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ABSTRACT Tight integration algorithms fusing Global Navigation Satellite System (GNSS) and Iner-
tial Navigation System (INS) have become popular in many high-accuracy positioning and navigation
applications. Despite their reliability, common integration architectures can still run into accuracy drops
under challenging navigation settings. The growing computational power of low-cost, embedded systems
has allowed for the exploitation of several advanced Bayesian state estimation algorithms, such as the
Particle Filter (PF) and its hybrid variants, e.g. Unscented Particle Filter (UPF). Although sophisticated,
these architectures are not immune from multipath scattering and Non-Line-of-Sight (NLOS) signal
receptions, which frequently corrupt satellite measurements and jeopardise GNSS/INS solutions. Hence,
a certain level of modelling adaptivity should be granted to avoid severe drifts in the estimated states.
Given these premises, the paper presents a novel Adaptive Unscented Particle Filter (AUPF) architecture
leveraging two cascading stages to cope with disruptive, biased GNSS input observables in harsh conditions.
A INS-based signal processing block is implemented upstream of a Redundant Measurement Noise Covari-
ance Estimation (RMNCE) stage to strengthen the adaptation of observables’ statistics and improve the state
estimation. An experimental assessment is provided for the proposed robust AUPF that demonstrates a 10 %
average reduction of the horizontal position error above the 75-th percentile. In addition, a comparative
analysis both with previous adaptive architectures and a plain UPF is carried out to highlight the improved
performance of the proposed methodology.

INDEX TERMS Bayes methods, sensor fusion, inertial navigation, satellite navigation systems, particle

Iters, adaptive estimation, position accuracy.

I. INTRODUCTION

Over recent years, the demand for reliable and robust local-
isation capabilities has become increasingly urgent in crit-
ical application domains, such as autonomous driving for
land-vehicles or unmanned ight for drones. Scaling down to
urban navigation (e.g., a city downtown), Global Navigation
Satellite System (GNSS)-only Positioning, Navigation and
Timing (PNT) cannot meet strict accuracy, reliability and
continuity requirements, although it still sets as the lead-
ing technology for absolute positioning in outdoor applica-
tions. In fact, street canyons identify challenging scenarios
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characterised by impairing phenomena such as signal block-
ages, poor satellite geometry and multipath [1] [3], which
detrimentally affect the quality of Position, Velocity, Tim-
ing (PVT) solutions [4]. In such framework, strong research
effort has been put to overcome performance limitations of
standalone GNSS through the integration of additional posi-
tioning information and exploiting advanced signal process-
ing strategies. Among the options, coupling a GNSS receiver
to Inertial Navigation Systems (INSs) is a common choice in
many mass-market navigation units, thanks to the availability
of small and low-cost Inertial Measurement Units (IMUS) in
the consumer segment (e.g., micro electro-mechanical sen-
sors [5]). While the good long-term stability of GNSS is
helpful to initialise and update the inertial navigation solution
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and prevent it from drifting, the short-term accuracy and the
high resolution of a INS allow to nely track the motion
dynamics and to aid the solution in presence of GNSS system
outages [6], [7].

Different architectural paradigms exist for GNSS/INS inte-
gration, which can be broadly summarized in three classes:
loose coupling [8], [9], tight coupling [10] and ultra-tight
coupling [11], [12]. Although traditionally implemented for
professional high-grade IMUs only, positioning units based
on a tight integration of low-cost sensors have shown perfor-
mance improvements for urban settings [9], [10], [13].

The growing availability of high-performance embed-
ded processors at sustainable costs has paved the way
to high complexity Monte-Carlo (MC) Bayesian lters,
such as Particle Filters (PFs) [14], which represent ef -
cient simulation-based techniques to pursue optimal state
estimation [15], [16]. Besides handling non-Gaussian Iter-
ing models, they manage to accommodate multiple analytic
densities to characteris e measurement noise statistics [17].
Different works [18] [20] have considered the use of PFs in
low-cost GNSS/INS systems for high-accuracy positioning
and navigation in land-vehicle applications. Among them,
a hybrid PF-based implementation - the Unscented Particle
Filter (UPF) [21], [22] - targets to improve the Importance
Sampling (IS) process by operating an upstream Unscented
Kalman Filter (UKF) [23], [24]. The latter is meant to deliver
an accurate enough approximation of the optimal importance
density, matching with the posterior state density, to feed the
underlying PF stage.

