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ABSTRACT Tight integration algorithms fusing Global Navigation Satellite System (GNSS) and Iner-
tial Navigation System (INS) have become popular in many high-accuracy positioning and navigation
applications. Despite their reliability, common integration architectures can still run into accuracy drops
under challenging navigation settings. The growing computational power of low-cost, embedded systems
has allowed for the exploitation of several advanced Bayesian state estimation algorithms, such as the
Particle Filter (PF) and its hybrid variants, e.g. Unscented Particle Filter (UPF). Although sophisticated,
these architectures are not immune from multipath scattering and Non-Line-of-Sight (NLOS) signal
receptions, which frequently corrupt satellite measurements and jeopardise GNSS/INS solutions. Hence,
a certain level of modelling adaptivity should be granted to avoid severe drifts in the estimated states.
Given these premises, the paper presents a novel Adaptive Unscented Particle Filter (AUPF) architecture
leveraging two cascading stages to cope with disruptive, biased GNSS input observables in harsh conditions.
A INS-based signal processing block is implemented upstream of a Redundant Measurement Noise Covari-
ance Estimation (RMNCE) stage to strengthen the adaptation of observables’ statistics and improve the state
estimation. An experimental assessment is provided for the proposed robust AUPF that demonstrates a 10%
average reduction of the horizontal position error above the 75-th percentile. In addition, a comparative
analysis both with previous adaptive architectures and a plain UPF is carried out to highlight the improved
performance of the proposed methodology.

INDEX TERMS Bayes methods, sensor fusion, inertial navigation, satellite navigation systems, particle
filters, adaptive estimation, position accuracy.

I. INTRODUCTION
Over recent years, the demand for reliable and robust local-
isation capabilities has become increasingly urgent in crit-
ical application domains, such as autonomous driving for
land-vehicles or unmanned flight for drones. Scaling down to
urban navigation (e.g., a city downtown), Global Navigation
Satellite System (GNSS)-only Positioning, Navigation and
Timing (PNT) cannot meet strict accuracy, reliability and
continuity requirements, although it still sets as the lead-
ing technology for absolute positioning in outdoor applica-
tions. In fact, street canyons identify challenging scenarios
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characterised by impairing phenomena such as signal block-
ages, poor satellite geometry and multipath [1]–[3], which
detrimentally affect the quality of Position, Velocity, Tim-
ing (PVT) solutions [4]. In such framework, strong research
effort has been put to overcome performance limitations of
standalone GNSS through the integration of additional posi-
tioning information and exploiting advanced signal process-
ing strategies. Among the options, coupling a GNSS receiver
to Inertial Navigation Systems (INSs) is a common choice in
many mass-market navigation units, thanks to the availability
of small and low-cost Inertial Measurement Units (IMUs) in
the consumer segment (e.g., micro electro-mechanical sen-
sors [5]). While the good long-term stability of GNSS is
helpful to initialise and update the inertial navigation solution
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and prevent it from drifting, the short-term accuracy and the
high resolution of a INS allow to finely track the motion
dynamics and to aid the solution in presence of GNSS system
outages [6], [7].

Different architectural paradigms exist for GNSS/INS inte-
gration, which can be broadly summarized in three classes:
loose coupling [8], [9], tight coupling [10] and ultra-tight
coupling [11], [12]. Although traditionally implemented for
professional high-grade IMUs only, positioning units based
on a tight integration of low-cost sensors have shown perfor-
mance improvements for urban settings [9], [10], [13].

The growing availability of high-performance embed-
ded processors at sustainable costs has paved the way
to high complexity Monte-Carlo (MC) Bayesian filters,
such as Particle Filters (PFs) [14], which represent effi-
cient simulation-based techniques to pursue optimal state
estimation [15], [16]. Besides handling non-Gaussian filter-
ing models, they manage to accommodate multiple analytic
densities to characteris e measurement noise statistics [17].
Different works [18]–[20] have considered the use of PFs in
low-cost GNSS/INS systems for high-accuracy positioning
and navigation in land-vehicle applications. Among them,
a hybrid PF-based implementation - the Unscented Particle
Filter (UPF) [21], [22] - targets to improve the Importance
Sampling (IS) process by operating an upstream Unscented
Kalman Filter (UKF) [23], [24]. The latter is meant to deliver
an accurate enough approximation of the optimal importance
density, matching with the posterior state density, to feed the
underlying PF stage.

However sophisticated the estimation process is, the opti-
mality of the filtering algorithm is strongly driven by the
accuracy on the statistical characterisation of measurements
noise components. Such stochastic terms are modelled via the
observation covariance matrix which leverages the a-priori
stochastic knowledge available in the navigation filter. In fact,
tight GNSS/INS units exploit the measurement model in the
filter correction step to update the description of motion
dynamics and refine the state prediction though input GNSS
data; hence, the noise terms affecting GNSS observables are
fundamental as they embed information about unmodelled
error sources as well. In real-time kinematic applications,
uncertainties in the dynamic environment jeopardise the
estimation quality of measurement noise covariance and
lead to sub-optimal, or even divergent, navigation solu-
tions. In this sense, deep urban settings are challenging
because highly-corrupted satellite signals can induce mis-
leading biases on input observables and reduce the pre-
dictability of their statistics. Therefore, it is necessary to
make full use of the information collected along the filtering
process to achieve higher immunity of the state estimation
from accidental disturbances [25].

In such framework, semi-static Bayesian formulations,
like the one proposed in [26], build on functional relation-
ships with satellite measurements and leverage parameter
estimation to construct a covariance estimate. Unfortunately,
they leak promptness in triggering environmental changes

and mirroring them on error statistics. Hence, they struggle
to inhibit signal outliers from spoiling the state estimation
and undermining the integrity of the navigation solution.
Conversely, adaptive estimation formulations leverage the
learning ability of the navigation filter, based on a buffer of
input GNSS data bringing innovation, to dynamically update
the a-priori statistical information and tune the observations’
covariance model accordingly. By far, Innovation-based
Adaptive Estimation (IAE) and Residual-based Adaptive
Estimation (RAE) identify the most popular strategies
to pursue dynamic measurement noise estimation in the
GNSS/INS framework, leading to the definition of an Adap-
tive Unscented Particle Filter (AUPF) scheme [27]–[29].

