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We provide a theoretical analysis of some autocatalytic reaction networks
exhibiting the phenomenon of discreteness-induced transitions. The family of
networks that we address includes the celebrated Togashi and Kaneko model.
Weprovepositive recurrence, finiteness of allmoments andgeometric ergodicity
of the models in the family. For some parameter values, we find the analytic
expression for the stationary distribution anddiscuss the effect of volume scaling
on the stationary behaviour of the chain. We find the exact critical value of the
volume for which discreteness-induced transitions disappear.
1. Introduction
In 2001, Togashi & Kaneko [1] described a cycle of stochastic autocatalytic reac-
tions that displays a highly peculiar dynamics in some regions of the parameter
space. It is characterized by switches between patterns where one or more reac-
tants are present in small or vanishing numbers of molecules while other
reactants are abundant. The switching is triggered by a single molecule of a pre-
viously extinct species that drives the system to a different pattern through a
sequence of quick reactions. The switches were named discreteness-induced tran-
sitions (DITs) since deterministic ODE models are not able to reproduce them [1].

The paper raised much interest and resulted in similar effects being observed
in more complicated and realistic models in physics, biology and elsewhere, e.g.
in large-scale networks [2], particle systems with finite interaction radius [3], reac-
tion–diffusion systems [4], models of receptor oligomerization by bivalent ligand
[5], models of ant foraging [6], chiral autocatalysis [7], tumour growth [8], spatial
models [9], viral replication [10] and noise control in synthetic biology [11]. Thus,
the phenomomen of DITs is widespread in nature.

Several attempts have been made to underpin the phenomenon theoreti-
cally, at least in simplified toy models, through derivation of analytic
expressions, without resorting to simulation or approximation. Examples in
this direction are [12–17], though many questions remain unsolved. The station-
ary distributions of autocatalytic systems of a similar nature have been studied
in [18], but their theory does not apply to the Togashi–Kaneko (TK) model and
similar systems where mass is not conserved.

Despite simulation of the TK model indicating a stationary behaviour after a
short transient time, positive recurrence (existence of a unique stationary distri-
bution) of the corresponding continuous-time Markov chain (CTMC) has not
been proved. For the original 4-dimTKmodel, no general result from chemical reac-
tion network theory is applicable. Even if the system is reduced to dimension 2, the
problem of finding a stationary distribution remains non-trivial and the curious
switching behaviour persists. In dimensions 4 and 2, the switching behaviour
causes the seemingly stationary distribution emerging from simulation to be multi-
modal for certain parameter values. When the rates are scaled in the volume V of
the container and V is considered large, the multimodality disappears and a distri-
bution with a concentrated peak emerges. In this case, the scaled stochastic model
converges to the classical deterministic model (fluid limit).

In this paper, we prove that a family of autocatalytic networks, including the
TK model, is positive recurrent in arbitrary dimension (theorem 4.1). For some
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2
parameter values, an explicit expression for the stationary dis-
tribution is derived. In 2-dim (see theorem 3.1), the parameter
region for which the stationary distribution is known covers
the 2-dim TK model. In higher dimension (see theorem 4.2),
the parameter region for which the stationary distribution is
known does not include the general TK model. However, it
includes a large family of TK-like models exhibiting DITs.

The analytic form of the stationary distribution provides a
clear theoretical demonstration of the effect of volume scaling
on the stationary behaviour of the system. It also allows us to
find the exact critical value of the volume from which DITs
stop appearing. We also find this value for the TK model.
Thus, in particular examples, there is a clear demarcation in
terms of the volume between stochastic and deterministic sys-
tems with comparable behaviour (large volume) and very
different behaviour (small volume).

