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Abstract—An important problem in magnetic resonance imag-
ing (MRI) is the long time lapse required to acquire a fully
sampled, high resolution scan. To speed up acquisition, Com-
pressed Sensing (CS) has been used and recently coupled with
Neural Networks (NN). In the latter setting, commonly CS has
been split into two different problems: i) design of the encoder,
or selection of the undersampling pattern, and ii) design of
the decoder. A significant progress was recently introduced by
a solution (called LOUPE) where encoding and decoding are
simultaneously addressed. Here we propose an improvement
of this model, called ”regularized-LOUPE” (r-LOUPE), which
add measurement constraint into the picture, resulting in a
×8 speed-up in the MRI acquisition time. A further benefit
of our methodology is that measurement constraint can be
leveraged to implement a self-assessment tool able to predict
the reconstruction error and to identify possible out-layers.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) [1] is a non-invasive
technology used to perform anatomical investigations. More
specifically, MRI acquires 3D frequency volumes that when
transformed to the pixel domain allow to easily visualize the
inspected part of the body as a series of images (scans).

Unfortunately, MRI scan requires a long time lapse to be
completed, leaving a patient in a situation of discomfort inside
a large magnet, which partially hinders the wide adoption of
this technology. Recently, Compressed Sensing (CS) [2]–[4]
has been proposed as a way to accelerate MRI acquisitions,
thanks to its capability to reconstruct a sparse signal starting
from a limited number of linear measurements of it, and
whose adoption has also been recently cleared by FDA [5].
More precisely, since MRI systems perform signal acquisition
directly in the frequency domain, such an acceleration is
accomplished by using an encoder which imposes an under-
sampling acquisition pattern in the frequency domain, that tells
which frequencies to keep or drop. The resulting encoder is
then coupled with a CS decoder stage that reconstructs an
image well approximating the full resolution MRI scan [4].

To progress along this direction, recent contributions have
mainly focused on modifying the decoder, by changing the
optimization problem it solves with respect to classical CS
where the focus is on reusing the undersampling pattern char-
acterizing the encoder. In many cases, the encoding-decoding
problem has been split into two independent problems, where
the two blocks have been designed separately. Examples of
adapted and data-driven decoders leveraging the statistic of

the signals are sparsifying dictionaries [6] and total variation
penalty [7] while encoder alternatives are, for instance, the
random uniform [8], the variable density [9] and equi-spaced
Cartesian with skipped lines [10].

The above are examples of a growing trend in the last
ten year which relies on the use of Machine Learning (ML)
tools in biomedical applications. Those exploiting CS are no
exceptions, where ML has been widely used to design CS
decoders [11]–[13].

A very successful example of using NN for fast MRI ac-
quisition is reported in [14]–[16], where the authors presented
an architecture, called LOUPE, that simultaneously co-designs
encoder and decoder. LOUPE finds an optimal undersampling
pattern that depends on the reconstruction method and vice
versa. Other methods, inspired by LOUPE, that leverage the
co-design have been recently proposed, for instance in [17].

Yet, these methods have the important drawback to be
unable to preserve the input ground truth frequencies (mea-
surements). Starting from this observation, we show that
embedding the ability to preserve the measurements allows to
achieve improved performances in terms of MRI acquisition
time reduction. As an important byproduct, our approach
allows to self-assess the quality of the reconstructed image
and to estimate the reconstruction error at inference time.
Finally, while the work presented here is based on LOUPE,
our contributions are not theoretically limited to it.

The rest of the paper is organized as follows. Before present-
ing the proposed approach, Section II recaps CS theory and
introduces the LOUPE architecture. Section II discusses the
self-assessment approaches. Section III describes the adopted
dataset and presents achieved results. In Section IV we draw
the conclusions.

II. COMPRESSED SENSING FOR MRI

Following the classical CS setting, we represent the generic
input instance as a vector a ∈ Rn, supposing that each input
vector is κ-sparse with respect to a basis defined by the
columns of an orthonormal matrix D ∈ Rn×n. In this setting,
it is possible to express a as a = Dα, where α ∈ Rn contains
only κ non-zero entries, with κ� n. This makes possible the
acquisition/compression of a through a very simple operation

b = Aa = ADα (1)
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Fig. 1. Block scheme of the Encoder-Decoder couple along with the self-assessment mechanism.

where A ∈ Rm×n is the sensing matrix and b ∈ Rm

represents the measurements vector, i.e., the encoder output.
Note that: i) given m < n, the signal is being compressed;
ii) (1) refers to the noiseless compression; in case of a noisy
acquisition system, an m-dimensional vector ν is added to b
to model all non-idealities.

