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THE SOBOLEV EMBEDDING CONSTANT ON LIE GROUPS

TOMMASO BRUNO, MARCO M. PELOSO, AND MARIA VALLARINO

ABSTRACT. In this paper we estimate the Sobolev embedding constant on general non-
compact Lie groups, for sub-Riemannian inhomogeneous Sobolev spaces endowed with
a left invariant measure. The bound that we obtain, up to a constant depending only
on the group and its sub-Riemannian structure, reduces to the best known bound for
the classical inhomogeneous Sobolev embedding constant on R%. As an application, we
prove local and global Moser—Trudinger inequalities.

1. INTRODUCTION

The aim of this paper is to investigate the behaviour of the Sobolev embedding constant
in a sub-Riemannian setting, in particular on noncommutative Lie groups. .

In the Euclidean space R%, if A denotes the classical positive Laplacian and LE =
A%2LP the homogeneous Sobolev space, it is well known that L5 < L9 when 1 < p < o0,
0 < a < d/p and % = % — g+ The best constant and the extremal functions for this
embedding have a long history and a multitude of applications, and they can be obtained
from the analysis of the Hardy-Littlewood—Sobolev inequality. Lieb [19] determined the
best constant in the “diagonal case” p = ¢/, and found an estimate in the other cases; see
also earlier works by Aubin [3] and Talenti [30]. If L = (I+A)*/2LP is the inhomogeneous
Sobolev space, then it is also well known that Lf, < L? when 1 < p,qg < o0, 0 < a < d/p
and % = % — g- The related best embedding constant is not known, though it can
be bounded by the best constant for the embedding of homogeneous spaces, up to a
dependence on the dimension d.

On a general noncompact Lie group G, the natural substitutes of the Laplacian are
sub-Laplacians with drift £, see [1], which are symmetric with respect to the left Haar
measure \. This setting, and this type of operators in particular, were studied in [14, 2],
and an associated theory of Sobolev spaces, that we shall denote by L% (\), was developed
in [1]. Since the Riesz transforms are not known to be bounded on L when 1 < p < 0 in
such generality, while it is known that the appropriately shifted ones are bounded, see [4],
it seems more natural to consider Sobolev spaces endowed with an inhomogeneous norm,
which reduces to the Sobolev norm of L%, in the Euclidean case.

Key words and phrases. Lie groups, Sobolev embeddings, best constant, Moser—Trudinger inequality.
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2 T. BRUNO, M. M. PELOSO, AND M. VALLARINO

Our main result is an estimate for the constant of the embedding L5 () < L9()\), when
l<p<w, 0<a<d/pand % = % — 9, of the form C S(p, q), where

g pte
p—1"¢—1

S(p,q) := min ( (1.1)
and C depends only on the group and its chosen sub-Riemannian structure. Here and
throughout the paper, given any p € (1,0) we denote by p’ its conjugate exponent, that
is, p’ = p/(p — 1). In terms of the dependence on p and ¢, such a bound is comparable to
the best known bound in R? for the Sobolev embedding constant for inhomogeneous spaces
associated with the Laplacian, while it is new in noncommutative groups. In addition to
this, we shall also discuss the more general case of relatively invariant measures where,
despite the Sobolev embeddings in general fail [1], we are able to prove alternative results.

A well-established application of the Sobolev embedding theorem, both in the homoge-
neous and inhomogeneous case, is the classical Moser—Trudinger inequality [31, 22], which
arises as a substitute of boundedness for functions in the Sobolev space LZ Jpr 3 this does

not embed in L*. By means of our quantitative Sobolev embedding, we prove quantitative
versions of local and global Moser—Trudinger inequalities. Our approach is close in spirit,
and inspired by, [23]. We refer the reader also to the recent work [27].

The analysis of sub-Laplacians and more generally of subelliptic differential operators
has attracted a great deal of attention since their appearance in the study of Kohn-
Laplacians and the renowned sum-of-squares theorem of Hormander. It appears then very
natural to extend geometric and functional inequalities from the Euclidean, elliptic case to
a subelliptic setting, also in a quantitative form. Earlier breakthroughs were, e.g., Sobolev
embeddings on stratified Lie groups [12] and the Poincaré inequality for sums of squares
on R? [16]. Among more recent works, we mention the Sobolev embedding theorem on
unimodular Lie groups [8], a lower bound for the Hausdorff-Young constant on general
Lie groups [10], the best constants for Sobolev and Gagliardo-Nirenberg inequalities on
graded groups [27], and Poincaré inequalities on Lie groups [25, 7]. This paper fits into
this order of ideas and line of research; we refer the reader also to [11, 26, 4] and the
references therein. We emphasize that our setting is a general (connected) Lie group,
endowed with a left Haar measure which, in general, has exponential volume growth and
is non-doubling.