We finally remark that the stationary distributions we derive
in the paper are not of product form, which seems quite unusual
in the theory of stochastic reaction networks [18–20].
7:20200243
2. Background material
2.1. The original 4-dim Togashi–Kaneko model
Let N ¼ {0, 1, 2, . . . } denote the integers including zero. For
any two integers i and n, let (i)n be the remainder after integer
division of i by n (elsewhere denoted by i mod n). The net-
work proposed by Togashi & Kaneko [1] consists of the
following cycle of autocatalytic reactions:

Ai þ A(iþ1)4!
k
2A(iþ1)4 , i ¼ 1, . . . , 4, (2:1)

together with inflow and outflow reactions

Ai O
d

l
;, i ¼ 1, . . . , 4:

The state of the system is a tuple of four non-negative integers
a = (a1, a2, a3, a4)0. Denote byej the jth unit vector, j = 1,…, 4. The
transition rates generated by the autocatalytic reactions are

qa,a�eiþe(iþ1)4 ¼ kaia(iþ1)4 ,

while those corresponding to inflow and outflow reactions are

qa,aþei ¼ l and qa,a�ei ¼ dai:

The qualitative behaviour of the system depends on the par-
ameter values. The classical volume scaling (see [21, ch. 11]
or [22]) is adopted in [1], where the initial molecule counts of
the species are proportional to the scaling parameter V. This
implies that the rate constants are given by

k ¼ k0

V
, d ¼ d0 and l ¼ l0V:

One parameter can always be set to 1 by linear scaling of
time. In [1], κ0 = 1, and further λ0 = δ0 =D for simplification.
According to [23] or [21, ch. 11], when V→∞, the density
process, which is the CTMC rescaled by dividing the mol-
ecule numbers by V, converges to the solution of a system
of ODEs with stable equilibrium (1, 1, 1, 1). Indeed, when
VD≫ 1, the reaction rates are large and the trajectories of
the density process display only small fluctuations around
the deterministic equilibrium.

For VD≪ 1, a completely different behaviour appears, trig-
geredby the slow rate of inflowandDITs appear. If the system is
initialized at a statewhere all species counts are large, one of the
species at random (say, species 3) is quickly driven to extinction
by the fast autocatalytic dynamics. At this point, several mol-
ecules of species 2 are produced and not consumed and they
catalyse the consumption of all molecules of species 1. We
end upwith a configurationwhere species 1 and 3 are both con-
sumed, the count of species 2 is very high and that of species 4 is
quite low. We call this pattern 2H4L. In this configuration, only
slow inflows and outflows are active, and one needs to wait
until amolecule of species 3 or 1 flows inbefore the autocatalytic
dynamics starts again leading to another pattern with two non-
contiguous species extinct. The dynamics of the system then
proceeds by switching between such patterns in a way that a
2H4L configuration ismuchmore often followedbya 2L4Hpat-
tern and only rarely switches to either a 1H3L or 1L3H
configuration (see fig. 1 in [1]).

2.2. Lumpability
In the next section, we exploit the notion of lumpability to
find the stationary distribution in some cases. We summarize
here the meaning of this property.

Let {SI}I[I be a partition of a denumerable state space S of
a CTMC X(t), t≥ 0, with rates qij, i, j∈ S. Let moreover i be the
function that maps x∈ S to the index of the element of the par-
tition to which x belong (i.e i(x) ¼ K if and only if x∈ SK). The
process X(t), t≥ 0, is (strongly) lumpable if the lumped process
X(t) ¼ i(X(t)), t≥ 0, is a CTMC on I for any choice of initial
distribution. Sufficient conditions (see [24]) that guarantee
lumpability of a regular, irreducible, positive recurrent
CTMC X(t), t≥ 0, on the partition {SI}I[I are that every
subset SI is finite, and that for any I, J [ I, and any i, i0 ∈ SI,X

j[SJ

qij ¼
X
j[SJ

qi0j ¼ qIJ:

The rates of the lumped chainX(t), t≥ 0, are qIJ , I, J [ I , and for
any s < t, the lumped variableX(t) is independent ofXs givenXs
3. The 2-dim Togashi–Kaneko model
If the number of species in the TK model is reduced to two,
the reaction network becomes

2A1 k1 A1 þ A2!k2 2A2

and A1 O
d1

l1
; Ol2

d2
A2,

9>=
>; (3:1)

where we allow κ1 and κ2 to be different. The state of the net-
work is denoted by a ¼ (a1, a2)

0 [ N2, the molecule counts of
each species. The transition rates owing to the autocatalytic
reactions are

qa,a�e1þe2 ¼ k2a1a2 and qa,a�e2þe1 ¼ k1a1a2, (3:2)

while those corresponding to inflow and outflow reactions are

qa,aþei ¼ li and qa,a�ei ¼ diai, i ¼ 1, 2: (3:3)