However sophisticated the estimation process is, the opti-
mality of the Itering algorithm is strongly driven by the
accuracy on the statistical characterisation of measurements
noise components. Such stochastic terms are modelled via the
observation covariance matrix which leverages the a-priori
stochastic knowledge available in the navigation lter. In fact,
tight GNSS/INS units exploit the measurement model in the

Iter correction step to update the description of motion
dynamics and re ne the state prediction though input GNSS
data; hence, the noise terms affecting GNSS observables are
fundamental as they embed information about unmodelled
error sources as well. In real-time kinematic applications,
uncertainties in the dynamic environment jeopardise the
estimation quality of measurement noise covariance and
lead to sub-optimal, or even divergent, navigation solu-
tions. In this sense, deep urban settings are challenging
because highly-corrupted satellite signals can induce mis-
leading biases on input observables and reduce the pre-
dictability of their statistics. Therefore, it is necessary to
make full use of the information collected along the Itering
process to achieve higher immunity of the state estimation
from accidental disturbances [25].

In such framework, semi-static Bayesian formulations,
like the one proposed in [26], build on functional relation-
ships with satellite measurements and leverage parameter
estimation to construct a covariance estimate. Unfortunately,
they leak promptness in triggering environmental changes

144158

and mirroring them on error statistics. Hence, they struggle
to inhibit signal outliers from spoiling the state estimation
and undermining the integrity of the navigation solution.
Conversely, adaptive estimation formulations leverage the
learning ability of the navigation Iter, based on a buffer of
input GNSS data bringing innovation, to dynamically update
the a-priori statistical information and tune the observations’
covariance model accordingly. By far, Innovation-based
Adaptive Estimation (IAE) and Residual-based Adaptive
Estimation (RAE) identify the most popular strategies
to pursue dynamic measurement noise estimation in the
GNSS/INS framework, leading to the de nition of an Adap-
tive Unscented Particle Filter (AUPF) scheme [27] [29].

However, these methods leverage a variance model
which indirectly depends on the state vector estimate; as
such, any bias in the navigation solution can potentially
spread over stochastic noise characterisation. Further-
more, traditional adaptive implementations do not sup-
port any pre- ltering of input GNSS observables. Hence,
they are still vulnerable to biasing phenomena affecting
input GNSS ranging measurements and the problem of

Iter divergence in signal-deteriorated scenarios is still
unsolved.

Based on these premises, this paper presents a novel tight
architecture for an error-based GNSS/INS unit exploiting an
AUPF with embedded countermeasures to grant improved
robustness in harsh navigation context with remarkable signal
degradation. Speci cally, the canonical UPF architecture is
augmented with a cascaded, double-stage adaptive module
including the following items:

a INS-based pre-processing stage to reduce instabil-
ity against unpredictable (e.g., multipath-related) bias
injections affecting input GNSS ranging measurements.
an adaptive, state-free measurement error covariance
estimation stage - namely, Redundant Measurement
Noise Covariance Estimation (RMNCE) - exploiting
pre-processed GNSS measurements to better predict the
navigated environment.

The proposed solution is experimentally assessed to explore
the impact of adaptivity on a hybrid UPF estimator, and
to investigate the AUPF positioning accuracy against a
plain UPF approach. To this end, the following analy-
sis employs a real dataset about a car-ride along a urban
trajectory.

The paper outline is organized as follows: Section Il
recalls the fundamentals about GNSS/INS integration with
the mathematical formalization of a Itering system model
in indirect con guration, and overviews the UPF Bayesian
architecture in a nutshell. Section 111, then, presents the adap-
tive model optimizations to enhance the UPF positioning
accuracy and estimation robustness under highly-degraded
signal environments. Eventually, Section IV discusses the
experimental outcomes from the assessment in urban scenario
and speci es the simulation setup as well as the adopted
methodology.
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FIGURE 1. Block-diagram of GNSS/INS tightly-coupled architecture.