The structure of the paper is as follows. In Section 2, we describe the setting and all
the preliminary results we shall need. Section 3 is the core of the paper, and contains
the proof of the quantitative Sobolev embedding, whose constant is compared in Section 4
with the Euclidean ones. In Section 5 we prove a quantitative Moser—Trudinger inequality,
and in Section 6 we discuss the case of more general measures.

Acknowledgements. We thank the anonymous referees for carefully reading the man-
uscript and making a number of suggestions and comments that led us to improve the
clarity of our presentation.

2. SETTING AND PRELIMINARIES

Let G be a noncompact connected Lie group with identity e. Let A be a left Haar
measure on GG, and § be the modular function.
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Let X = {Xy,..., Xy} be a family of left-invariant linearly independent vector fields
which satisfy Hérmander’s condition. Let d¢( -, -) be its associated left-invariant Carnot—
Carathéodory distance. We let |z| = dc(x,e), and denote by B, the ball centred at e of
radius 7. We denote by V(r) = A\(B;) the measure of of the ball B, with respect to \. We
recall (cf. [13, 32]) that there exist two constants d € N* and D > 0 such that

Cll<vir)y<ort vre(0,1], V(r)<CeP"  Vre(1,m), (2.1)

where C > 0 is independent of r. We emphasize that d is uniquely determined by G and
X, while the set of D > 0 such that (2.1) holds is independent of X but does not have a
minimum in general; consider, e.g., the case when G has polynomial growth. From this
point on, we fix a D > 0 for which (2.1) holds, and observe that the metric measure space
(G,dc, M) is locally doubling, but not doubling in general.

If p € [1,00), the spaces of (equivalent classes of) measurable functions whose p-power
is integrable with respect to A will be denoted by LP()\), or simply LP, and endowed with
the usual norm which we shall denote by | - |[z»(y). The space L* is deﬁned analogously.
The convolution between two functions f and g, When it exists, is defined by

- Lf(xmg(yl)dA(y), el

We recall Young’s inequality, which has the following form [15]: if 1 < p < ¢ < o0 and
r>lissuchthat%—I—%:l—kl,then

£ * gllzoey < I loon 317250 917y (g < )
<

2.2
[ f gHLoo 22

|
HfHLP()\)HQHLp )

where §(z) = g(x~1). We denote by £ the intrinsic sub-Laplacian on G associated with
X, see [2],
¢
L==) (X7 +(X;0)(e)X;),
j=1
which is symmetric on L?()\), and essentially self-adjoint on CX(G), see [11]. We shall
denote by L as well its unique self-adjoint extension.

The operator L generates a diffusion semigroup, i.e. (e*t‘:)t>0 extends to a contraction
semigroup on LP(A) for every p € [1,0] (see [11]) whose infinitesimal generator, with a
slight abuse of notation, we still denote by £. We denote by p? the convolution kernel
of et and we recall that by [33, Theorems VIIL.2.9, VIII.4.3 and IX.1.3] there exist
constants b, ¢ > 0 depending only on G and X such that

212
P(x) <c(lat)3e i@ L eq s, (2.3)
where ¢(6) = (|X16(e)|> + -+ + | X¢d(e)[2)/2. Let by = v/b/2, and define
2 1
Ts = max {b [2D + bo]* — Zc(d)Q, 1} . (2.4)

Following [1], when p € (1,0) and a > 0 we define the Sobolev spaces L5 ()) as the set
of functions f € LP()\) such that (751 + £)*2f € LP()\), endowed with the norm

1fllzz oy = 1G5 + £)* £l Logay- (2.5)
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If o = 0, we let L{(A) = LP(X). We recall that (2.5) is equivalent to the norm || f||zs(x) +
|Lo2f| Lr())» see [1]. The reason for choosing the shift 75 in the definition of L () will
be clarified later on; for more details about 75, we refer the reader to the beginning of
Section 4 below.

n [1] the Sobolev embeddings L5(A\) < LI(A\) when 0 < a < d/p and ¢ > p are
such that % =1_ 9 were established. In this paper we find an explicit bound for the
embedding constants, in the spirit which we now explain.

Throughout the paper, we shall disregard any dependence of the embedding constants
on GG and X, which are assumed to be fixed once and for all from this point on. We
shall, instead, obtain explicit results in terms of the dependence on p, ¢ and a. A generic
constant depending only on G and X will be denoted by C or C(G, X), and its value may
vary from line to line. Recall in particular that d = d(G, X).

For o > 0, let G§ be the convolution kernel of (751 + L)~ Let

Gy = G§1p,,  GYE" = G (2.6)
The following is a refined version of [/, Lemma 4.1].