The dynamics is simplified, but not too much. When the
inflows occur at a much slower rate than the autocatalytic
reactions, the system switches between two patterns in a
similar way to the original four-dimensional TK system,
where one or the other compound is mostly absent. A plot
of the two simulated trajectories in this parameter range is
shown in figure 1.
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Figure 1. Molecule counts of the two species of network (3.1) along time. Patterns where the grey species is mostly absent alternate with patterns where the
mostly absent species is the black one. Parameters are λi = 0.2, δi = 0.01 and κi = 0.05 for i = 1, 2.
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3.1. Positive recurrence and stationary distribution
A proof of positive recurrence in a more general setting is
given in §4.1. In this section, we show the sketch of how to
derive the stationary distribution of (3.1) by using its
lumpability. The subsets

En ¼ {a [ N2: a1 þ a2 ¼ n}

form a partition {En}n[N of the state space. The CTMC model
X(t), t≥ 0, of (3.1) under stochastic mass-action kinetics is
lumpable with respect to this partition if δ = δ1 = δ2. With
this choice, the rate at which the total molecule count n is
increased by 1, is equal to the sum of the rates of the inflows,

qn,nþ1 ¼
X2
i¼1

qa,aþei ¼ l1 þ l2,

independently of a. The rate at which n is decreased by 1, is
the sum of the rates of the outflows,

qn,n�1 ¼
X2
i¼1

qa,a�ei ¼ d(a1 þ a2) ¼ dn,

and therefore it does not depend on a as long as a∈ En.
The lumped process X(t), t≥ 0, is described by the follow-

ing reaction network where a single species B aggregates all
molecules of A1 and A2:

B O
d

l1þl2
;: (3:4)

Network (3.4) is weakly reversible and has deficiency
zero [19]. By [19, theorems 3.6 and 3.7], it admits a unique
stationary distribution with Poisson law

n(n) ¼ mn

n!
exp (�m), m ¼ l1 þ l2

d
, (3:5)

where n is the state of the lumped process (i.e. X(t) ¼ n if and
only if X(t)∈ En). We now aim at factorizing the stationary
distribution Π(a) of the process X(t), t≥ 0, of (3.1) by con-
ditioning on the stationary probability ν(n) of the lumped
process being in state n = a1 + a2. We write

P(a) ¼ p(a1jn)n(n): (3:6)

Using (3.6) and (3.5) in the master equation for the station-
ary distribution Π(a) and cancelling out common factors, we
get that Π(a) is stationary if and only if π(a|n) fulfils

Rn ¼ Ln�1 þ Ln þ Lnþ1, (3:7)

where

Rn ¼ (l1 þ l2 þ ndþ (k1 þ k2)a(n� a))p(ajn)
sums up all the rates of the reactions that can fire in state
a = (a, n− a), while

Ln�1 ¼ ndl1
l1 þ l2

p(a� 1jn� 1)þ ndl2
l1 þ l2

p(ajn� 1),

Ln ¼ k2(aþ 1)(n� a� 1)p(aþ 1jn)
þ k1(a� 1)(n� aþ 1)p(a� 1jn)

and Lnþ1 ¼ l1 þ l2
nþ 1

(aþ 1)p(aþ 1jnþ 1)

þ l1 þ l2
nþ 1

(n� aþ 1)p(ajnþ 1)

collect the sum of the rates of inflow (Ln−1), autocatalytic (Ln)
and outflow (Ln+1) reactions that lead to state a = (a, n− a), for
n≥ 0 and a = 0,…, n.

Unfortunately, there is not a simple way to find a closed-
form expression of π( · |n) satisfying equation (3.7). However,
simulation of the process for different rate constants, corre-
sponding to different regimes of the volume V (see §3.2 for
more details), indicates that the conditional stationary distri-
bution may be unimodal, flat or concentrated at the
boundaries (see figure 2). Statistical practice suggests the
beta-binomial as a natural candidate for a discrete distri-
bution on the integers {0,…, n} that may display these
behaviours. The next theorem confirms this, and figure 2 pro-
vides a graphical comparison between simulations and
theoretical values in different parameter settings.