However, these methods leverage a variance model
which indirectly depends on the state vector estimate; as
such, any bias in the navigation solution can potentially
spread over stochastic noise characterisation. Further-
more, traditional adaptive implementations do not sup-
port any pre-filtering of input GNSS observables. Hence,
they are still vulnerable to biasing phenomena affecting
input GNSS ranging measurements and the problem of
filter divergence in signal-deteriorated scenarios is still
unsolved.

Based on these premises, this paper presents a novel tight
architecture for an error-based GNSS/INS unit exploiting an
AUPF with embedded countermeasures to grant improved
robustness in harsh navigation context with remarkable signal
degradation. Specifically, the canonical UPF architecture is
augmented with a cascaded, double-stage adaptive module
including the following items:

• a INS-based pre-processing stage to reduce instabil-
ity against unpredictable (e.g., multipath-related) bias
injections affecting input GNSS ranging measurements.

• an adaptive, state-free measurement error covariance
estimation stage - namely, Redundant Measurement
Noise Covariance Estimation (RMNCE) - exploiting
pre-processed GNSS measurements to better predict the
navigated environment.

The proposed solution is experimentally assessed to explore
the impact of adaptivity on a hybrid UPF estimator, and
to investigate the AUPF positioning accuracy against a
plain UPF approach. To this end, the following analy-
sis employs a real dataset about a car-ride along a urban
trajectory.

The paper outline is organized as follows: Section II
recalls the fundamentals about GNSS/INS integration with
the mathematical formalization of a filtering system model
in indirect configuration, and overviews the UPF Bayesian
architecture in a nutshell. Section III, then, presents the adap-
tive model optimizations to enhance the UPF positioning
accuracy and estimation robustness under highly-degraded
signal environments. Eventually, Section IV discusses the
experimental outcomes from the assessment in urban scenario
and specifies the simulation setup as well as the adopted
methodology.
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FIGURE 1. Block-diagram of GNSS/INS tightly-coupled architecture.

II. GNSS/INS TIGHT INTEGRATION WITH UNSCENTED
PARTICLE FILTER: OVERVIEW AND FUNDAMENTALS
A. THE INTEGRATED ARCHITECTURE AT A GLANCE
A conventional GNSS/INS tightly integrated unit implements
a centralised filtering scheme, where the raw data gener-
ated by both INS and GNSS are fused to generate a sin-
gle, blended navigation solution [30]. More in depth, raw
GNSS measurements - namely, pseudorange and Doppler-
shift - are streamed to an integration processor which mech-
anises a high-order integration filter and aids the position,
velocity and attitude high-rate updates from the INS [31],
[32]. Employing raw measurements, tight integration is more
robust under any GNSS outages and the navigation system
performance improves in degraded signal environments [33].
In fact, INS sensors (i.e., accelerometers and gyroscopes)
can be calibrated in real-time to improve standalone inertial
performance in absence of tracked GNSS satellites. Further-
more, INS outputs can be exploited to tighten GNSS Doppler
tracking loops, and the position estimates from the INS can
be used for faster re-acquisition after GNSS outages [32].

Fig. 1 shows a simplified block-scheme for a tight
GNSS/INS integration. The inertial system acts as a
self-contained processing unit, the INS mechanisation pro-
cessor, dead-reckoning position, velocity and attitude data
from the high-rate measurements supplied by IMU sen-
sors. In addition, the INS predicts nominal pseudorange and
pseudorange-rate trends related to the set of tracked GNSS
satellites. Meanwhile, the GNSS receiver supplies raw pseu-
dorange and Doppler-shift measurements that constitute the
navigational aid allowing the integration filter to update the
INS navigation solution. Eventually, the refined solution is
used as the output of the whole integrated unit [9], [10], [34].

B. ERROR-BASED GNSS/INS SYSTEM MODEL
The rigorous formulation of a state-space model for the sys-
tem under analysis is pivotal to the development of an inte-
gration algorithm fusing data from heterogeneous sources.
It includes the definition of both process and measure-
ment dynamics combined with a convenient modelling of
their error statistics. These models must be faithful enough
to adequately represent the system evolution, but func-
tional as well to foster the development of the integration
routine [35], [36].

In GNSS/INS integrated units, the estimated states include
navigation parameters (i.e., position, velocity, attitude), sen-
sor parameters (i.e., biases and scale factors) and timing
parameters (i.e., clock bias and drift) [37]. Pursuing an
indirect navigation model formulation, the integration filter
relies on the propagation equation of inertial errors; as such,
it estimates navigation errors and inertial sensor errors useful
to correct earlier predictions from the INS-only navigation
solution [38]. In the following, the symbol δ will indicate a
correction to the quantity it is prepended to.

In the framework of a GNSS/INS tight architecture,
the navigation error state vector can be defined as fol-
lows [10]:

δxe17×1 =
[
δre3×1 δv

e
3×1 ε

e
3×1 δb

b
a,3×1 δb

b
g,3×1 δtu,2×1

]T
(1)

where superscripts e and b refer to Earth-Centred Earth-Fixed
(ECEF) frame and local body frame, respectively. From (1)
we can identify the following terms:

• δre3×1 =
[
δrex δr

e
y δr

e
z
]T

is the position error vector
along the three Cartesian axes of the ECEF frame;

• δve3×1 =
[
δvex δv

e
y δv

e
z
]T

is the velocity error vector
along the three Cartesian axes of the ECEF frame;

• εe3×1 =
[
εex ε

e
y ε

e
z
]T

is the vector of IMU axes misalign-
ment angles (i.e., attitude errors), expressed in ECEF
coordinates;

• δbba,3×1 =
[
δbba,x δb

b
a,y δb

b
a,z
]T

is the error vector asso-
ciated to specific force measurements (from accelerom-
eters) along the triaxial body frame reference;

• δbbg,3×1 =
[
δbbg,x δb

b
g,y δb

b
g,z
]T

is the error vector asso-
ciated to angular rate measurements (from gyroscopes)
along the triaxial body frame reference;

• δtu,2×1 =
[
δtu ˙δtu

]T is the vector collecting the esti-
mated clock bias and clock drift;