I1. GNSS/INS TIGHT INTEGRATION WITH UNSCENTED
PARTICLE FILTER: OVERVIEW AND FUNDAMENTALS
A. THE INTEGRATED ARCHITECTURE AT A GLANCE
A conventional GNSS/INS tightly integrated unit implements
a centralised Itering scheme, where the raw data gener-
ated by both INS and GNSS are fused to generate a sin-
gle, blended navigation solution [30]. More in depth, raw
GNSS measurements - namely, pseudorange and Doppler-
shift - are streamed to an integration processor which mech-
anises a high-order integration Iter and aids the position,
velocity and attitude high-rate updates from the INS [31],
[32]. Employing raw measurements, tight integration is more
robust under any GNSS outages and the navigation system
performance improves in degraded signal environments [33].
In fact, INS sensors (i.e., accelerometers and gyroscopes)
can be calibrated in real-time to improve standalone inertial
performance in absence of tracked GNSS satellites. Further-
more, INS outputs can be exploited to tighten GNSS Doppler
tracking loops, and the position estimates from the INS can
be used for faster re-acquisition after GNSS outages [32].
Fig. 1 shows a simpli ed block-scheme for a tight
GNSS/INS integration. The inertial system acts as a
self-contained processing unit, the INS mechanisation pro-
cessor, dead-reckoning position, velocity and attitude data
from the high-rate measurements supplied by IMU sen-
sors. In addition, the INS predicts nominal pseudorange and
pseudorange-rate trends related to the set of tracked GNSS
satellites. Meanwhile, the GNSS receiver supplies raw pseu-
dorange and Doppler-shift measurements that constitute the
navigational aid allowing the integration Iter to update the
INS navigation solution. Eventually, the re ned solution is
used as the output of the whole integrated unit [9], [10], [34].

B. ERROR-BASED GNSS/INS SYSTEM MODEL

The rigorous formulation of a state-space model for the sys-
tem under analysis is pivotal to the development of an inte-
gration algorithm fusing data from heterogeneous sources.
It includes the de nition of both process and measure-
ment dynamics combined with a convenient modelling of
their error statistics. These models must be faithful enough
to adequately represent the system evolution, but func-
tional as well to foster the development of the integration
routine [35], [36].
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In GNSS/INS integrated units, the estimated states include
navigation parameters (i.e., position, velocity, attitude), sen-
sor parameters (i.e., biases and scale factors) and timing
parameters (i.e., clock bias and drift) [37]. Pursuing an
indirect navigation model formulation, the integration lter
relies on the propagation equation of inertial errors; as such,
it estimates navigation errors and inertial sensor errors useful
to correct earlier predictions from the INS-only navigation
solution [38]. In the following, the symbol  will indicate a
correction to the quantity it is prepended to.

In the framework of a GNSS/INS tight architecture,
the navigation error state vector can be de ned as fol-
lows [10]:

h i

X7 0D 1§ V5§ blg g bg;s 1tz 1 (D)
where superscripts e and b refer to Earth-Centred Earth-Fixed
(ECEF) frame and local body frame, respectively. From (1)
we can identify the following terms:

5, D rgrgor; T is the position error vector
along the three Cartesian axes of the ECEF frame;

Vi, Dvgowovg T is the velocity error vector
along the three Cartesian axes of the ECEF frame;

§1D Xy 7 T is the vector of IMU axes misalign-
ment angles (i.e., attitude errors), expressed in ECEF
coordinates;

b ; D b, bS, bY, T is the error vector asso-
ciated to speci ¢ force measurements (from accelerom-
eters) along the triaxial body frame reference;

b 1 D bfy by bf, T is the error vector asso-
ciated to angular rate measurements (from gyroscopes)
along the triaxial boc%y frame reference;

tuz 1 Dty B, ' is the vector collecting the esti-
mated clock bias and clock drift;

The next step in the state-space formulation requires the
de nition of a INS error model meant to describe the dynam-
ics of both navigation and sensor error states in (1). The
derivation of a mechanisation involving inertial error prop-
agation equations leverages a perturbation of the non-linear
inertial navigation equations [39], and results in matrix equa-
tion (2), as shown at the bottom of the next page, [10]; the
following terms are identi edV