Theorem 3.1. Network (3.1), assuming that κ = κ1 = κ2 > 0, λ1 >
0, λ2 > 0, and δ = δ1 = δ2 > 0, has a unique stationary distribution
Π(a) that factorizes as (3.6), where ν(n) is given by (3.5), and
π( ·|n) is given by the beta-binomial distribution

p(ijn) ¼ n
i

� �
B(iþ a, n� iþ b)

B(a, b)
, i ¼ 0, . . . , n, (3:8)

where

a ¼ dl1
k(l1 þ l2)

, b ¼ dl2
k(l1 þ l2)

(3:9)
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Figure 2. The effect of scaling and DITs. The conditional stationary distribution π(a1|n); see (3.6) from simulation (grey histograms) and from (3.9) in theorem 3.1
(red lines). Parameters are chosen according to (3.11) with κ0 i = 1, δ0 i = λ0 i = D = 0.01 for i = 1, 2. The volume parameter V differs in (a–c) to illustrate the effect
of scaling, and n is chosen as the mean of ν(n), which is 4000, 400 and 40, respectively; implying that the mean of the scaled process X/V is (1, 1) in all three cases.
Simulation set-up: 2.75 × 106, 106 and 105 simulations (for (a), (b) and (c), respectively) were conducted with fixed time T = 250, 50, 50, respectively (the station-
ary regime already applies). Only values of a(T ) with a1(T ) + a2(T ) = n were kept, and the histogram of a1(T ) was plotted.
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and

B(x, y) ¼ G(x)G(y)
G(xþ y)

, x, y . 0:

The proof is by direct verification, substituting expression
(3.8) into equation (3.7). Calculations are displayed in
appendix B in a more general context.
3.2. Volume scaling
Molecule counts and mass-action rates can be scaled with the
volume V in such a way that the scaled stochastic system
X(t)/V converges for large V to the solution of the determi-
nistic system on any finite time horizon (see [21, ch. 11,
theorem 2.1]).

This is achieved for (3.2) and (3.3), under the hypothesis
of theorem 3.1, by setting the constants to

ki ¼ k0

V
di ¼ d0, li ¼ l0iV, (3:11)
for i = 1, 2. When V is not sufficiently large the stochastic
model differs significantly from the deterministic limit [1]
and starts to display the switching behaviour (DITs)
illustrated in figure 1.

In [1], the authors set

k0i ¼ 1, d0i ¼ l0i ¼ D, i ¼ 1, 2: (3:12)

With this choice of the rate constants, by theorem 3.1, we know
the explicit form of the stationary density, and we can investi-
gate the behaviour of the system at every V without resorting
to simulations. The stationary conditional density π( ·|n) is
beta-binomial with parameters α = β =DV/2. The beta-
binomial density is unimodal when α and β are both greater
than 1 (that is, when DV is greater than 2) with the mass con-
centrated at the equilibrium of the corresponding
deterministic model. When both α and β are less than 1 (that
is, when DV is small) the density becomes bimodal with
most of the mass at the boundaries. The intermediate case is
when α = β = 1 and the conditional distribution reduces to
the discrete uniform distribution on {0,…, n}. In other
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effect of the scaling. In (a), V = 20 (same range as in figure 1). The density is bimodal and concentrated at the boundaries, since DITs are present. In (b), V = 200
and the conditional density (3.9) is uniform. In (c), V = 2000 and the density is concentrated around the deterministic equilibrium.
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words, at the critical valueDV = 2, the conditional density flat-
tens to π(a|n) = 1/(n + 1) for every a. A pictorial representation
of the density (3.6), at different values of Vwith D fixed to the
value 0.01, is given in figure 3. The effect of the scaling is appar-
ent. For graphical convenience, the discrete density has been
smoothed to a continuous one.

To make this effect quantitatively apparent, in the general
setting where (3.11) holds but not necessarily (3.12), we prove
that for V→ 0 the stationary distribution concentrates at the
boundaries by showing that the conditional probability
π(0|n) + π(n|n) tends to 1, for any n. Indeed, inserting (3.11)
into (3.10), we get α = α0V and β = β0V with

a0 ¼ dl01
k(l01 þ l02)

and b0 ¼ dl02
k(l01 þ l02)

:

The sum of the two conditional probabilities reduces to

p(0jn)þ p(njn) ¼ G(nþ a0V)]
G(a0V)

þ G(nþ b0V)
G(b0V)

� �

� G((a0 þ b0)V)
G(nþ (a0 þ b0)V)

: (3:13)

Whatever n is, since Γ(z)∼ 1/z for z→ 0, it is easily seen that
the sum tends to 1 as V→ 0.