The next step in the state-space formulation requires the
definition of a INS error model meant to describe the dynam-
ics of both navigation and sensor error states in (1). The
derivation of a mechanisation involving inertial error prop-
agation equations leverages a perturbation of the non-linear
inertial navigation equations [39], and results in matrix equa-
tion (2), as shown at the bottom of the next page, [10]; the
following terms are identified:
• Fe3×3 is the skew-symmetric form of accelerometer mea-
surements, expressed in the ECEF frame;

• Ne
3×3 is the tensor form of the gradient operator applied

to the gravity vector g, expressed in the ECEF frame;
• δf b3×1 collects the body frame triaxial error components
on accelerometer measurements;

• δωbib,3×1 collects the body frame triaxial error compo-
nents on gyroscope measurements;

The linearized error mechanisation model (2) would fit
with the error states dynamics for a GNSS/INS system only
in case the inertial sensor error vectors - specifically, δf b3×1
and δωbib,3×1 - agreed with a zero-mean, multivariate normal
distribution. Unfortunately, these conditions do not apply due
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to the presence of deterministic sensor bias components that
move the average of the error distribution [10]. A rigorous
INS error model is formalised in [39] and, starting from
it, [10] proposes a simpler but effective additive error model
(first-order linearization) for IMU sensors measurements:

δf b = ba + ωf
δωbib = bg + ωω (3)

where the error of each sensor includes two components:
• ba and bg are the bias drifts related to accelerometers and
gyroscopes, respectively;

• ωf and ωω are additive noise components affecting
accelerometers and gyroscopes, respectively.

The bias terms embody theoretical time-dependent effects
(e.g., temperature sensitivity, scale factors etc. [10]) neglected
in the reduced model.

Incorporating sensor error model (3), the resulting
continuous-time INS error mechanisation suitable for a tight
GNSS/INS integrated unit is stated in (4), as shown at the
bottom of the page, [10]; we specify the following quantities:
• I3×3 is the identity matrix;
• 03×3 is the zero matrix;
• �e

ie,3×3 is the skew-symmetric form of ωeie, the Earth
rotation rate expressed in ECEF frame;

• Re
b,3×3 is the Direction CosineMatrix (DCM) from body

frame b to ECEF frame e;
• diag(α1×3) is a diagonal matrix for modelling the
accelerometers bias states as first-order Gauss-Markov
processes;

• diag(β1×3) is a diagonal matrix for modelling the gyro-
scopes bias states as first-order Gauss-Markov pro-
cesses;

• wf ,3×1 is the noise component affecting triaxial
accelerometers as defined in (3);

• wω,3×1 is the noise component affecting triaxial gyro-
scopes as defined in (3);

• wba,3×1 is the driving noise for accelerometer bias
drift [10];

• wbg,3×1 is the driving noise for gyroscope bias drift [10];
• wδtu is the receiver clock bias noise;
• w ˙δtu is the receiver clock drift noise;

As highlighted in (4) through curly under bracing, the dynam-
ics matrix [10] F17×17 defines the filtering system model and
characterises the time evolution of navigation error states.
The shaping matrix [10] G17×14, instead, relates noise com-
ponents on both sensor bias drift and receiver clock error
to the states. Eventually, assuming time invariance of both
matrices for the time interval over which the state estimation
takes place, the state-transition matrix φk|k−1 and the process
noise matrix Qk of a discrete Kalman Filter (KF) can be
derived from the continuous-time GNSS/INS system error
model [10].

C. GNSS/INS MEASUREMENT MODEL
The observation model constitutes the layer that allows the
integration filter to process raw GNSS measurements (i.e.,
pseudorange and Doppler-shift) and exploit them to con-
struct a refined update to the error state estimate. In a tight

 δ̇re3×1δ̇v
e
3×1

ε̇e3×1

 =
 δve3×1
−Fe3×3ε

e
3×1 + Ne

3×3δr
e
3×1 − 2�e

ie,3×3δv
e
3×1

−�e
ie,3×3ε

e
3×1

+
 0

Re
b,3×3δf

b
3×1

Re
b,3×3δω

b
ib,3×1

 (2)



δ̇r
e
3×1

δ̇v
e
3×1

ε̇e3×1

δ̇b
b
a,3×1

δ̇b
b
g,3×1
˙δtu
¨δtu


=



03×3 I3×3 03×3 03×3 03×3 03×1 03×1
Ne
3×3 −2�e

ie,3×3 −Fe3×3 Re
b,3×3 03×3 03×1 03×1

03×3 03×3 −�e
ie,3×3 03×3 Re

b,3×3 03×1 03×1
03×3 03×3 03×3 −diag(α1×3) 03×3 03×1 03×1
03×3 03×3 03×3 03×3 −diag(β1×3) 03×1 03×1
01×3 01×3 01×3 01×3 01×3 0 1
01×3 01×3 01×3 01×3 01×3 0 0


︸ ︷︷ ︸

F17×17



δre3×1
δve3×1
εe3×1
δbba,3×1
δbbg,3×1
δtu
˙δtu


︸ ︷︷ ︸

δxe17×1

+



03×3 03×3 03×3 03×3 03×1 03×1
Re
b,3×3 03×3 03×3 03×3 03×1 03×1
03×3 Re

b,3×3 03×3 03×3 03×1 03×1
03×3 03×3 I3×3 03×3 03×1 03×1
03×3 03×3 03×3 I3×3 03×1 03×1
01×3 01×3 01×3 01×3 1 0
01×3 01×3 01×3 01×3 0 1


︸ ︷︷ ︸

G17×14


wf ,3×1
wω,3×1
wba,3×1
wbg,3×1
wδtu
w ˙δtu


︸ ︷︷ ︸

W14×1

(4)
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architecture with indirect configuration, the integration fil-
ter uses, as input observation vector, the measurement mis-
closures [11]. Assuming Ns tracked satellites at epoch k ,
the measurement misclosure zk is defined as:

zk = ζGNSS,k − ζ̂ INS,k (5)

where

• ζGNSS,k =
[
ρGNSS,k , ρ̇GNSS,k

]T is a column vector
of size 2Ns × 1 collecting the raw GNSS pseudorange
(ρk ) and pseudorange-rate measurements (ρ̇k ) from Ns
satellites at k-th epoch;