In order to solve (1), it is necessary to find the operator that
“inverts” B = AD ∈ Rm×n, the matrix linking the sparse
representation with the measurement vector. Since m < n, the
“inversion” of B is an ill-conditioned problem. Nonetheless,
the κ-sparse hypothesis adds enough information on the signal
structure to make possible the recovery of α, and then a,
from b. One of the most known methods employed for the
reconstruction of α is Basis Pursuit (BP) [2], [3], that searches
for the sparsest vector α̂ that solves the problem:

α̂ = arg min
α∈Rn

‖α‖1 s.t. ADα = b (2)

where the `1-norm ‖·‖1 promotes sparsity and the constraint
forces α̂ to be a counter-image of b with respect to B. To
make the recovery effective, standard CS theory requires: i)
a number of elements in the measurement vector higher the
a suitable lower bound and ii) that the sensing matrix A
possesses specific properties such as either being a restricted
isometry or being incoherent with respect to D [3].

In the MRI context, the input signal is an image modelled by
x ∈ RN×N that is acquired through its 2-dimensional Fourier
transform F (x). Undersampling is modelled by considering a
binary mask M ∈ {0, 1}N×N where only m = rN2 elements
are non-null, with 0 < r < 1, and by saying that the actual
measurements are the elements of

y =M ◦ F (x) (3)

where, ◦ represents the Hadamard element-wise product. Note
that, in general, y is CN×N . In practice only the elements of
y that are not set to zero by masking are needed, thus yielding
the saving in acquisition time. As a result, a physical system
acquiring only the signal components associated to the ones
in M achieves a speed-up factor up to R = 1/r.

The decoder receives measurements y corresponding to the
undersampling patter and reconstruct the MRI scan by solving
(2) where some sparse representations have been considered
[18].

A. LOUPE

The LOUPE architecture is conceptually an autoencoder,
i.e., it has an encoding Encγ and a decoding stage Decθ,
depending on parameters γ and θ, respectively. Hence, the
output image can be expressed as x̂ = Decθ(Encγ(x)), and
the parameters γ and θ need to be trained to make x̂ as close
as possible to x despite the fact that intermediate encoded
signal has smaller dimensionality with respect to the original
one.

In the encoder, parameters γ control the generation of the
random binary mask M(γ) ∈ {0, 1}N×N so that

y = Encγ(x) =M(γ) ◦ F (x)

.
Furthermore, the mask generation mechanism is the same
described in [15] and is sketched in Section III.

The decoder starts from a first approximation of the original
image F−1 (y) and then applies a correction Nθ(F−1 (y))
calculated by a deep neural network Nθ that is a slightly mod-
ified version of the U-NET network [19] with an additional
residual layer, and whose parameters θ are trained to produce

x̂ =
∣∣F−1 (y)

∣∣+Nθ
(
F−1 (y)

)

as the best possible estimation of x. Note that the modulus
| · | is needed since the inverse of a subsampled 2-dimensional
Fourier transform is not necessarily a matrix of real numbers.

Figure 1 gives a visual representation of the auto-encoding
architecture (LOUPE architecture) as well as of the self-
assessment stage that is one of the novelties of this contri-
bution.

In its original conception [14]–[16], the parameters of this
architecture are trained by defining the error

δxl = ‖Decθ(Encγ(x))− x‖l
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where ‖ · ‖l is the `l norm and using the loss function

L(γ,θ) = Ex[δx1] (4)

where Ex[·] stands for expectation over all possible x.

B. Loss regularization by measurement constraint

As previously sketched, LOUPE is similar to CS as it tries
to recover the original instance from the measurement vector
knowing that the information content in the original domain
is redundant. i.e., that the sensing process preserves enough
information to make decoding effective. What is different from
classic CS is the set of images in which the decoder looks for
the reconstruction: LOUPE does not force y to be obtained
by a linear projection of x̂. Nevertheless, if recovery succeeds,
then, considering (3), x̂ should be close enough to x to make

δyp = ‖y −M ◦ F (x̂)‖p (5)

vanishing. Hence, smaller δyp are certainly preferable to larger
ones. Such a prior can be introduced in the network training
by adding a regularization term and thus considering the
alternative loss

L′p(γ,θ) = Ex
[
φδx1 + (1− φ)δyp

]
(6)

where φ is a tunable weight that balances the two contribu-
tions. With this approach, it is possible to emulate the con-
straint in (2). We call a model trained using L′p a regularized-
LOUPE (r-LOUPEp) and consider p ∈ {1, 2}.

C. Adding self-assessment capabilities

Though (5) should vanish for properly recovered signals,
when the reconstruction fails then δyp may be expected to
be substantially larger than 0. Hence, δyp, which can be com-
puted starting from the knowledge of the actual measurements
y only, has a magnitude that can be seen as a proxy of the
decoder performance.