Lemma 2.1. There ezists C = C(G,X) > 0 such that, for a € (0,d) and x € G,
« o
1, (@)

|G?’g10b(33) ‘ < C e—(2D+b0)|x| ]-Bf (.CU)

G5 (@) < C

Proof. We recall that the convolution kernel G§ can be written as

1 P e/ Le=7sty)
GY = J t* T ; dt,
* T(e/2) Jo

so that by (2.3)

G3(x) < =<

I(a/2)

Set a = 75 + 1¢(0)%. Since at + blz|?/t > 3(at + blz|*/t + v/2ab|z|), we see that when
|z > 1,

J (/21 (1 p )= d/2a (ot et —blalt gy

o0
Gg(l’) < F(C/2)eémx|f ta/Zfl(l A t)fd/Qef%t—% dt < Cef(QDerO)m '
(6%

On the other hand, when |z| < 1, splitting the integral we have
1 0
G§(z) < Ca (J pla=d)/2=1=blal/t qp f
0

= Ca (Gi(z) + Ga(x)).

It is clear, since a € (0,d) and a > 1, that Ga(x) < C. Since a € (0,d), we also have

1
a—d da)/Zl—bu a—d 1 d—a 1
([ ) du < ol o= lel*) +1),

and the conclusion follows. O



THE SOBOLEV EMBEDDING CONSTANT 5

3. THE SOBOLEV EMBEDDING CONSTANT

We are now ready to state our main result. Recall that the constant S(p,q) is defined
in (1.1).

Theorem 3.1. Let p € (1,0), o € [0,d/p) and q € [p, ) be such that % = % — 9. Then
there exists Ay = A1(G,X) > 0 such that for all f € LE(X)

1flapy < AL S® D f -

Proof. When o = 0 and hence ¢ = p, the statement is the trivial embedding LP «— LP.
Since the function z — z!=/%/(z — 1) is bounded from below for z > 1, one sees that
S(p,p) = 1/c for some ¢ > 0. Then

1flroy = If 2y < €SP fllzeeny

and from this point on we may then assume « > 0 and ¢ > p. Define

Ko(z) = [2]*1p,(x),  Ka(z)=e DTl 5 ().
We claim that
d—a ¢

If * Kalzaoy < C(G,X) p— | fllze(nys (3.1)
I * Kal napy < C(G,X)| £l re - (3.2)

By combining these bounds and Lemma 2.1, we obtain that

s ql/p’
|76 + L) fllLapny < Al(G,X)p — IFleer)- (3.3)
Observe that ¢'/?'/(p — 1) is bounded away from zero when ¢ > p > 1. Assuming the
claims for a moment, we complete the proof. Observe that the condition é = % — 9 is

invariant under the involution (p, q) — (¢, p"). Set Q(p,q) = %. By duality, from (3.3)
we have

H(TJI + [')_a/Qf”Lp’(,\) < AIQ(pv q)HfHLq’()\)a
that is, switching the roles of the pairs (p,q) and (¢, p’),

|71 + £)~*2f a2y < 41Q( 9| f o)
This inequality, together with (3.3) gives

[(75I + £)™2 f | agry < A1 min (Q(p, @), Q(d ) f 1o (2
which implies
1flzapy < AL S Dz
~Tlius, it remains to prove the claims. The bound (3.2) follows by observing that K, =
(K4) and by applying Young’s inequality (2.2)

1 * Ralzagy < 1oyl Kal 1m0, (3.4)
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where 7 € (1,00) is such that % +l=1+4 %. We then have

| Kalfry <C | eGP0l AN ()

By
& & k k+1
— — +
<C Zf oD+l d)\(z) < € Y e @D DI < ¢
k=0 V2 <le| <2kt k=0

which combined with (3.4) implies (3.2). The remainder of the proof will be devoted to
show (3.1).

For 0 < s < 1, define Kég K, 1p, and Kéfg = K, 1pc. Notice that Kﬁjﬁ = KSQ and

that the same holds for Kég Let now p € (1,%0) and G € (p,0) be such that % = % -9,
and observe that
. dp’ D e 1 D _ a
a—dp +d=—-"2,  E_q1_5° T(l—j)zp—lf. 3.5
(0= d) ooty (-0 =605 69

By Young’s inequality (2.2), there exists C' > 0 depending only on G and X such that

Y 1/P

Hf * KO(SQLP

)

1 (87
Uity <CsIflsy — (36)

N < I f sy IKE Loy S

)\)H al, |

and

If * K©) _

,s

A

e < ooy IS

(j 1/p' —dp /G 1/
w < <> (s™ M = 1) [ fllocn)- (3.7)

dp’

For ¢t > 0 we now set

and observe that s(¢) < 1 for every ¢t > 0. By (3.7),
1+ K@y oo < CLlflisy V>0 3.8
st IL? S C5ITILA (K > 0. (3.8)
Thus, with C' the same constant as in (3.6) and (3.7),
supt A({w: |f * Ko(z)| > t})"
t>0
1/q
= Clf sy suptA({z: 1f * Ka@)] > Ctl fliicn )
1/q
< sy super({os 172 KL @) > € fm)})
@ v
+ Ol stggm({ 4 K@ > 5o |