• ζ̂ INS,k =
[
ρ̂INS,k , ˆ̇ρINS,k

]T
is a column vector of size

2Ns × 1 collecting the INS-based pseudorange and
pseudorange-rate predictions related to the same set of
Ns satellites;

Given the intrinsic non-linearity of GNSS-based multilat-
eration, a first-order Taylor series approximation of pseudor-
ange and pseudorange-rate equations can be used to retrieve
a simplified, linear GNSS/INS observation model, as formu-
lated in (6). A complete derivation and further details can
be found in [4], [40], as shown at the bottom of the page.
In particular, the geometry matrix [40] Hρ is computed as:

Hρ =



xu − x1
R1

yu − y1
R1

zu − z1
R1

xu − x2
R2

yu − y2
R2

zu − z2
R2

...
...

...
xu − xNs
RNs

yu − yNs
RNs

zu − zNs
RNs


Ns×3

(7)

where xu =
(
xu, yu, zu

)
is the estimated receiver position

in ECEF frame, xj =
(
xj, yj, zj

)
is the j-th satellite position

in ECEF frame, and Rj is the Euclidean norm between the
receiver location and the j-th satellite. Finally, vk collects
the residual errors affecting the measurement misclosures
both in pseudorange and Doppler components. Assuming
compensation of predictable error sources, vk turns out to
have zero-mean, jointly-Gaussian terms [1]:

vk = N (0,Rk) (8)

where the measurement noise covariance Rk is a diagonal
matrix for uncorrelated satellite measurements.

D. UNSCENTED PARTICLE FILTER APPLIED TO GNSS/INS
SCHEME
In the framework of Bayesian estimation over dynamic
state space models, PFs still attract a remarkable research
effort [17], [41]–[44]. They identify a family of simulation-
based filtering techniques pursuing higher modelling flexibil-
ity over KFs. The hallmarks of a PF can be pinned up in the
following two points [15], [45]:
• MC integration, which accomplishes a discrete, Dirac’s
Delta based approximation of posterior state densities
through a finite set of simulated state samples;

• IS concept, which allows to randomly draw particles
from a handy and known importance (or proposal) dis-
tribution that approximates the unknown posterior state
density.

Relying on IS, a convenient choice of the proposal density
is pivotal because it directly affects the particle generation
process and, accordingly, it impacts on the occurrence rate of
the unavoidable particles degeneracy phenomenon [16], [46].
Although heuristic techniques have been proposed tomitigate
degeneracy and improving the importance accuracy [46],
[47], a viable option is the Bayesian UPF architecture, which
considers a linear regression of weighted state samples [48].
First defined in [21], it is a hybrid scheme consisting of
a baseline PF which exploits, as a feeding stage, an UKF
to frame out an accurate enough proposal fitting with the
unknown a-posteriori distribution. A simple block diagram
illustrating the main stages of the UPF routine is shown
in Fig. 2. At every estimation epoch, the UKF posterior state
mean and covariance estimates from measurement updates
are exploited to define a new importance density that, cor-
respondingly, drives the particles sampling. After computing
their importance weights, the posterior state mean and covari-
ance estimates are updated and further refined [21], [22],
[28], [49]. For ease of comprehension, the interested reader
can refer to [21] which collects few details and proposes a
formalization for each building block reported in Fig. 2.

III. ENHANCED UPF ARCHITECTURE WITH ROBUSTNESS
OPTIMISATION
Given the discussed framework in Section II for a UPF-based
GNSS/INS tight unit, this Section presents the adaptive
noise model optimization and the robustness countermea-
sures embedded in the high-complexity AUPF architecture

[
ρGNSS,k − ρ̂INS,k
ρ̇GNSS,k − ˆ̇ρINS,k

]
2Ns×1

=

[
Hρ,Ns×3 0Ns×3 0Ns×9 1Ns×1 0Ns×1
0Ns×3 Hρ,Ns×3 0Ns×9 0Ns×1 1Ns×1

]
︸ ︷︷ ︸

Hk,2Ns×17



δre3×1
δve3×1
εe3×1
δbba,3×1
δbbg,3×1
δtu
˙δtu


︸ ︷︷ ︸

δxe17×1

+ vk (6)
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FIGURE 2. Simplified block diagram of the UPF algorithm composed by a
UKF-based feeding stage and a PF-based underlying stage. The input
GNSS measurement misclosure zk and the noise covariance matrix Rk are
highlighted.

proposed by this paper. Specifically, the measurement noise
covariance estimation block of Fig. 2 is enhanced through
the adaptive structure depicted in Fig. 3, which implements
a mitigation of misleading biases affecting input GNSS mis-
closures retrieved in compromised signal environments.

A. ADAPTIVE COVARIANCE ESTIMATION BASED ON
REDUNDANT MEASUREMENTS
Focusing on measurement noise covariance (Rk ) models,
baseline UPF architectures rely on parameter estimation,
which leverages functional relations to compute the variance
of each misclosure. For example, both satellite elevation
and received carrier-to-noise-density ratio (C/N0) are com-
mon indexes to weight the components of the observation
vector zk [26].
Although real-time tunable, the use of parameters limits to
few degrees of freedom the stochastic noise characterisation
resulting into a nearly static (i.e., semi-static) estimation. For
GNSS/INS integrated units with high-grade Micro Electro-
Mechanical System (MEMS) IMUs, the stochastic part of
inertial measurement errors can be considered constant, but
the same may not apply for GNSS measurements [50]. This
usually happens in signal degraded environments with highly
changing dynamics, like urban canyons, and this heavily
affects both filter accuracy and robustness.

Adaptive noise modelling strategies, instead, weakly rely
on a-priori statistical information and aim at enhancing the
estimation performance by exploiting the filter learning pro-
cess based on the sequence of input innovations [27]. As such,
any change in the external environment directly reflects on
noise and on its stochastic properties which dynamically

FIGURE 3. Insight on the measurement noise covariance estimation block
of Fig. 2 for the enhanced RMNCE-based AUPF architecture with
embedded robustness countermeasures. The GNSS measurement
misclosure zk feeds the input of block I, where the GNSS-based
pseudorange misclosures are filtered to mitigate misleading bias
injections.

update the filter statistical information and tune the error
parametrization characterising input observables.