This can be exploited in a self-assessment stage that follows
reconstruction and whose aim is to give the user additional
information on the quality of the output image.

As shown in Fig. 1, once x is estimated, we first compute
δyp. Then, we may either match δyp against a threshold ε to
raise a warning if δyp > ε hints at a bad reconstruction, or
use it to compute an estimation δ̂xl = δ̂xl(δyp) of the output
quality based on the value of δyp. For simplicity’s sake we
will concentrate on affine estimations δ̂xl(δyp) = c0δyp+c1.

III. NUMERICAL EVIDENCE

A. dataset

Our models have been trained and tested using the freely
available data-set ”Brain MRI segmentation”1 that contains
brain MRI images.

The database consists of 2D brain scans acquired from 110
patients included in The Cancer Genome Atlas lower-grade

1https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation

R = 4

(a) LOUPE (b) r-LOUPE1 (c) r-LOUPE2

R = 8

(d) LOUPE (e) r-LOUPE1 (f) r-LOUPE2

Fig. 2. Matrices containing the probability of each entry of M to be one.
White means one while black stands for zero. Most values are very close to
these boundaries. Top plots are for R = 4, bottom plots are for R = 8.

glioma collection2. The number of slices varies from 20 to 88
depending on the patient, and we exclude some of the least
informative images so to obtain a training set consisting of
2753 scans (80%) and a test set containing 688 scans (20%).
The original image dimensions are 256×256, we resize all the
scans to obtain 128×128 images. We also re-scale each scan
to have pixel values in the range [0,1].

B. results

The main figure of merit we adopt for the assessment of
the reconstruction quality is the Peak Signal-to-Noise Ratio
(PSNR) defied as:

PSNR = 10 log10

(
max{x}
δx2

)
= −10 log10 (δx2) (7)

since in our case max{x} = 1. We considered speed-up values
R ∈ {4, 8}, i.e., 25% and 12.5% of ones in M . Furthermore,
regularization weights characterizing r-LOUPEp are such that
0.99 ≤ φ < 1.

The undersampling patterns M adopted by the three dif-
ferent approaches are the output of trained masks generator
blocks [15]. In particular, random instances M are generated
such that the probability of each entry to be 1 is equal to
the corresponding entry of a N × N trained matrix. Fig. 2
reports such probability matrices for LOUPE, r-LOUPE1 and
r-LOUPE2 in case of R = 4 (top plots) and R = 8 (bottom
plots).

Table I shows averages PSNR along with the fraction of
cases for which the PSNR achieved by r-LOUPE1 or r-
LOUPE2 exceeds the PSNR of LOUPE. Both r-LOUPE1 and
r-LOUPE2 outperform LOUPE in terms of average PSNR
in at least 97.7% of the cases. Furthermore, Fig. 3 reports

2https://www.cancer.gov/tcga
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TABLE I
AVERAGE PSNR AND FRACTION OF MRI IMAGES FOR WHICH R-LOUPEp

ACHIEVES HIGHER PSNR WITH RESPECT TO LOUPE

Model Aver. PSNR [dB] % of success

R = 4 R = 8 R = 4 R = 8

LOUPE 38.65 32.67 - -
r-LOUPE1 39.26 34.15 98.7 97.7
r-LOUPE2 39.86 34.23 99.9 98.4

1

20 25 30 35 40 45
0

0.05

0.1

0.15

bad reconstructions good reconstructions

PSNR

P
D
F

LOUPE
R-LOUPE1

R-LOUPE2

(a)

1

20 25 30 35 40 45
0

0.05

0.1

0.15

bad reconstructions good reconstructions

PSNR

P
D
F

LOUPE
R-LOUPE1

R-LOUPE2

(b)

Fig. 3. Estimated probability density functions of PSNR for LOUPE, r-
LOUPE1 and r-LOUPE2. In case of (a) R = 4 and PSNR values lower
than 35 dB are labeled as bad reconstruction. In case of (b) R = 8 and the
PSNR threshold is 30 dB.

the PSNR estimated probability density functions (PDF) for
R = 4 (Fig. 4b) and R = 8 (Fig. 4c). To give a visual
representation of the reconstructed scans we report in Fig. 4 an
example of the original scan and the corresponding r-LOUPE2

reconstructed images with speed-up factors R = {4, 8}.
To evaluate the self-assessment capability, we define lower

bounds for PSNR such that reconstructions with PSNR values
larger than those thresholds are labeled as good reconstruc-
tions. Adopted thresholds are 35dB and 30dB respectively for
R equal to 4 and 8. The proposed classifier tries to mark
a reconstruction as good or bad by comparing δyp with a
threshold ε. Depending on the value of ε we could have a
certain fraction of good reconstruction misclassified as bad

(a) original scan (b) R = 4 (c) R = 8

Fig. 4. Original MRI scan (a) andh reconstructed images with r-LOUPE2

with: (b) R = 4 and PSNR=37.5 dB, (c) R = 8 and PSNR=31.6 dB.