1/q
= Clilzsoy swper(fa: 17+ KLy @)1= O3l )
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since s(t) was chosen so that the second super-level set was empty. By (3.6), we get

suptA({a: 14 Ky )] > 51 s })w

t>0
7
2 (1)
< supt -
A <ct||f|m> 17+ Kool

Ct[ fllzaen TP sy \ P/

< — 2 B/d|| £1P/4
e (Z5) (M) ety
L-2)

o\ P/ 7
= () sup t17P/4 [1 + — v ( > ]
«Q t>0 q \2

2 q é(l—%) 11_B
= —— (q) sup u! p/q(l + up) 73,

1/q

ab/d dp’ u>0

It is now easy to see that, for every p and ¢,

supu'"P/9(1 + uﬁ/)fé(lfg) = sup [v/(1 + v)]i’(l D=1,

u>0 v>0

Moreover, by (3.5) we end up with the inequality
1
IF * Kaliarisy = supe (s |f + Kalo)] > 1)}
>

sojd (4 (p—1)a/d
<ot (D) gy, (39)
In other words, the operator defined by Ko f = f = K, is of weak type (p, ) for every p, ¢
suchthatézé— @ l<p<i<oo, 0<a<d

In a similar way we can also prove that K, is of weak type (1,q) for % =1-9 and

0 < a < d. Indeed, the estimate (3.6) holds also for p = 1 and

a—d f g <1

K@ <C x{% 3.10
I« K@loe < Clfloy < g w00 (3.10)

We now set

1/(a—d)
S(t):{(ur;) t>2
1 O0<t<?2,

which is < 1. Then (3.8) holds also in this case and we obtain as above that

supt A({z: |f = Ko(z)| > t})Y4
t>0
1/q
< sy suptA({a: 1 « K @) > C51luscn })

9 1/q
<C supt | =7— K .
I3 sup (CWU I K o »)
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We now notice that

1 —1/q 1/g
2 (1) (t’f’Ll(A)> (1) Vi
sup t | —————|f * K < sup t| —=% -
0<122 ((thm’f a,sle(A)) Jup, 5 o LAY

= 2071/‘?,

while

1/q ~1/g 1/q
2 1) t”f”Ll(A)> (S(t)a> ¢
t—"  f+K <supt [ =W
s (CtHﬂLl(/\)f* a’s(t)mm) b ( 2 a iy

1/g ~1/d
< Csuptlfé <2> <t> =Ca V4,

t=>2 o' 2

This proves that

If * Kallpawy < Ca_l/q“fHLl(,\)- (3.11)
We shall now use the Marcinkiewicz interpolation theorem for two specific choices of the
couple (p, ). Being p € (1,0), g € (p, o), and «a/d = 1/p — 1/q as in the statement, we

define
1 1 a 1 1 o 1 1
S ) =(11-9), e e (R B, 3.12
<P1 Q1> ( d) (pz Q2> <d q+1 C]+1> (3.12)

By the above, K, is both of weak type (1,q1) and (p2,q2) with norms M (1,q;) and
M (p2, q2) respectively, given by

M(1,q) = a7/,

dN o\ amiam a 1 TG
M) = () () [ (-G = ) 0]
(p2,q2) o ] d q+1(Q+)
We select
1-1
0=— P
1
1=9 -

Notice that we indeed have 0 < 0 <1, 1/p = (1—0)/p1 +6/p2 and 1/q = (1—0)/q1 +0/qo.
Thus, Iy is of strong type (p, ), i.e. bounded from LP(X) to L4(\), with norm bounded
by

CMO(]-) q1,P2, q2)1/qM(17 Ql)l_eM(p27 q2)07
see e.g. [34, Ch. XII, (4.18)], where

a2 —q q—4q1

Mo(1,q1,p2,q2) =

If we observe that
d—a ¢

Mo(1, q1,p2,42)IM(1, 1) " M(ps, ¢0)° < C o p—1

(3.13)

then we get (3.1), which concludes the proof of the theorem.
We now prove (3.13). First we consider M1 = M(1, ¢q1), and simply observe that
M, = o d¥(a/d)? < da™t

as a/d <1 and z% < 1 for z € (0,1].
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Then we consider My = My(1, q1,p2,q2), and define

/

Clp,q) = pP9/(@P) (1 + g)’ y= %(q +1).
q
Since .
]2=1+y, &=y+1+7,
q2 b q
we get,
1+y
Mo =q (y +1+ q> (1+y) "+ C(p,q).
Moreover

1/q

1 1+y (1+9) 1 q(1+y)
+1+4 - L+y) VY = (1 + ) <e
(y Q) 1+y) q(1+y)

since ¢(1 +y) > 1 and by the estimate (1 + 1) < e for z > 1. Thus My < eq + C(p, q).
We then consider My = M (p2, ¢2), and estimate MQG . We first observe that