In this paper, an AUPF architecture is considered that
exploits RMNCE strategy (Fig. 3, block II). This method
adapts observation noise statistics by relying on redundant
information retrieved from two independent measurement
systems [51]. Themain advantage of the RMNCE approach is
in that noise modelling is strictly based on measurements and
is fully independent from the system states and their related
estimation errors.

The RMNCE underlying principle assumes the existence
of two independent redundant measurements for the same
quantity, and computes the variance of such quantity by
suitably processing the difference between the two measure-
ments [52]. Specifically, let’s consider Z1 (k) and Z2 (k) two
independent redundant measurements, coming from two dif-
ferent sources, of the same quantity Zk . They can be expressed
as follows [52]:

Zi (k) = Z (k)+ Si (k)+ Vi (k) i = {1, 2} (9)

where Si (k) identifies unknown system noise, while Vi (k)
corresponds to uncorrelated, zero-mean measurement noise.
For both measurement systems, it is possible to define First-
Order Self-Differences (FOSDs) 1Zi (k) according to [51]:

1Zi (k) = Zi (k)− Zi (k − 1) i = {1, 2} (10)

and, assuming that Si (k) − Si (k − 1) ' 0, it is possible to
write:

1Zi (k) = [Z (k)− Z (k − 1)]+ [Vi (k)− Vi (k − 1)]

From (10), it can be understood that FOSDs compute a
discrete approximation of the first-order derivative of each
redundant measurement with respect to epoch time k . Hence,
1Z1 (k) and1Z2 (k) carry information about the variation of
each observable over consecutive epochs.
Moreover, a Second-Order Mutual Difference (SOMD)
1Z1,2 (k) can be specified [51]:

1Z1,2 (k) = 1Z1 (k)−1Z2 (k) (11)
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which depends solely on noises affecting redundant mea-
surements and expresses the residual between their deriva-
tives. Based on the proposed equations, the variances
of Z1 (k) and Z2 (k) can be simultaneously retrieved
according to (12), as shown at the bottom of the page,
where E

(
1Z1,2 (k)1ZT1,2 (k)

)
, E

(
1Z1 (k)1ZT1 (k)

)
and

E
(
1Z2 (k)1ZT2 (k)

)
are the discrete auto-correlations of

1Z1,2 (k), 1Z1 (k) and 1Z2 (k), respectively.
In the integrated unit under analysis, GNSS and INS act

as the two independent measurement systems to meet the
RMNCE hypothesis; on one hand, the GNSS receiver directly
supplies noisy pseudorange and Doppler-shift observables to
the fusion algorithm while, on the other hand, the inertial
body position and velocity estimates from the INS can be used
to predict the same GNSS-based data.

Accounting for the unpredictability and variability of the
external environment along the trajectory, few refinements
can still be pursued on the RMNCE method. First, the esti-
mation of the auto-correlations in (12) can be averaged over
a sliding window thereby tracking real-time noises more
accurately and mitigating the effects of historical informa-
tion [52]. Second, it is useful to monitor the stability of
each tracked satellite inside the window; as a matter of fact,
a highly fluctuating satellite which is occasionally tracked
should not contribute to the noise characterisation since
it would likely cause overestimation of the measurement
variance.

B. ADAPTIVE PRE-PROCESSING ON INPUT
MEASUREMENTS
The RMNCE method, recalled in Section III-A, despite
enabling a flexible tuning of misclosures statistics, is defi-
nitely not enough to hit the desired robustness of the state
estimation. In fact, by relying on measurements only, spu-
rious variance glitches of biased misclosures can anyway
jeopardise the covariance tuning and spoil the state estimation
as well. Moreover, multipath changes very fast in urban and
induces both positive and negative biases; hence, the histori-
cal information included within the sliding window may not
correctly describe multipath-related error statistics.

Given these premises, adaptive covariance estimation is
complemented with a novel signal processing stage - block
I in Fig. 3 - aimed at enhancing both adaptivity and robust-
ness of the discussed tight GNSS/INS scheme. For sake
of clarity, it is to remark that such an original contribu-
tion does not replace the aforementioned adaptive covari-
ance estimation module, but just prepends to it in order to

filter out unpredictable biases corrupting the GNSS-based
measurement misclosures (5). In details, it foresees a self-
contained, low-complexity pre-processing algorithm operat-
ing a real-time dynamic smoothing of input misclosures to
automatically mitigate undesired bias injections in presence
of multipath. Then, error covariance matrix calculation lever-
ages pre-processed measurements, thus taking advantage of
its action. It is important to highlight that, within this paper,
pre-processing is applied to pseudorange misclosures only,
thus leaving for future investigation a convenient tailoring to
Doppler-shift misclosures (i.e. pseudorange rates) as well.

The pre-processing module builds on a two-stage archi-
tecture including a initialisation block, needed to define and
configure parameters useful to the algorithm, and an opera-
tional block, which implements the core routine to smooth
out misleading bias injections.

At a generic epoch k , the GNSS receiver is supposed to
track M satellites, and two main quantities can be tuned:

• σk , the estimated standard deviation of ranging mis-
closures in open-sky conditions (that is, in absence of
unmodelled multipath effects).

• N pre-processing quantization levels based on σk , such
that to guarantee a sufficient adaptivity.