For large V, we show that the stationary distribution ΠV of
the scaled process X(t)/V concentrates around the determi-
nistic equilibrium (1, 1). The mean μV and variance ΣV of
ΠV might easily be computed (by conditioning on n) from
the first and second moments of the Poisson distribution
and the beta-binomial distribution.

The explicit calculation is reported here for only two
components, but can be found for the others as well,

(mV)1 ¼
m

V
a

aþ b

and

(SV)11 ¼ 1
V2

ab

(aþ b)2
(aþ b)mþ m2 þ m

aþ bþ 1
þ m

a

aþ b

� �
,

where μ is given in (3.5) and α and β in (3.9). Scaling the par-
ameters as in (3.10), it is easily observed that (μV)1→ 1 and
(ΣV)11→ 0 for V→∞. With a little more effort, the same
result extends to the other components, that is, we have

mV !
l01
d0

,
l02
d0

� �
and SV ! 0 0

0 0

� �
:

In general, the agreement between the stochastic and the deter-
ministic model for large volumes only holds on a finite time
horizon. Negative examples where the two modelling para-
digms differ asymptotically are discussed in [25,26]. Our
result shows that for large V, under the assumptions of theo-
rem 3.1, the stochastic and the deterministic models of (3.1)
are in agreement asymptotically.
4. Higher dimensional models
In higher dimension, there exist different models whose 2-
dim reduction corresponds to network (3.1). One of them is
the 4-dim TK model (2.1), but also the network

Ai þ Aj!
kij

2Aj Ai O
di

li
;, (4:1)

i, j = 1,…, d, i≠ j, can be seen as a d-dimensional version of
model (3.1). Network (4.1) includes (2.1) as a special case
for κij equal to κwhen j = (i + 1)d and zero otherwise. Reaction
rates are the obvious generalizations of (3.2) and (3.3).

4.1. Positive recurrence
In this section, we state the positive recurrence of the Markov
process underlying the general d-dimensional model (4.1). To
do so, we show that V(x) ¼ ekxk1 , where kxk1 ¼

Pd
i¼1 jxij is a

Lyapunov function. Non-explosivity and positivity, then,
follow by the Foster–Lyapunov criterion [27]. Additionally, as
a by-product, all moments of the stationary distribution are
positive and convergence to the stationary distribution is expo-
nentially fast. The detailed proof can be found in appendix A.

Theorem 4.1. For any non-negative values of the parameters κij,
and for positive λi and δi, the CTMC associated with the system
(4.1) is positive recurrent on Nd ( for any d). Consequently, it
has a unique stationary distribution supported on Nd. Moreover,
all moments are finite and the convergence to the stationary
distribution is exponentially fast.

If some of the parameters are not positive (hence zero)
there might still be a stationary distribution, though it might
be either non-unique or not concentrated on all of Nd. For
example, if λi = 0 for all i = 1,…, d, then the CTMC is absorbed
at the origin, and if only some of the λis are zero, then the
corresponding species will eventually be depleted.
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Figure 4. Simulated trajectories and the conditional stationary distribution
π(a|n), from model (4.1) in dimension 3. Parameters are chosen according to
(4.6) with D = 0.01 and V = 20. The value of n is fixed to 60 in the lower
plot. The presence of DITs is apparent both from the trajectories and from
the conditional distribution that is concentrated at the corners of the simplex.
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4.2. Stationary distribution
4.2.1. The model
By the same argument as we used in dimension 2, under the
assumption of equal outflow rates (δi = δ for all i = 1 · · · d),
the process X(t), t≥ 0, that counts the molecules of
each species is lumpable on the partition {En}, where
En ¼ {a [ Nd:

P
i ai ¼ n}.