0 a/d o 1 0 a/d _p
MO < dfa? (g) a/d+1/(q+1) [(1_ a ) 1 ] afd+1/(q+1) " d
2 “ d d q+1 (4+1)
and that
(Ol)ecwﬁ%m [(1 a1 >( N 1)]9a/dﬁ//@+1>—93
d d q+1 4
1 (1-1/p) 2L
- [(‘C’l‘) g+ 1)} (1—2) VP (3.14)
where z = 5 + % Observe that 0 < z < 1/p < 1, and that
a/d _a_la=-pletl) (3.15)
a/d+1/(¢g+1) dz qlg+1)—p '
Therefore

1

SR O
(d) <% -2 <1

Observe now that

(g—p)(g+1) (a—p)(g+1)
« (1*1/1’)&7” (q — p)(q + 1) i Z(qﬁ—lt)ztzi q(q + 1) —-p ﬁ g(qﬁqgi;
(5] < [l S a4
d q(¢+1)—p Pq
and that, by (3.15) and since
2@ > M > q > 1,
b bq p

one gets

(o] < ()

This proves that M{ < 2d’ (q/p)t~1Pa?
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Putting everything together, we proved that
1 - - _
My "MITOME < 2da” eq + Clp,q)) 9(q/p)' V7.

It remains to estimate the term in the parenthesis in the right hand side. Observe first
that
(eq + Cp, )" < (€)1 + Clp, )/ < 2e + Clp, )",

and then that

p/>1/<1_ d—ap,<1+p’)1/q71< d—a ,

C(p,q)"7 < (1 +=) = = < .

(p,q) . g TP
After observing that (d — a)p//d > 1, the proof of (3.13) is complete. This implies (3.1)
and completes the proof. O

4. COMPARISON WITH THE EUCLIDEAN CASE

In this section we compare our embedding constant 41.5(p, ¢) with the known embedding
constant in the Euclidean case. As a preliminary remark, observe that if G has polynomial
growth, then § = 1, and £ = A is the sum-of-squares sub-Laplacian associated with X.
Since the exponential dimension D can be taken arbitrarily small, one obtains 75 = 1.
Thus, in this case the Sobolev norm | - |17y is the graph norm of (I + A)¥2in LP(N).

This in particular holds in R?, where X = {01,...,04}, A is the Laplacian, A is the
Lebesgue measure and Lb, = L ()) is the classical inhomogeneous Sobolev space. Theo-
rem 3.1 in the Euclidean setting then reads as

Iflle < AL S(p, )| fllLe,

where Ay depends only on the dimension d.

Let 0 < a < d and p,q € (1,00) be such that % = % — g- Denote respectively by

E(p,q,d) and Eg(p,q,d) the best embedding constants of L%, into L9, and of L% into L4,
where L2 is the homogeneous Sobolev space given by the closure of the Schwartz functions
with respect to the norm [ f|;» = IA®2 f||1». Equivalently, E(p,q,d) and Eg(p,q,d) are
respectively the infimum of the constants C7, C'yy > 0 such that

(7T +2)2f|pa <Crlflee and  |A™f]L0 < Cull f|o-
Now, Eg(p,q,d) equals
1 T((d—a)/2)
(2m)* T'(a/2)

where C(p, q,d) is the best constant for the Hardy—Littlewood—Sobolev inequality, which
by [20, Theorem 4.3] can be estimated as follows:
), (42)

d (wg—1 -7 a7 1 141 1
CL(p,q,d)<a< 7 > 1-- o P gy
g-

where wg_1 is the surface measure of the unit sphere in R?. Notice that % + % =1-7
In other words, by (4.1) and (4.2) the best known bound for Ep(p,q,d) is given by

EH(p’(Ld) = CL(p7Q7d) (41)

Q=
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En(p,q.d) < En(p, g, d), where
- 1 T((d—a)/2)d (we_1\' "¢ o\'"d i 1y
E d = — 1 _ _ 7 7 )
H(p7 q, ) (27T)a F(O[/Q) o d d pq, pr 9 +qr
To the best of our knowledge, the best known bound for E(p, ¢, d) is in turn given in terms

of Ex(p,q,d), hence in terms of EH(p,q, d); in particular, we have the following result.
For p,q € (1,0), ¢ = p, set

Q=

F(pq) i= 1o (00 + 07 (4.3
Pa) =1 1P ). :
»oq

Proposition 4.1. For all p e (1,00), a € [0,d/p) and q € [p, ) such that % = % -9,

E(p,q,d) = Eg(p,q,d) < Ex(p, g, d). (4.4)

Moreover, there exists a positive constant By depending only on d such that, for all p,q, «
as above,

By 'F(p,q) < En(p,q,d) < BiF(p,q). (4.5)

Proof. The equality in (4.4) follows by observing that the best constant in the inequality
1£lq < Cll(a + A2 f|,, with f Schwartz, does not depend on a > 0 by rescaling; and
then by using a limit argument (we thank one of the anonymous referees for pointing
this out to us). The inequality in (4.4) follows instead from the discussion preceding the
proposition.