Then, few assumptions must hold in order to feed the pseu-
docode reported in Algorithm 1:

• Knowledge of GNSS code-based pseudorange measure-
ments of visible satellites {ρiGNSS,k}

M
i=1;

• Knowledge of nominal user-to-satellite ranges
{ρ̂iINS,k}

M
i=1 retrieved from INS-based predictions at

epoch k;
• Knowledge of the cumulative means of pseudorange
misclosures {µiρ,k−1}

M
i=1 computed at previous epoch

k − 1;

Based on these quantities, the proposed approach implements
a real-time, multi-level magnitude scaling (i.e., quantization)
of the pseudorange component characterising the input mis-
closure vector zk (5)

zρ,k = ρGNSS,k − ρ̂INS,k (13)

by contemplating possible bias trends which are tracked
through the cumulative average µρ,k−1, kept updated up to
epoch k − 1.
In particular, for each satellite i, the magnitude of the residual
pseudorange misclosure

f
(
ziρ,k , µ

i
ρ,k−1

)
= |ziρ,k − µ

i
ρ,k−1|. (14)

σ 2
1 =

E
(
1Z1,2 (k)1ZT1,2 (k)

)
+ E

(
1Z1 (k)1ZT1 (k)

)
− E

(
1Z2 (k)1ZT2 (k)

)
4

σ 2
2 =

E
(
1Z1,2 (k)1ZT1,2 (k)

)
− E

(
1Z1 (k)1ZT1 (k)

)
+ E

(
1Z2 (k)1ZT2 (k)

)
4

(12)
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FIGURE 4. Effect of the pre-processing module on a real GNSS/INS
pseudorange misclosure retrieved from L1/CA signal of GPS PRN32.

is compared against an adaptive threshold

g (σk , p) = 2p · σk p ∈ (1,N ) (15)

to identify the correct pre-processing quantization level.
Whenever the condition

f
(
ziρ,k , µ

i
ρ,k−1

)
≤ g (σk , p)

gets satisfied, the pseudorange error sample ziρ,k is syntheti-
cally reduced to

z̃iρ,k =
ziρ,k
2p−1

(16)

Algorithm 1 Pseudorange Pre-Processing (Error-Based For-
mulation) for Tight GNSS/INS Integrated Navigation Sys-
tem, at Given Epoch k

1: for i = 1 to M do
2: for p = 1 to N do
3: Compute f

(
ziρ,k , µ

i
ρ,k−1

)
(14) and g (σk , p) (15)

4: if f
(
ziρ,k , µ

i
ρ,k−1

)
≤ g (σk , p) then

5:

z̃iρ,k =
ziρ,k
2p−1

6: end if
7: end for
8: end for
9: Update cumulative mean for the i-th satellite at epoch k:

µiρ,k = µ
i
ρ,k−1 +

z̃iρ,k
k

This adaptive pre-processing is generally capable to pre-
serve the possible error trends hidden by multipath-induced
fluctuations; the adoption of an adaptive scaling of the mis-
closures over multiple quantization levels guarantees the
abortion of error outliers without affecting the low-frequency,
zero-mean noise like pattern which is due to a blending of
inertial bias drift, inertial data noise and possible, residual
contributions.

The envisioned methodology bears multiple advantages.
First of all, it reduces the pseudorange misclosure ziρ,k as

soon as it is measured, without introducing any latency or
requiring any extra buffering to keep memory of measured
misclosures in previous epochs. Secondly, the amount of
extra complexity added to the filtering algorithm is rather
negligible. Furthermore, the proposed strategy is independent
from the investigated scenarios. Hence, it is expected to be
effective to compensate for a variety of undesired bias effects.
Last, but not least, acting as a standalone module, it is fully
portable and does not inhibit the normal flow of the Bayesian
integration routine.

An example of the pre-processing outcome is provided
in Fig. 4, where the proposed methodology is applied to
GNSS/INS pseudorange misclosure obtained from L1/CA
signal of Global Positioning System (GPS) Pseudo Random
Noise (PRN) 32. The adaptivity of the pre-processing algo-
rithm guarantees

• unaltered misclosure trend in nominal open-sky condi-
tions (i.e., no compensation);

• moderate misclosure reduction in presence of fast,
remarkable bias fluctuations;

• heavy error compensation against intense fluctuations.

IV. PERFORMANCE ASSESSMENT IN URBAN SETTING
The scope of the forthcoming assessment is to verify the accu-
racy performance of the high-complexity Bayesian AUPF
architecture embedding the robustness optimizations defined
throughout Section III, when compared against both i) plain
UPF architecture (Section II-D) and ii) the most popular
AUPF formulation based on RAE algorithm for measurement
noise covariance estimation.

A. EXPERIMENTAL SETUP & METHODOLOGY
To validate the proposed solution, a dataset was selected
among the ones available in our repository because of its
relevant features in terms of multipath and environmental
characteristics. The dataset was collected on a car ride in
a urban area nearby Politecnico di Torino (Turin, Italy) in
November 4, 2015 at 12:16 UTC, with a total duration of 39
minutes. The vehicle was driven along a path characterised
by narrow streets surrounded by buildings and trees, limiting
satellites visibility and inducing GNSS signal degradation.
For the experiment, an embedded board was mounted on the
vehicle supplying both GNSS ranging data and inertial data
in real-time. In details, the following commercial modules
composed the hardware testbench:

• a low-cost, mass-market GPS receiver (i.e. the NVS
NV08C-CSM). Such positioning module is commonly
used in consumer-grade devices for road navigation.
It supplies low-rate noisy pseudorange andDoppler-shift
measurements;

• a consumer-grade MEMS-technology strapdown IMU
(i.e. TDK InvenSense MPU-9250), including two triads
of accelerometers and gyroscopes. It supplies high-rate
specific force and angular rate measurements.
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FIGURE 5. Block diagram of the integration software for the real-time
simulation of a GNSS/INS tight architecture. Scheduling commands from
the FSM unit are included in the diagram with cyan arrows.

FIGURE 6. Map view of the ground reference for the tested vehicular
trajectory in the final assessment dataset (Note: images are taken via
Google Earth Pro software by Google LLC.).