The lumped process X(t) ¼Pi Xi(t) represents the total
molecule count. It follows a birth and death process (as in
(3.4)) with Poisson stationary distribution with intensity

m ¼
Pd

i¼1 li
d

: (4:2)

Similarly to the 2-dim case, the stationary distribution Π(a)
factorizes as

P(a) ¼ p(ajn)n(n): (4:3)

Theorem 4.2. Assume κij = κ > 0, i, j = 1,…, d, i ¼ j,
δ = δ1 = · · · = δd > 0, and λi > 0 for all i. Then, model (4.1)
has a unique stationary distribution Π(a) expressed as in (4.3),
where ν(n) is given as in (3.5) and (4.2), and π( · |n) is given by
the Dirichlet-multinomial distribution

p(ajn) ¼ n
a

� �
G(
Pd

i¼1 ai)

G(nþPd
i¼1 ai)

Yd
i¼1

G(ai þ ai)
G(ai)

, (4:4)

where a is any d-dimensional integer vector with ||a||1 = n,
and

ai ¼ dli

k
Pd

j¼1 lj
:

The proof is by direct verification, substituting expression
(4.4) into equation (4.3) using (3.5). Calculations are displayed
in appendix B.
4.3. Volume scaling and other properties
The scaled process X(t)/V in dimension d has similar proper-
ties to that of the scaled process in dimension 2. In the case
where the stationary distribution is known (theorem 4.2),
we might proceed similarly to what was done in dimension
2 and calculate the mean vector and covariance matrix of
the molecule counts, now using moment properties of the
Poisson and the Dirichlet-multinomial distributions, and
assuming the parameters are scaled according to

k ¼ k0

V
, d ¼ d0, li ¼ l0iV, (4:5)

for i = 1,…, d.
As the volume V increases towards infinity, it can be

shown that the mean vector converges to (λ10/δ0,…, λd0/δ 0),
the equilibrium point of the deterministic process, and the
covariance matrix decreases towards the zero matrix. Thus,
under the hypothesis of theorem 4.2, the deterministic and
the stochastic models of (4.1) are in agreement asymptotically
for large volume size in the long run (at stationarity) as well
as over the finite time horizon.

At the other extreme, for V→ 0, the conditional prob-
ability of a corner configuration tends to 1. Indeed, such a
probability, which generalizes (3.13), is equal to

Xd
i¼1

p(eijn) ¼
G(V

P
j a
0
j)

G(nþ V
P

j a
0
j)

Xd
i¼1

G(nþ Va0i)
G(Va0i)

,

where

a0i ¼
dl0i

k
Pd

j¼1 l
0
j

:

The convergence to 1 can be easily shown with the same
methodology used in dimension 2.

The peaks at the vertexes reflect the presence of DITs
that cause the switch between dynamical patterns where
only one of the species is present in large quantity at a
time, while all the others are almost extinct. A graphical
illustration of the presence of DITs in a three-dimensional
version of model (4.1) is given in figure 4. In dimension 3,
it is no longer possible to plot the stationary distribution
Π(a). However, we can plot a set of simulated trajectories
and the values of the conditional stationary distribution
π(a|n).

If the parameters are further chosen as

k0i ¼ 1, d0i ¼ l0i ¼ D, i ¼ 1, . . . , d, (4:6)

in analogy of what was done in [1], the distribution becomes
symmetric in the labels of the species and the αi =DV/d,
i = 1,…, d, are all equal. Moreover, if V ¼ d

D, the conditional
distribution is flat, providing a transition point from the
multimodal case to the unimodal case. If the αis are not
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equal (i.e. the λ0i are not), the transition will not proceed
through a flat conditional distribution. The parameters used
for the simulations in figure 4 were D = 0.01 and V = 20,
therefore in the region where DITs are expected.

Other relevant properties of the Dirichlet-multinomial dis-
tribution, such as aggregation, marginals and conditional
distributions, are discussed in [28,29].
ing.org/journal/rsif
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4.4. Back to the d-dim Togashi–Kaneko model
Model (2.1) motivated our interest in autocatalytic networks.
Theorem 4.1 guarantees that it is positive recurrent, but an
explicit form of the stationary distribution cannot be derived
by theorem 4.2. Indeed, it is a special case of (4.1), where
some of the κij are set to zero (those for which j≠ (i + 1)d)
and all others are set to the same value κ. However, it is
still possible to find the explicit expression in a very
special case.

