the expanded graph, summarizing all viable map-
ping decisions, and

(1) Choose
tree (𝑲,𝑦)

(2) Map instan-
ces to nodes (𝑧)

(3) Reduce 
energy (𝑥, 𝜌)

yesno (4) Feasi-
ble?

DNN layers ℒ

Instance
trees

𝑥, 𝑦, 𝑧, 𝜌

Fig. 2. Main steps of RightTrain: given the DNN architecture at hand, at each
iteration RightTrain selects the DNN structure (i.e., instance tree) with the
lowest computational load (Step 1, Sec. III-A). It then makes the near-optimal
layer instance-to-node mapping (Step 2, Sec. III-B), and further improves
efficiency by tweaking data and resource utilization (Step 3, Sec. III-C).

Algorithm 1 Step 3 of RightTrain
Require: Expanded graph {d} ∪ {(l, i, n)} ∪ {Ω}

1: T ← {Ω}
2: while D \ T �≡ ∅ do
3: w�,π� ← ∞, ∅
4: for all d ∈ D \ T , v ∈ T do
5: w,π ← RestrictedMinWeightPath(d, v, Tmax)
6: if w < w� then
7: w�,π� ← w,π

8: T ← T ∪ π�

9: for all (l, i, n) ∈ T do
10: z(l, i, n) ← 1

(ii) computing a delay-aware Steiner tree (DA-ST) on the
expanded graph, i.e., the minimum-weight tree spanning the
vertices that correspond to the considered instance tree, with
the additional constraint on the maximum learning time. By
construction, the topology of the DA-ST corresponds to near-
optimal mapping decisions.

The vertices of the DA-ST tree represent the layer instance-
to-node mapping minimizing energy consumption (3), un-
der the above conditions, i.e., that all data and resources
are used. The mapping between vertices and decisions is
made as summarized in Alg. 1. Given the expanded graph,
in Line 1 we initialize the DA-ST T , so as to include
vertex Ω. Then, so long as there are data sources not yet
included in the tree (Line 2), we look for the minimum-
weight path connecting a data source d not yet in T with
a vertex v in T , subject to (4). To this end, we leverage
function RestrictedMinWeightPath(d, v, Tmax) (Line 5), pro-
viding the path π connecting each data source d not yet
reached by T with each vertex v already in the tree, as
per [9]. The minimum-weight path is then identified (Line 7)
and added to the DA-ST T in Line 8. Once all data sources
have been included, T is complete. The algorithm therefore
sets to 1 the z-variables corresponding to the selected DA-ST
vertices (Line 10), and returns them.

In addition to providing high-quality decisions, Alg. 1 has a
remarkably low (namely, quadratic) computational complexity,
as can be seen by inspecting the algorithm itself. Indeed, the
outermost loop is performed at most |D| times, and the inner
one at most |T | times.

C. Optimizing data and resource usage

In Steps 2 and 3, we have set the y-variables and z-variables.
The values of both variable sets have been obtained under the
assumption that all data from the selected data sources and
all the capabilities of the involved physical nodes are used.
Next, Step 3 seeks to establish whether all that data and that
computational power are really needed. Our goal is thus to
obtain a solution that meets all constraints in (4), while further
improving the energy objective in (3).

Given the y- and z-values, the problem in (3)–(4) only has
continuous variables, i.e., x and ρ. Such continuous problems
can be efficiently tackled by off-the-shelf solvers or through
iterative gradient-based methods like BFGS, with polynomial
worst-case complexity [10], and much faster in most cases.
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Fig. 3. Energy consumption (left), actual (center), number of epochs and fraction of used data (right), vs. maximum learning time.

IV. PERFORMANCE EVALUATION

We now seek to quantify how RightTrain improves the per-
formance of a simple, yet representative, image classification
task, based on the widely popular AlexNet [11] DNN and the
de facto standard CIFAR dataset. We consider mobile-edge-
cloud scenario including 4 data sources and 5 mobile nodes.

We compare the performance of RightTrain against split
learning (SL) [4], owing to the relevance and good perfor-
mance of the latter [12]. In the considered scenarios, SL splits
the DNN into three parts, and aims at running one in each of
the mobile, edge, and cloud network segments. Since we are
interested in the best decisions that can be made under the
SL paradigm, we try out all possible splits, and choose the
one resulting in the best value of the objective in (3). We also
compare against the optimum, i.e., the decisions that minimize
the total energy consumption, as obtained via brute force.

We compare the behavior of RightTrain and the alternatives
approach with respect to the most relevant performance met-
rics, namely, energy consumption and learning time. Fig. 3
(left) shows the energy consumed versus the maximum learn-
ing time Tmax. As expected, lower values of Tmax, hence,
tighter delay constraints, result in higher energy consumption.
Also, we can identify two distinct operational regions. When
Tmax is small, all strategies perform similarly, with RightTrain
consuming slightly less energy than SL and close to the
optimum, owing to its greater flexibility in layer instance-to-
node mapping. As Tmax grows, the energy consumed by SL
remains unchanged, while RightTrain matches the optimum
and consumes over 50% less energy than SL. The reason is
shown in Fig. 3 (center): SL yields shorter learning times than
the maximum, especially for high Tmax.

This is confirmed by the results in Fig. 3 (right), portraying
the fraction of data used by each strategy (purple) and the
resulting number of epochs K (green). SL (dashed lines)
always uses all available data, which results in a constant (and
low) number of epochs. Conversely, both RightTrain and the
optimum can use less data when the delay requirements are
looser, achieving a lower energy consumption and, hence, a
better efficiency, in spite of a higher number of epochs.

V. CONCLUSION AND FUTURE WORK

We have presented RightTrain, an effective scheme to
achieve energy-efficient ML training in the mobile-edge-cloud

continuum. RightTrain is predicated on making joint decisions
on (i) selecting the data to be used, (ii) choosing the distributed
DNN structure, and (iii) allocating the resources to train
it. Owing to its holistic nature, RightTrain is able to adapt
the learning tasks to the available computational resources,
networking capabilities, and data; this is in contrast with state-
of-the-art works, which consider the learning task given and
seek to find the resources to support them.

Future work should further investigate the trade-off between
learning performance and energy efficiency, and find new
paradigms to leverage at best the distributed resources offered
by a multi-tier network. Additionally, new solutions are needed
to optimally cope with the randomness affecting the topology
and operational conditions of mobile nodes that get involved
in the learning process.
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