In parallel to the foregoing modules, benchmark measure-
ments were retrieved by means of a dual-frequency, survey-
grade GNSS receiver, combined with a tactical-grade IMU
(i.e., Novatel SPAN-CPT). Such a reference receiver provides
real-time localization at sub-decimetre level accuracy and
is commonly employed for applications in the professional
segment. As such, this positioning sensor has been included in
the experimental setup to grant a highly accurate ground truth
(i.e., reference trajectory) useful for the estimation of errors
in the navigation solution from the tightly-integrated unit.
For the assessment of the considered Bayesian integration
routines, a MATLAB R©-based, fully-software emulator of
a GNSS/INS tightly integrated navigation system has been
run in post-processing on the collected dataset. For sake of
rigorousness, simulations are run on a subset of the whole
dataset which includes relevant epochs for the vehicle dynam-
ics. As such, with an integration rate of 1 Hz, 1740 epochs
(29 minutes) will be hence shown in the results of Section V.
Within the emulation environment, a FSM manages the

scheduling of input observables and assigns timestamps sep-
arately to both inertial data and raw GNSS measurements
to grant synchronization between the two positioning sen-
sors. In details, the GNSS rate is set to 1Hz (it eventu-
ally constrains the integration rate), while the INS rate is
fixed to 10Hz with an IMU rate of 100Hz. A simplified

FIGURE 7. Challenging navigation environments encountered along the
experimental trajectory in the analysed urban dataset. Each black dot
represents 1 Hz positioning solutions of the Novatel SPAN-CPT (Note:
images are taken via Google Earth Pro software by Google LLC.).

schematic representation of the integration software is pro-
vided in Fig. 5.

Every 0.010 s, a new set of IMUmeasurements is produced
and coning and sculling integrals are solved [53], [54]. Due to
non linearities of inertial motion, it is fundamental to compute
these integrals at high rate (high-rate module in Fig. 5). In this
way, the change of orientation and velocity are tracked with
high temporal granularity and the medium-rate predictions
to the absolute position, velocity and attitude states can be
dead-reckoned at the lower rate of 10 Hz, that is every 0.100 s
(medium-rate module in Fig. 5). Clearly, all these operations
are executed within the INS subsystem. Whenever a new
set of GNSS noisy observables becomes available (low-rate
module in Fig. 5), the integration filter produces an estimate
of the error state vector (1) by relying on process (4) and
measurement (6) models.

Based on this setting and targeting the horizontal state esti-
mation accuracy as primary performance indicator, the spatial
components related to the vehicle horizontal position are
object of investigation. In this sense, the vertical position (i.e.,
body geodetic height) is not examined since it is typically
penalised by the geometry of the GNSS-based multilaterion
problem. Then, the Root-Mean-Square Error (RMSE) metric
is adopted to quantify the accuracy of the tightly integrated
navigation solution.

The ground-truth path for the tested urban trajectory is
shown in Fig. 6. In the forthcoming results, special attention
is devoted to few trajectory sectors characterised by hetero-
geneous features:
• Sectors A andB identify deep urban settingswith limited
visibility of satellites, poor geometry and potentially
strong multipath and shadowing effects.

• Sector C corresponds to a mild urban context with
dense foliage but better visibility conditions than
sectors A and B.

• Sector D, a crossroad that determines a cut-off slice
of the vehicle path where the average accuracy perfor-
mance of any Bayesian hybridisation routine tends to
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FIGURE 8. 2D experimental trajectories in latitude/longitude (LLH) spherical coordinates. Comparison between UPF, RAE-based
AUPF, RMNCE-based AUPF with Pre-Processing (PP) and ground truth. Each dot represents an integration epoch.

FIGURE 9. Highlight of the experimental trajectories in the challenging
sectors along the experimental trajectory involved in the analyzed urban
dataset. Comparison between UPF (blue), RAE-based AUPF (light green),
RMNCE-based AUPF with Pre-Processing (red) and ground reference
(black). (Note: images are taken via Google Earth Pro software by Google
LLC.)

dramatically worsen, likely due to the presence of highly
reflective and diffractive surfaces.

To have a deeper understanding of these challenging scenar-
ios, Fig. 7 captures a snapshot for each indicated sector.

B. FILTERS CONFIGURATION
The proposed analysis leverages PF-based hybrid
architectures employing a fixed number of 1000 particles for
the estimation update of navigation states, including position,
velocity and time (i.e., clock bias and drift components)
unknowns. The remaining bias states, associated to IMU
sensors measurements, are just propagated from the feeding
UKF stage, thus leveraging a marginalised estimation [55].
No rules of thumb have been defined to select an adequate
number of particles to be used. Typically, this aspect is

managed either with an oversized value, involving a waste
of computational resources, or by addressing adaptive solu-
tions that are out of the scope of this study [56]. Such a
configuration holds for all the three architectures investigated
throughout the following analysis.

V. RESULTS
The analysis of the pursued experimental outcomes from the
assessment is organized as follows. Section V-A provides an
overview of the horizontal position estimates in qualitative
terms by looking at simulated vehicle trajectories. Then,
Section V-B supplies a detailed accuracy performance anal-
ysis about horizontal error statistics characterising the same
trajectories.

A. QUALITATIVE ANALYSIS ON EXPERIMENTAL PATHS
Fig. 8 compares the experimental vehicle trajectory, esti-
mated by both plain and adaptive UPF architectures, with
respect to the sub-decimetre accurate ground reference. As an
additional visual aid, the same figure integrates the zooms on
the challenging sectors (refer to Section IV-A) highlighted
throughout the assessment, which have been found to criti-
cally undermine both the robustness of the filter estimation
and the integrity of the navigation solution. These sectors are
also captured in the Google Earth snapshots of Fig. 9. Starting
from the mild urban setting characterising sector C, the posi-
tioning solutions supplied by the different PF-based stages
are largely matching each other; this can be better caught
in Fig. 9c. Moving to more critical trajectory slices immersed
in deep urban context (sector A in Fig. 9a and sector B
in Fig. 9b), multipath-related biasing effects in the estimated
vehicle positions are standing out. In particular, looking at
sector A and accounting for AUPF stages only, the proposed
RMNCE-based scheme appears more robust against unmod-
elled error sources and pursues higher accuracy over the
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FIGURE 10. (a) RMSE on the horizontal position (Easting/Northing) in UTM-coordinates. For readability reasons, the indications of Sectors B and C are
omitted. (b) Highlight of the mean horizontal RMSE over the experimental dataset. Comparison between plain UPF, RAE-based AUPF and the proposed
RMNCE-based AUPF with Pre-Processing (PP). A fixed number of 1000 particles is considered.

RAE-based solution. Such a result stems from a blend of two
effects

• the INS-based pre-processing stage which conditions
GNSS ranging measurements to absorb misleading
multipath-related biases.