F§ 5 is the skew-symmetric form of accelerometer mea-
surements, expressed in the ECEF frame;
N3 5 is the tensor form of the gradient operator applied
to the gravity vector g, expressed in the ECEF frame;
9 , collects the body frame triaxial error components
on accelerometer measurements;
!Fb;3 1 collects the body frame triaxial error compo-
nents on gyroscope measurements;

The linearized error mechanisation model (2) would t
with the error states dynamics for a GNSS/INS system only
in case the inertial sensor error vectors - speci cally, fg 1
and !Fb;3 1 - agreed with a zero-mean, multivariate normal
distribution. Unfortunately, these conditions do not apply due
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to the presence of deterministic sensor bias components that
move the average of the error distribution [10]. A rigorous
INS error model is formalised in [39] and, starting from
it, [10] proposes a simpler but effective additive error model
(' rst-order linearization) for IMU sensors measurementsV

f° D by C 1
18 Dby C I,y (3)

where the error of each sensor includes two componentsV

ba and by are the bias drifts related to accelerometers and
gyroscopes, respectively;
1: and !, are additive noise components affecting
accelerometers and gyroscopes, respectively.
The bias terms embody theoretical time-dependent effects
(e.g., temperature sensitivity, scale factors etc. [10]) neglected
in the reduced model.

Incorporating sensor error model (3), the resulting
continuous-time INS error mechanisation suitable for a tight
GNSS/INS integrated unit is stated in (4), as shown at the
bottom of the page, [10]; we specify the following quantitiesV

I3 3 is the identity matrix;
03 3 is the zero matrix;

fe:3 3 is the skew-symmetric form of 15,
rotation rate expressed in ECEF frame;
Rg;3 5 isthe Direction Cosine Matrix (DCM) from body
frame b to ECEF frame ¢;
diag( 1 3) is a diagonal matrix for modelling the
accelerometers bias states as  rst-order Gauss-Markov

the Earth

diag( 1 3) is a diagonal matrix for modelling the gyro-
scopes bias states as rst-order Gauss-Markov pro-
Cesses;

Wr.3 1 IS the noise component affecting triaxial
accelerometers as de ned in (3);

W3 1 is the noise component affecting triaxial gyro-
scopes as de ned in (3);

Wp,:3 1 IS the driving noise for accelerometer bias
drift [10];

Why;3 1 is the driving noise for gyroscope bias drift [10];
W ¢, is the receiver clock bias noise;

W g, is the receiver clock drift noise;

As highlighted in (4) through curly under bracing, the dynam-
ics matrix [10] F17 17 de nesthe lItering system model and
characterises the time evolution of navigation error states.
The shaping matrix [10] G17 14, instead, relates noise com-
ponents on both sensor bias drift and receiver clock error
to the states. Eventually, assuming time invariance of both
matrices for the time interval over which the state estimation
takes place, the state-transition matrix ;, ; and the process
noise matrix Q, of a discrete Kalman Filter (KF) can be
derived from the continuous-time GNSS/INS system error
model [10].

C. GNSS/INS MEASUREMENT MODEL

The observation model constitutes the layer that allows the
integration Iter to process raw GNSS measurements (i.e.,
pseudorange and Doppler-shift) and exploit them to con-

processes; struct a re ned update to the error state estimate. In a tight
2 PI’% 13 2 Vg . 3 2 0 3
b
4R; ,5D4 F§ 35 1CN3 413 2 33V3,°C4 Ry3 5303, (2
pe e RE N
31 ie;3 3 1 b;3 3 "ib;3 1
2 3
p.e 2 32 3
s 1 03 3 I3 3 03 3 03 3 03 3 031 031 "%,
Rﬁ? 1 N33 2R3 F3 3 Rb:s 3 O3 3 O3 1 051 V31
Pg 1 03 3 03 3 3 3 03 3 Rb3 3 031 031 31
bas 12D 803 3 03 3 03 3 diag( 1 3) 03 3 031 031 bg;s 1
Fbg.s 1 03 3 03 3 03 3 03 3 diag( 1 3) 031 031 bg:s 1
R, 01 3 01 3 01 3 01 3 01 3 0 1 ty
01 3 01 3 01 3 01 3 01 3 0 (r
W { N7}
5 Fi7 17 3 X,
03 3 033 033 033 0331 0331 2 Wi 13
Rig33 033 033 033 031 031 Wy,
e 131
033 Rpzz 033 033 031 031 Wo.3 1
Cg 033 03 3 I3z 033 031 031 Wbais ) 4
03 3 03 3 033 I3z 031 031 V\g,’t
01 3 013 013 013 1 WEU
01 3 01 3 015 013 0 1 | —{z}
I z } Wi 1
G17 14