We now prove (4.5). Using the conditions 0 < o < d and % =1_

() (-8)

- (271r)a mrz(jl— ;/az))/Q) - 2 (wfil)l_g (1 - 2‘) o
) (
)

9, we have

1 Tl+(d—a
2m)e T(1+4 «/2

and

L _ 1 T+ (d=a)?) (w0, a)
B(d) < @ne T(1+af2) ( d ) (1_d) < B(d),

where B(d) is a constant depending only on d; observe indeed that each factor in the
product above is bounded from above and below by a constant that depends only on d.
Hence,
1 1 1/, 1 ~ 1 1 1 1 1
—— P+ P’><E ,q,d) < B(d /‘37—('4+ P’),
B(d)i,+lpq'(p q (P, q,d) (d)e S G
P q P q

since 1 < 2% < e'/¢ when z > 1. Hence, (4.5) follows. O

We now show that similar estimates hold in our case, namely that the constant S(p, q)
is comparable to Ey (p,q,d), up to a constant depending only on d. In other words, we
show that we recover the best known result, in terms of dependence on p and ¢, when G
is a Euclidean space.
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Theorem 4.2. There exists a constant B3, depending only on d, such that for all p €

1,0), a € |0,d/p) and q € |p, 0 suchthatl—f—gwehave
P d

~

1
Es(p, q) < En(p,q,d) < B3S(p,q). (4.6)

Proof. We are going to show that S(p, ¢) is bounded above and below by absolute constants
times F'(p, ¢), and in view of (4.5) this will suffice. Since F(p,q) = F'(¢/,p’) and S(p,q) =
S(¢',p), it suffices in turn to consider the case ¢ = p/.

We claim that in this regime

fQ(n q) < F(p,q) <4Q(p,q),

’ 1 1
where Q(p,q) = ‘;_/1 Since ¢ = p/, we also have ]% > % and p'e < ¢¥ (since z — z% is
increasing on [1,00)). Then, since as before 1 < ¢’ < 2,

1
1 2 1 q?”
F(p.q) <27—q" = g7 <2 =2Q(p,q)

’ wpd ¢'(p—1) p—1 ’
On the other hand,

1
1 qr’ 1
F(p,q) = qv = =~ Q(p, q)
,a) > >d'p 2¢(p—1) 4 (7. 4)

This proves the claim. It remains to show that if ¢ > p’ then S(p,q) = Q(p,q), namely
Q(p,q) < Q(¢,p'). The latter inequality is
1
qr < p ‘
p—1 ¢-1
Multiplying both sides by p¢’, it becomes

S

1

<pgr.

dp'7
1 1 /

Since ¢ = p/, hence ¢ < p, it suffices to show that p'? < g7, that is, p’” < ¢?. But this

follows since p/ < ¢ and the function z — e 1 °8% is increasing in [1,0). This concludes

the proof. O

5. A MOSER—TRUDINGER INEQUALITY

As an application of Theorem 3.1, we shall prove a quantitative Moser—Trudinger in-
equality. To do this, we will need a precise version of the interpolation inequality [5, eq.
(6.1)] associated to the interpolation space (LP(X), La(X))jg) = Lj,(A) with respect to the
complex method. To prove this refined estimate, we follow some ideas developed in [1];
see also [24].

Proposition 5.1. Let p € (1,00) and define
C. = inf a(1—t2)
- nhupe

Then 1 < Cp < o0 and for all f € LE(N), @ =0, and 6 € (0,1) we have
1 0ze oy < Coll ntn 1192 0 - (5.1)

NI + L) 1oy rr(ny-
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Proof. For o > 0, let

Cpo = supe” | (m5T + L) oays oy
teR
Since Cp,, is finite for all ¢ > 0 by [9, Corollary 1], see also [21], it follows that C, is finite
Moreover, since (151 + £)% = I for t = 0, one gets Cpo = e’ =1, hence also C, > 1
Suppose that f = Z;VZI ajXe;, h = 21 apXp, are two simple functions on G. Let
S = {z eC:0<Rez< 1}, and let S denote its closure. For every z € S we define

/

w(z) = e L(ml + L) f(z)h(x) AN (z).

Then w is holomorphic on S, continuous on S and w is bounded on S. Indeed
N N

sup |w(z) Z Z |a]|]ak]sup’ f (16 + L)~ O‘Z/2XEj(:1;) d\(zx)
z€S j=1 zeS

3 Mz T
HMZ

%Hak\)\ Ej) sup, (s + L)~ ax/zHLp Lp(,\))\(Ej)l/p <.
<z<l1l
We now observe that f

r every t € R
[w(it)| < Cpol fllLeoy Il e x
and
lw(l +it)| < Cpol| (5] + L)~ a/Qf”LP )”hHLp’( )
By the classical three lines theorem it follows that

jw(l —6)|

< vao'

1T ool (TsT + £) 72 a0 1Bl
By taking the supremum over all simple functions A such that [h| Lo