TABLE II
AUC OF THE ROC FOR ALL CONSIDERED MODELS

WITH δy1 OR δy2 AND WITH R = 4 OR R = 8

Model AUC using δy1 AUC using δy2

R = 4 R = 8 R = 4 R = 8

LOUPE 0.971 0.934 0.969 0.955
r-LOUPE1 0.992 0.978 0.991 0.979
r-LOUPE2 0.992 0.983 0.993 0.986

(false positive rate, FPR) and a fraction of bad reconstructions
correctly classified as bad (true positive rate, TPR) where both
FPR and TPR are in [0, 1]. The whole classifier performance
is given by the so-called Receiver Operating Characteristic
(ROC), i.e., the set of pairs of FPR, TPR associated to different
ε values. The ideal classifier has FPR= 0, TPR= 1 for any
possible ε corresponding to a ROC curve degenerating to the
point (0,1). As a result, a possible figure of merit is the Area
Under the ROC curve (AUC). The closer the AUC to one, the
better the classifier.

Table II reports AUC values for LOUPE, r-LOUPE1 and
r-LOUPE2 highlighting how the introduced regularization in
the training phase also increases the classifier capability. It also
shows a negligible difference in terms of AUC between the
choice of δy1 or δy2. Moreover, r-LOUPE2 behaves better
if compared with r-LOUPE1. As such, we focus only on r-
LOUPE2 for which ROC curve shown in Fig. 5.

As anticipated in the previous section, self-assessment can1

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

FPR

T
P
R

r-LOUPE2

R = 4 with δy1

R = 8 with δy1

R = 4 with δy2

R = 8 with δy2

Fig. 5. ROC curve for r-LOUPE2 with R = {4, 8} and both δy1 and δy2.
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TABLE III
AVERAGE ABSOLUTE AND RELATIVE ERRORS IN ESTIMATING δxl FROM

δyp

l p |δxl − δ̂xl| |δxl − δ̂xl|/|δxl|
R = 4 R = 8 R = 4 R = 8

1 1 4.58e-04 8.19e-04 0.0752 0.0776
1 2 4.67e-05 1.01e-04 0.530 0.350
2 1 6.39e-04 1.06e-03 0.104 0.103
2 2 3.50e-05 8.61e-05 0.434 0.266

1

0.1 0.15

0.004

0.006

0.008

0.01

δy1

δ
x
1

(a) R = 4

1

0.1 0.15

0.005

0.01

0.015

δy1

δ
x
1

(b) R = 8

Fig. 6. Scatter plots reporting couples of δx1 and δx2 associated to r-
LOUPE2. Plots also report lines δ̂x1(δy1) = c0δy1 + c1, used to predict
δx1. We found: (a) R = 4 with c0 = 0.06937 and c1 = −0.001515; (b)
R = 8 with c0 = 0.09815 and c1 = −0.002042.

be also exploited to predict δxl by looking at δyp with l, p ∈
{1, 2}. Considering r-LOUPE2, as a first and simple choice
we focus on a linear predictor estimating δxl with δ̂xl =
c0δyp+c1. To reduce the effect of outliers, for any given l and
p, we compute the coefficients c0 and c1, by a Theil-Sen linear
regression [20], [21] on the training set. Performances on the
test set in terms of prediction error are reported in Table III.
An example of a visual representation of the estimation of δx1

given δy1 is reported in Fig. 6 for both R = 4 and R = 8.
A relative error always smaller than 8% in the prediction of
δx1 shows that the δy proxy can be quite effective.

IV. CONCLUSION

The method we present is based on the LOUPE architecture
for the acquisition of subsampled MRI. We show that the
quality of the reconstructed images can be improved by
embedding the measurements constraint via a regularization
term. On the average, such an improvement results in a PSNR
increase of up to 1.6dB for speed-up factors of 4 and 8.

Moreover, we show that the error between the re-
acquisitions of the reconstructed image and the actual acqui-
sitions is a good proxy of the quality of the reconstructed
image measured against the unknown ground truth. This
gives raise to two self-assessment tools: the first enables to
discriminate, at inference time, whether a reconstructed scan
meets a given quality standard; the second estimates the image
reconstruction error. We demonstrate how these two methods
can be efficiently applied to have an additional degree of
robustness to out-layers and, in general, to predict how well
an image has been reconstructed.
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