144160

VOLUME 9, 2021



0. Vouch et al.: On Adaptivity of UPF for GNSS/INS Tightly-Integrated Navigation Unit in Urban Environment

IEEE Access

architecture with indirect con guration, the integration |-
ter uses, as input observation vector, the measurement mis-
closures [11]. Assuming Ns tracked satellites at epoch k,
the measurement misclosure z is de ned asV

zD gnssk Uinsik ®)
where
. T
oNss:k D Gnssiks Penss:k IS @ column vector
of size 2Ns 1 collecting the raw GNSS pseudorange

(' ) and pseudorange-rate measurements (P, ) from N
satellites at k-th epoch;

Onsk D Opnsiks Pinsix T is a column vector of size
2Ns 1 collecting the INS-based pseudorange and
pseudorange-rate predictions related to the same set of
Ns satellites;

Given the intrinsic non-linearity of GNSS-based multilat-
eration, a rst-order Taylor series approximation of pseudor-
ange and pseudorange-rate equations can be used to retrieve
asimpli ed, linear GNSS/INS observation model, as formu-
lated in (6). A complete derivation and further details can
be found in [4], [40], as shown at the bottom of the page.
In particular, the geometry matrix [40] H is computed asV

2
Xu X1 Yu N1 y 11

R1 R1 R1
Xu X2 Yu Y2 y 22

HDR R R Ra (7)

Xu  XNs Yu YN Zy  INg
Rn Rn RNg N 3

S S

where X, D Xy;VYu;zy is the estimated receiver position
in ECEF frame, xj D Xj;Yj;Z; is the j-th satellite position
in ECEF frame, and R; is the Euclidean norm between the
receiver location and the j-th satellite. Finally, vk collects
the residual errors affecting the measurement misclosures
both in pseudorange and Doppler components. Assuming
compensation of predictable error sources, vk turns out to
have zero-mean, jointly-Gaussian terms [1]:

vk D N .0; R¢/ (8)

where the measurement noise covariance Rg is a diagonal
matrix for uncorrelated satellite measurements.

D. UNSCENTED PARTICLE FILTER APPLIED TO GNSS/INS
SCHEME
In the framework of Bayesian estimation over dynamic
state space models, PFs still attract a remarkable research
effort [17], [41] [44]. They identify a family of simulation-
based Itering techniques pursuing higher modelling exibil-
ity over KFs. The hallmarks of a PF can be pinned up in the
following two points [15], [45]:
MC integration, which accomplishes a discrete, Dirac’s
Delta based approximation of posterior state densities
through a nite set of simulated state samples;
IS concept, which allows to randomly draw particles
from a handy and known importance (or proposal) dis-
tribution that approximates the unknown posterior state
density.
Relying on IS, a convenient choice of the proposal density
is pivotal because it directly affects the particle generation
process and, accordingly, it impacts on the occurrence rate of
the unavoidable particles degeneracy phenomenon [16], [46].
Although heuristic techniques have been proposed to mitigate
degeneracy and improving the importance accuracy [46],
[47], a viable option is the Bayesian UPF architecture, which
considers a linear regression of weighted state samples [48].
First de ned in [21], it is a hybrid scheme consisting of
a baseline PF which exploits, as a feeding stage, an UKF
to frame out an accurate enough proposal tting with the
unknown a-posteriori distribution. A simple block diagram
illustrating the main stages of the UPF routine is shown
in Fig. 2. At every estimation epoch, the UKF posterior state
mean and covariance estimates from measurement updates
are exploited to de ne a new importance density that, cor-
respondingly, drives the particles sampling. After computing
their importance weights, the posterior state mean and covari-
ance estimates are updated and further re ned [21], [22],
[28], [49]. For ease of comprehension, the interested reader
can refer to [21] which collects few details and proposes a
formalization for each building block reported in Fig. 2.