[(r5I + £)~ D2 f| Loy

/ )\lwehave

(7'6[ + £ a/2fHLp()\

By using the density of simple functions in L ()\) and choosing g = (751 + L)~/ f we get
|(7sT + £)°*g] Lo

0 _
) < Cooll(rsI + £)g] 3o n)
which is equivalent to

gl oy < C
[72e%

0 —0
) H9”1L .

o P(X)
By taking the infimum over all ¢ > 0, the inequality (5.1) follows

O
As a corollary of the estimate of Theorem 3.1 and Proposition 5.1, we obtain the
following global Moser—Trudinger inequality. Keeping the notation therein, we define

N = [e (CA - 1) P17
). For~e|0,~

[RETIEENDY

IR dx < @ X p) 1S,
0<k<p—1

Theorem 5.2. Let p € (1,

1) and f € Ld/p()\) with Hf||L§ y S L

(5.2)

We point out that, even in the case of the Laplacian in R?, the best constant v; for
which (5.2) holds is not known, other than in the cases d/p =1 |

] and d/p =2 [17].

13
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Proof. By Theorem 3.1 and the interpolation inequality (5.1), when ¢ > p we obtain
1—
17 zac) < A1 (0 0) CollF "6 L 12) (5:3)

1 <
Then> if HfHLs/p()\) A ]-a

| (ewtalst = ¥ T an- S Ly
G\ k! a kLR

0<k<p—1 " k=p—1
k
<y 2 7 CA) SR (5.4)
k>p—1
Observe that since S(p,q) = Q(p,q) when ¢ = p' and p'k > p/,
(pE) VT NTE ek
p—1 " (p'k) - 1) ISV
Plugging this estimate into (5.4) we obtain
! +* 'k P 7 / Pk 11k
Jo (oiaty = 31 Gu)ir< st ¥ GGan -0 en

0<k<p-—1 >p—
< C(Ga va) ”f“ip()\)
if v < 1. The proof of the theorem is complete. O

S(p,p'k)P"* = min (

6. THE CASE OF GENERAL MEASURES

In this final section we consider the case of more general sub-Laplacians and relatively
invariant measures, as in [1], where different phenomena appear. We denote by p the right
Haar measure such that d\ = 6~!dp, and by x a continuous positive character of G. We
then let 1, be the measure with density x with respect to p. As ¢ is a continuous positive
character, us = A. Since

SUp|pj<, X(2) = ¢, where ¢(x) = (|X1x(e)* + -+ + [Xox(e)|) 2,

cf. [14], and V(r) = p(By), the metric measure space (G, d¢, 1) is locally doubling, though
not doubling in general.

The spaces LP(u,) are defined classically and in the same way as the spaces LP(\)
described above. We denote by A, the sub-Laplacian with drift

(X5 + (Xx) () X)),

M~

Ay =—
j=1
and recall that it is symmetric on L?(u, ). Observe that A; = £ and Ay is the standard left-
invariant sum-of-squares sub-Laplacian. The operator A, generates a diffusion semigroup,
namely (e 7*4x),- extends to a contraction semigroup on LP(p, ) for every p € [1, 0] whose
infinitesimal generator we still denote by A,; see [14, 4, 5, 6] for more on these matters.
When p € (1,00) and a > 0, we define the Sobolev spaces L% (u,) as the space of
functions f € LP(uy,) such that (1, [ + A,)*2f € LP(,), endowed with the norm

1122 ) = 1T + A)* 2 Fll o)
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where
2 1
T = max{b [c(6x ") +2D + b0]2 - Ec(x)z, 1} (6.1)

is the counterpart (or generalized version) of (2.4). Observe that ¢(6x~!) = 0 if x = § or,
equivalently, if 1, = X, so our notation is coherent with the one used in previous sections.

We recall from [1] that an embedding as the one of Theorem 3.1 fails if X is replaced by
any other measure p,; and as we show below in Remark 6.4, a global Moser-Trudinger
inequality as Theorem 5.2 also does not hold if 1, # A. Nevertheless, we can prove an
alternative version of Sobolev embedding, and a local Moser—Trudinger inequality (that
is, for compactly supported functions). We shall first need to extend some definitions and
results, given above in the case of the left measure A, to the case of j,.

We denote by pY the convolution kernel of e~**x, and we recall that by [33, Theorem
IX.1.3], equivalently (2.3), and [1, eq. (2.8)],

12
pX(x) < e (G HY2(x) (1 at) 5 e 16007 b et 0 (6.2)

where b and ¢ are those of (2.3).
For a > 0, let G be the convolution kernel of (7, /+A,)~*/2, and define Gloc = GS1p,

and G;’gbb = G{1p;. The following result can be proved exactly in the same way as
Lemma 2.1, and its proof is omitted.