• the measurement covariance computation by the
RMNCE strategy which further attenuates the impact
of unmodelled bias sources;

Interestingly, in such scenarios, a semi-static UPF formu-
lation (i.e., plain architecture) still grants comparable hor-
izontal accuracy performance with reference to adaptive
solutions.

Instead, moving to sector D (Fig. 8 and Fig. 9d), which
identifies an area surrounded by highly reflective buildings
with critically enhanced multipath scattering, adaptive filters
are unequivocally outperforming the plain UPF stage, whose
estimated position fixes are quickly diverging. Narrowing
the sight on AUPF schemes, the considered RMNCE-based
AUPF with pre-processing preserves a higher accuracy level
in the horizontal position estimates over the RAE-based vari-
ant, and it delivers a smoother trajectory estimate without
experiencing any error bouncing phenomenon.

B. AUPF ERROR STATISTICS WITH ENHANCEMENT
TECHNIQUES
First, the analysis of the horizontal RMSE as a function of the
integration epochs for the tested urban data set (Section IV)
is proposed in Fig. 10a, where the enhanced AUPF archi-
tecture with pre-processing is compared against both a plain
UPF scheme (Section II-D) and a RAE-based AUPF stage
(Section III-A). In particular, the critical trajectory sectors A
(Fig. 7a) and D (Fig. 7d) are highlighted, where the average
horizontal error increments (i.e., mean error jumps) are rather
blatant. Such biasing effects are caused by the presence of
tall buildings - and possibly other environmental obstacles -
obstructing Line-of-sight (LOS) propagation and enhancing
scattering phenomena (i.e., multipath). Moreover, observing
the global RMSE trend, it can be evidenced the presence of a
steady bias floor amounting to about 1.5m, which is caused

by some alignment problems in the tactical-grade IMUwithin
the survey-grade GNSS receiver employed to retrieve a
ground truth. Although the RMSE lines for the different
PF-based architectures extensively match each other when
travelling mild areas in near open-sky conditions, the high-
complexity RMNCE-based AUPF stage with pre-processing
grants superior robustness under signal degraded scenarios
and prevents the error from drifting unbounded. This effect
is moderately observable in Sector A - where plain UPF is
robust as well - but gets definitely marked in the final part
of the dataset. In fact, especially in Sector D, the proposed
Bayesian solution manages to bound the maximum error
below 3m, while the RAE-based stage allows a higher error
bias increase and the plain architecture is even diverging (i.e,
the maximum RMSE touches 110m). The improved robust-
ness and accuracy performance of enhanced AUPF solution
in harsh navigation conditions results from combining the
dynamic pre-processing module (Section III) with RMNCE
technique. As far as the latter is concerned, the computation
of Rk involves FOSDs (10), which correspond to an approx-
imated, discrete, first-order derivative. Therefore, consider-
ing a sufficiently wide buffer of collected pseudorange and
Doppler measurements, the derivative over the buffer imple-
ments a basic low-pass filtering which can help in mitigating
multipath-related bias injections.

To better catch the horizontal accuracy improvement
achieved by the proposed architecture, Fig. 10b bounds the
dynamic RMSE range to 10m and highlights the mean hor-
izontal error over the analyzed dataset for each Bayesian
filter. As a matter of fact, the RMNCE-based AUPF with
pre-processing gives the smallest mean error - highest aver-
age accuracy - of 2.4m, which corresponds to an average
accuracy improvement of 0.43m (i.e., 15.19%) over a plain
UPF solution (which measures an average RMSE of 2.83m)
and of 0.6m (i.e., 20%) over a RAE-based AUPF variant
(which measures an average RMSE of 3m).

For further investigation, Fig. 11 illustrates the Empirical
Cumulative Density Function (ECDF) curves of the RMSE
on the horizontal position in Universal Transverse Mercator
(UTM) coordinates, together with zooms at few percentiles
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FIGURE 11. Empirical CDF (ECDF) of the RMSE on the horizontal position (Easting/Northing) in
UTM-coordinates. Comparison between UPF, RAE-based AUPF and the proposed RMNCE-based AUPF
with Pre-Processing (PP). A fixed number of 1000 particles is considered.

TABLE 1. Horizontal (E/N) position RMSE measured, for the analysed UPF
and AUPF architectures, at 50-th, 75-th and 90-th percentiles. A fixed
number of 1000 particles is considered.

of interest. Starting from the high accuracy segment (hor-
izontal RMSE within 2m), there is no relevant accuracy
performance difference among the considered filters up to
the 40-th percentile. However, between the 40-th and 70-th
levels, the enhanced AUPF architecture is losing few tens of
centimetres over the other PF-based schemes. In particular,
based on the measured RMSEs at the 50-th percentile speci-
fied in Table 1, the accuracy penalty amounts to 0.24m (i.e.,
13.43%) over the UPF and to 0.25m (i.e., 13.82%) over the
AUPF with RAE. Nevertheless, above the 70-th percentile,
the Cumulative Density Function (CDF) trends overturn and
the RMNCE-based AUPF compensates the foregoing perfor-
mance loss. At the 75-th percentile, it achieves 30.08% (i.e.,
1m) accuracy enhancement over the RAE-based AUPF and
12.63% (i.e., 0.34m) over a plain UPF (Table 1). Further-
more, at the 90-th percentile, the measured gains are 33.66%
(i.e., 2.44m) over the RAE-based AUPF and 11.68% (i.e.,
0.64m) over the UPF.

VI. CONCLUSION
Although several advanced estimation algorithms are
exploited in positioning applications to tightly integrate
GNSS and INS, their robustness against biased input mea-
surements is still concerned. Hybrid estimators such as UPF
can effectively host adaptive stages to counteract the detri-
mental effects of multipath in harsh environment. The pro-
posed, enhancedAUPF architecture exploits an adaptive logic
composed by a pre-processing stage and a run-time error

covariance estimation, i.e. RMNCE, to improve navigation
accuracy and estimation robustness over both a plain UPF and
a RAE-based AUPF architectures. The experimental assess-
ment on a urban, vehicular trajectory shows an improvement
of the horizontal positioning error of more than 10% above
the 75-th percentile and demonstrates the superior adaptivity
of the RMNCE method against RAE.
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