I1l. ENHANCED UPF ARCHITECTURE WITH ROBUSTNESS
OPTIMISATION

Given the discussed framework in Section 11 for a UPF-based
GNSS/INS tight unit, this Section presents the adaptive
noise model optimization and the robustness countermea-
sures embedded in the high-complexity AUPF architecture

H Ng 3
Ong 3

GNSS;k

01ns:K D
PGNss:k

ﬁ|NS;k 2Ns 1 |

Ong 3
H N 3

Ing 1
Ong 1

Ons 9

Ong 1 bP !

. Cv 6
On, a3 1 k (6)
Z

Ing 1
: } bg;3 1

{

VOLUME 9, 2021

Hi:ong 17 ty

144161



IEEE Access

0. Vouch et al.: On Adaptivity of UPF for GNSS/INS Tightly-Integrated Navigation Unit in Urban Environment

UNDERLYING STAGE - PF FEEDING STAGE - UKF

Filter Initialization

Refined k—>k+1 Deterministic
A-posteriori State >  Generation of Sigma
Importance Time Propagation Of

A

State Estimates
(Prediction Step)

i

Weights &
Normalization

Y

Deterministic
Generation Of —!

Importance Zy Sigma Points

Sampling l
7'y i
________________________________ Measurement Noise

Covariance Estimation

H
H
H
H
H
H
H
H
H
|

13
t
1

Estimates i Points
H
H
H
H
|
1
H
H
H
1
H
H
H
H
H
H
H
H
H
H
H
H
1

Ry

A4
Measurement Prediction
And Covariance b
Matrices

A

A-posteriori Estimates
(Measurement Update)

f Kalman Gain &

FIGURE 2. Simplified block diagram of the UPF algorithm composed by a
UKF-based feeding stage and a PF-based underlying stage. The input
GNSS measurement misclosure z and the noise covariance matrix Ry are
highlighted.

proposed by this paper. Speci cally, the measurement noise
covariance estimation block of Fig. 2 is enhanced through
the adaptive structure depicted in Fig. 3, which implements
a mitigation of misleading biases affecting input GNSS mis-
closures retrieved in compromised signal environments.

A. ADAPTIVE COVARIANCE ESTIMATION BASED ON
REDUNDANT MEASUREMENTS

Focusing on measurement noise covariance (Rx) models,
baseline UPF architectures rely on parameter estimation,
which leverages functional relations to compute the variance
of each misclosure. For example, both satellite elevation
and received carrier-to-noise-density ratio (C=Ng) are com-
mon indexes to weight the components of the observation
vector z [26].

Although real-time tunable, the use of parameters limits to
few degrees of freedom the stochastic noise characterisation
resulting into a nearly static (i.e., semi-static) estimation. For
GNSS/INS integrated units with high-grade Micro Electro-
Mechanical System (MEMS) IMUs, the stochastic part of
inertial measurement errors can be considered constant, but
the same may not apply for GNSS measurements [50]. This
usually happens in signal degraded environments with highly
changing dynamics, like urban canyons, and this heavily
affects both Iter accuracy and robustness.

Adaptive noise modelling strategies, instead, weakly rely
on a-priori statistical information and aim at enhancing the
estimation performance by exploiting the Iter learning pro-
cess based on the sequence of input innovations [27]. As such,
any change in the external environment directly re ects on
noise and on its stochastic properties which dynamically
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FIGURE 3. Insight on the measurement noise covariance estimation block
of Fig. 2 for the enhanced RMNCE-based AUPF architecture with
embedded robustness countermeasures. The GNSS measurement
misclosure zy feeds the input of block I, where the GNSS-based
pseudorange misclosures are filtered to mitigate misleading bias
injections.

update the Iter statistical information and tune the error
parametrization characterising input observables.

In this paper, an AUPF architecture is considered that
exploits RMNCE strategy (Fig. 3, block II). This method
adapts observation noise statistics by relying on redundant
information retrieved from two independent measurement
systems [51]. The main advantage of the RMNCE approach is
in that noise modelling is strictly based on measurements and
is fully independent from the system states and their related
estimation errors.