Theorem 4.3. Assume that κ= κ1 = · · · = κd≥ 0 and δ= δ1 = · · · =
δd= (d/(d− 1))κ and λ= λ1 = · · · = λd> 0. Then, model (2.1) has a
unique stationary distribution Π(a) whose expression is (4.3) with
ν(n) given by (3.5) and (4.2) and with π( · |n) given by a uniform
distribution

p(ajn) ¼ n!(d� 1)!
(nþ d� 1)!

(4:7)

on the simplex {a∈ {0,…n}d : ||a||1 = n}.

The proof is by direct verification, substituting
expression (4.7) into equation (4.3) with κij set to zero for
all j≠ (i + 1)d and to the same value κ otherwise. Calcu-
lations are displayed in appendix C. If the rate constants
are scaled in the volume as in equation (4.5) and further
set to (4.6), the critical value of the volume that makes the
distribution flat is V = d/((d− 1)D), in agreement with the
result for d = 2. In 4-dim, in [1], it was noticed from simu-
lation that the order of the magnitude of this critical value
should be around V∼ 1/D. However, determining the
exact value was pursued. Our result allows us to ensure
that the exact value is V = 4/3D.
5. Conclusion
We provide a theoretical analysis of some autocatalytic reac-
tion networks motivated by the original TK model. These
models exhibit the phenomenon of DITs. For specific classes
of models with symmetry in the rate constants, it is possible
to find the stationary distribution exactly. This allows us to
further analyse the models and determine the exact tipping
point of DITs, namely for V = d/((d− 1)D) for the TK
model (in every dimension d, both odd and even; see [30])
and V = d/D for model (4.1). In general, this is too much to
hope for. With asymmetric rate constants the networks are
still positive recurrent, therefore a unique stationary distri-
bution exists, but their analytical expression remains
unknown and it might be less clear when the phase tran-
sition happens. However, it would be interesting to
investigate whether the effect of volume scaling we observe
for small and large V pertains to the autocatalytic reaction
networks in general.
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Appendix
In this appendix, we report the detailed proofs of the three
main theorems (theorems 4.1–4.3) that are stated in §4.
Theorem 3.1 is not proved separately since it is a special
case of theorem 4.2. The most general high-dimensional
model that we consider is that in (4.1), which we repeat here

Ai þ Aj!
kij

2Aj Ai O
di

li
;,
Appendix A
As we stated in the main text, the associated CTMC for the
general dimensional model (4.1) is positive recurrent and
admits a unique stationary distribution. We prove this in
the following theorem. We further show that the CTMC is
exponentially ergodic, meaning that the associated distribution
Pt at time t converges to the unique stationary distribution
exponentially fast. The proof relies on the Foster–Lyapunov
criterion [27]. We begin with a formal statement and necessary
concepts for the Foster–Lyapunov criterion.

Definition A.1. For a CTMC X(t), t≥ 0, defined on a counta-
ble state space χ, the infinitesimal generator L is the operator

LV(x) ¼
X
h

lh(x)(V(xþ h)� V(x)),

where η is a transition of X(t), lh is the transition rate associ-
ated with η and V is any real function defined on the state
space.

Let τM = inf{t > 0 : |X(t)|≥M}. For a CTMC X(t), t≥ 0, we
define a truncated process XM such that XM(t) =X(t) if t < τM
and XM(t) = xM otherwise for some fixed state xM with
|xM|≥M. We denote byLM the infinitesimal generator ofXM.

We further call V(x) a norm-like function if V(x) is a
positive function such that |V(x)|→∞, as |x|→∞.

http://www.hpc.polito.it
http://www.hpc.polito.it
http://www.hpc.polito.it
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The following theorem is theorem 6.1 in [27], in the case
of a countable state space. It is one version of the Foster–
Lyapunov criterion for exponential ergodicity.