Lemma 6.1. There exists C = C(G,X) > 0 such that, for a € (0,d) and z € G,

« _ o
(Y2 @) el e (),

|G (2)] < C (Sx ™) Y2 () e P+ DHbolaly ().

G (2)] <

Define now s(x) = maxpg, x0~! = ¢ and observe that s(x) = 1 for all y’s.

Proposition 6.2. Let p € (1,00) and q € [p,0). There exists Ay = A2(G,X) > 0 such
that

ﬂmwmuw<ff?0+§)“'m%m@ (63
for all f € Lfl/p(ux).
Proof. By Young’s inequality (2.2), we obtain that
[(md + Ax)id/ngHLQ(qu/pél,q/p)
= [(x6~ 1) Pg = (x6)YYPGYP | Ly
<O )Pyl 0GP 106 PGP

= lglzo g I mewawx*wme%, (6.4)

where r € (1,0) is such that % +l=1+ %. We split Gi/p into Gi/p’loc and Gi/p’gbb, and
estimate the integrals of the two terms separately.
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By Lemma 6.1, we obtain

oc C & (i1 . _ 1/r
™M G e <p(ZJ;k1|Qk®xU<2ﬂ@wmwm@de)
<|T

=<
o

oe]

Z o—kr(d/p—d)— kd) 1

1 1/ l“‘L/
f /=), d—1 du) " Cs(x) <1 4 q/)q v 7
0 p—1 p
where we used that

sup (5 D22 (y) = sup (5 HIVZVH(z) = e Dlel, (6.5)

y<lz| y<lz|

and that |1/2 —1/p| <1
As for the global part of the kernel, using again (6.5),

H(X5—1)I/PGl)i(/p,globHLr(A) < C(joo(X5_1)T(l/P—l/Q)e—r(2D+C(X5_1)+bO)|I| d)\>
0

< C(foo o—r(2D-+bo)le| d)\> 1/r
0

1/r

0
<C ( Z efr(2D+b0)2k+D2k+1)1/r <C. (66)
k=0

The term ||Cv¥fi/p||Lr()\) can be estimated in the same way, in view of (6.5) and by the
radiality of the other terms appearing in the bound of Lemma 6.1. U

Keeping the notation of Proposition 6.2, for 1 < p < o0 we define

n=e ()]

The following result is inspired by [28].

Theorem 6.3. Let p € (1,00). For € [0,72),

sup JG <exp('y|f|p,) - 1) dpy, < 00.

HfHLS/p(“X><L supp fSB(e,1)
Proof. We first notice that if f is supported in By and ¢ > p, then

|7z = OG5 Flzntegpin-am) < SO0 2800y

so by Proposition 6.2

1

1l £a )

it
<Aﬁu>0+§) 17128, (o) o7

1
If f is supported in B; and HfHLp )y < 1, then

£l e () < (o + Ax)id/QpHLP(,uX)HLP(yX) = C(x,p)s
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and
o0

|, (exprts) =1) i = 3 3 I

k=1

k k o\ Pk
y k(o — v Azs(x
<Cen) X Tm(Ble) o0y 33 2 (220N gy,

! -1
1<k<p/p’ k=p/p b

where we applied (6.7) when kp’ > p, and Holder’s inequality and the support condition
of fif kp' < p. If v € [0,72), then the latter series is convergent and the theorem is
proved. ]

Remark 6.4. Theorem 5.2 does not hold with any other y, in place of A. Indeed, if there
exist p € (1,00), C' > 0 and v > 0 such that for all f e L ( ) HfHLZ/ () < 1,
P

[ (06l = 5 TAF) duy < CUstl (68)

0<k<p—1

then necessarily p, = A.
To see this, assume that (6.8) holds for all f € Ld/p(:“x) HfHLp/ () < 1, with gy # A,

ie. x # 6. We first prove that then (6.8) holds for all f e L ( v), With no restriction on

its norm (other than being finite). Recall, indeed, that for any yeGand felL /p(Mx)
denoting by L, the left translation by y € G, one has

IZyF 12z, ) = O™ POz, )

Since (X(S*l)*l/p is a positive nonconstant character, it is unbounded; thus there exists
y € G such that

—1y—1
(X6~ VP(y) = 1Flzz, -
Equivalently, (xo~)Y?(y)| f] 12 () < L hence [Lyflze ) < 1. Thus, we may ap-

ply (6.8) to Ly f; and by a change of variable, one obtains (6.8) for f where the constant
C does not depend on the norm of f.
But (6.8) cannot hold without restriction on the norm of f € L " (fty). Indeed, let

> 1 and consider o f, which still belongs to L? d/p (pty) for any o. Then, by (6.8) applied
to af,

f S Lok dy < Corl I,
G k!

k
Y /
[ 3 T s [ 5 Lo 0 s o [ 5 L1

k=p—1 " k;>p k‘>p
one obtains
/1) 'k
el Y A duy < T
k>p
for all & > 1, which is a contradiction since p(p’ — 1) > 0.
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