The RMNCE underlying principle assumes the existence
of two independent redundant measurements for the same
guantity, and computes the variance of such quantity by
suitably processing the difference between the two measure-
ments [52]. Speci cally, let’s consider Z; .k/ and Z, .k/ two
independent redundant measurements, coming from two dif-
ferent sources, of the same quantity Zy. They can be expressed
as follows [52]:

Zik/IDZ k/ICSi.k/CVi.k/ iDfl;2g  (9)

where S; .k/ identi es unknown system noise, while V;j .k/
corresponds to uncorrelated, zero-mean measurement noise.
For both measurement systems, it is possible to de ne First-

Order Self-Differences (FOSDs) 1Z; .k/ according to [51]:
17; . k/DZi.k/ Zy.k 1/ iDfl;2g (10)

and, assuming that S; .k/ S .k
writeV

1/ 7 0, it is possible to

17, k/D[Z.k/ Z.k UJC[Vik/ Vik 1/]

From (10), it can be understood that FOSDs compute a
discrete approximation of the rst-order derivative of each
redundant measurement with respect to epoch time k. Hence,
127, .k/and 1Z; .k/ carry information about the variation of
each observable over consecutive epochs.

Moreover, a Second-Order Mutual Difference (SOMD)
12735 .k/ can be speci ed [51]:
1755 .k/ D 1275 kI 1Zy k/ (11)
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which depends solely on noises affecting redundant mea-
surements and expresses the residual between their deriva-
tives. Based on the proposed equations, the variances
of Zy.k/ and Z,.k/ can be simultaneously retrieved
according to (12), as shown at the bottom of the page,

where E 173 .k/1Z[, .k/ , E 123 .k/1Z] k/ and

E 17, .k/ 122T .k/ are the discrete auto-correlations of
1745 .k/, 121 .k/ and 1Z; .k/, respectively.

In the integrated unit under analysis, GNSS and INS act
as the two independent measurement systems to meet the
RMNCE hypothesis; on one hand, the GNSS receiver directly
supplies noisy pseudorange and Doppler-shift observables to
the fusion algorithm while, on the other hand, the inertial
body position and velocity estimates from the INS can be used
to predict the same GNSS-based data.

Accounting for the unpredictability and variability of the
external environment along the trajectory, few re nements
can still be pursued on the RMNCE method. First, the esti-
mation of the auto-correlations in (12) can be averaged over
a sliding window thereby tracking real-time noises more
accurately and mitigating the effects of historical informa-
tion [52]. Second, it is useful to monitor the stability of
each tracked satellite inside the window; as a matter of fact,
a highly uctuating satellite which is occasionally tracked
should not contribute to the noise characterisation since
it would likely cause overestimation of the measurement
variance.

B. ADAPTIVE PRE-PROCESSING ON INPUT
MEASUREMENTS

The RMNCE method, recalled in Section I1I-A, despite
enabling a exible tuning of misclosures statistics, is de -
nitely not enough to hit the desired robustness of the state
estimation. In fact, by relying on measurements only, spu-
rious variance glitches of biased misclosures can anyway
jeopardise the covariance tuning and spoil the state estimation
as well. Moreover, multipath changes very fast in urban and
induces both positive and negative biases; hence, the histori-
cal information included within the sliding window may not
correctly describe multipath-related error statistics.

Given these premises, adaptive covariance estimation is
complemented with a novel signal processing stage - block
I in Fig. 3 - aimed at enhancing both adaptivity and robust-
ness of the discussed tight GNSS/INS scheme. For sake
of clarity, it is to remark that such an original contribu-
tion does not replace the aforementioned adaptive covari-

Iter out unpredictable biases corrupting the GNSS-based
measurement misclosures (5). In details, it foresees a self-
contained, low-complexity pre-processing algorithm operat-
ing a real-time dynamic smoothing of input misclosures to
automatically mitigate undesired bias injections in presence
of multipath. Then, error covariance matrix calculation lever-
ages pre-processed measurements, thus taking advantage of
its action. It is important to highlight that, within this paper,
pre-processing is applied to pseudorange misclosures only,
thus leaving for future investigation a convenient tailoring to
Doppler-shift misclosures (i.e. pseudorange rates) as well.

The pre-processing module builds on a two-stage archi-
tecture including a initialisation block, needed to de ne and
con gure parameters useful to the algorithm, and an opera-
tional block, which implements the core routine to smooth
out misleading bias injections.

At a generic epoch k, the GNSS receiver is supposed to
track M satellites, and two main quantities can be tunedV

k., the estimated standard deviation of ranging mis-
closures in open-sky conditions (that is, in absence of
unmodelled multipath effects).

N pre-processing quantization levels based on , such
that to guarantee a suf cient adaptivity.

Then, few assumptions must hold in order to feed the pseu-
docode reported in Algorithm 1:

Knowledge of GNSS code-based pseudorange measure-
ments of visible satellites f g;NSS;kghgl;
Knowledge of nominal user-to-satellite ranges
fOlus O, retrieved from INS-based predictions at
epoch k;
Knowledge of the cumulative means of pseudorange
misclosures f ';k 19?"D1 computed at previous epoch
k 1
Based on these quantities, the proposed approach implements
a real-time, multi-level magnitude scaling (i.e., quantization)
of the pseudorange component characterising the input mis-
closure vector z (5)

0ins:k (13)

by contemplating possible bias trends which are tracked
through the cumulative average .k 1, kept updated up to
epochk 1.

In particular, for each satellite i, the magnitude of the residual
pseudorange misclosure

Z kD gnssik

ance estimation module, but just prepends to it in order to f 7 K i;k 1 DjZi K K 1k (14)
, E 17y .k/1Z], k/ CE 171 .k/1Z] k/ E 1Z.k/1Z] k/
D ,
! 4
E 1Z1,.k/1Z],.k/ E 1Z;.k/1Z] k/ CE 1Z,.k/1Z] k/
2D ’ (12)
4
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FIGURE 4. Effect of the pre-processing module on a real GNSS/INS
pseudorange misclosure retrieved from L1/CA signal of GPS PRN32.

is compared against an adaptive threshold
g. ;p/D2P ¢ p2.1;N/ (15)

to identify the correct pre-processing quantization level.
Whenever the condition

f Zi;k; i;kl g. k;p/
gets satis ed, the pseudorange error sample z! . Is syntheti-
cally reduced to
ba K

24D » 1 (16)

Algorithm 1 Pseudorange Pre-Processing (Error-Based For-
mulation) for Tight GNSS/INS Integrated Navigation Sys-
tem, at Given Epoch k

1: foriD 1to M do

2. forpD1toN do

3: Computef z',; ', ; (14)andg. ;p/ (15)

4 iff 2. 'y 1 9.« p/then
5: i
- Z .k
1 )
2 ik D op 1
6: end if
7. end for
8: end for
9: Update cumulative mean for the i-th satellite at epoch k:
: _ 2.
'.D ', ,C—=
ik k1 k

This adaptive pre-processing is generally capable to pre-
serve the possible error trends hidden by multipath-induced

uctuations; the adoption of an adaptive scaling of the mis-
closures over multiple quantization levels guarantees the
abortion of error outliers without affecting the low-frequency;,
zero-mean noise like pattern which is due to a blending of
inertial bias drift, inertial data noise and possible, residual
contributions.

The envisioned methodology bears multiple advantages.
First of all, it reduces the pseudorange misclosure z' s

144164

soon as it is measured, without introducing any latency or
requiring any extra buffering to keep memory of measured
misclosures in previous epochs. Secondly, the amount of
extra complexity added to the Itering algorithm is rather
negligible. Furthermore, the proposed strategy is independent
from the investigated scenarios. Hence, it is expected to be
effective to compensate for a variety of undesired bias effects.
Last, but not least, acting as a standalone module, it is fully
portable and does not inhibit the normal ow of the Bayesian
integration routine.

An example of the pre-processing outcome is provided
in Fig. 4, where the proposed methodology is applied to
GNSS/INS pseudorange misclosure obtained from L1/CA
signal of Global Positioning System (GPS) Pseudo Random
Noise (PRN) 32. The adaptivity of the pre-processing algo-
rithm guarantees

unaltered miscl