Theorem A (Foster–Lyapunov criterion [27]). Let X(t), t≥ 0,
be a CTMC defined on a countable state space χ. Then X(t),
t≥ 0, is non-explosive and positive recurrent if there exist a
norm-like function V on χ and positive constants C and D
such that for any M > 0

LMV(x) � �CV(x)þD for all jxj < M:

Furthermore, X(t), t≥ 0, admits a unique stationary
distribution π on each irreducible component, and there
exist B > 0 and β∈ (0, 1) such that

sup
A
jPt(x, A)� p(A)j � BV(x)bt for all x [ x:

To show positive recurrence and exponential ergodicity of
the CTMC associated with the general model (4.1), it is there-
fore sufficient to prove that there exist a norm-like function V
and positive constants C, D such that

LV(x) � �CV(x)þD for all x: (A 1)

In the proof of the following theorem, we prove (A 1) for an
exponential function V. Using this specific function, we also
show that all moments of the unique stationary distribution
of X(t), t≥ 0, are finite.

Proof of theorem 4.1. Let X(t), t≥ 0, be the CTMC associated
with the system (4.1). Let V(x) ¼ ekxk1 , where
kxk1 ¼

Pd
i¼1 jxij. Then we show that (A 1) holds for some

positive constants C and D.
Let ei [ Nd be the vector with ith component 1 and zero

otherwise. We have

LV(x) ¼
X
i,j

kijxixj(V(x� ei þ ej)� V(x))

þ
Xd
i¼1

dixi(V(x� ei)� V(x))þ
Xd
i¼1

li(V(xþ ei)� V(x))

¼
Xd
i¼1

dixi(V(x� ei)� V(x))þ
Xd
i¼1

li(V(xþ ei)� V(x)):

Let Kn ¼ {x [ Nd : xi � n for each i}. Then note that, for
x∈Kn,

LV(x) ¼ V(x)
Xd
i¼1

dixi(e�1 � 1)þ
Xd
i¼1

li(e� 1)

 !

� (min
i

di)(e�1 � 1)dnþ
Xd
i¼1

li(e� 1)

 !
V(x):

Hence, by choosing sufficiently large N such that

C ¼ � (min
i

di)(e�1 � 1) dN þ
Xd
i¼1

li(e� 1)

 !
. 0,

we conclude that (A 1) holds with D ¼ 2Cmaxx[Kc
N
V(x). This

implies that X(t), t≥ 0, is non-explosive, positive recurrent
and exponentially ergodic by theorem A. This implies the
existence of a unique stationary distribution π.
To show that π has finite mth moment for any m [ Nd, we
use (A 2) below combined with the ergodic theorem [31].
Then by using Dynkin’s formula [32,33] and (A 1), we have

Ex(V(X(t^tM))) ¼ V(x)þ Ex

ðt^tM
0

LV(X(s)) ds
� �

� V(x)� CEx
ðt^tM
0

V(X(s)) ds
� �

þDt,

(A 2)

where Ex denotes the expectation of X(t) with X(0) = x
and t ^ tM ¼ min {t, tM}. By rearranging terms in (A 2) and
dividing by t, C, it follows that

Ex
1
t

ðt^tM
0

V(X(s))ds
� �

� V(x)
Ct
þD

C
: (A 3)

Then by the monotone convergence theorem, taking lim
for M→∞ on both sides in (A 3) gives that

lim
M!1

Ex
1
t

ðt^tM
0

V(X(s))ds
� �

¼ Ex
1
t

ðt
0
VðXðsÞÞdsÞ

� �
� VðxÞ

Ct
þD

C
:

Then the ergodic theorem and Fatou's lemma apply for t→∞
to conclude that

P
x[Nd V(x)p(x) � D=C. Since V(x) ¼ ekxk1 ,

any moment of π is finite. B
Appendix B. Stationary distribution
Proof of theorem 4.2. Under the assumption of equal outflow
rates, the process X(t) that counts the molecules of each
species is lumpable on the partition {En}n[N, where
En ¼ {a [ Nd:

Pd
i¼1 ai ¼ n}.

The lumped process X(t) ¼Pd
i¼1 Xi(t) has Poisson station-

ary distribution ν(n) with intensity (4.2). As stated earlier, the
stationary distribution Π(a) factorizes as Π(a) = π(a|n)ν(n).
Under the given assumptions on the parameters, π(a|n)
solves the equation, similar to (3.7),

Rn ¼ Ln�1 þ Ln þ Lnþ1, (B 1)

where

Rn ¼ p(ajn)
Xd
i¼1

li þ dnþ
Xd
i¼1

X
j=i

kaiaj

2
4

3
5,

Ln�1 ¼ dnPd
i¼1 li

Xd
i¼1

p(a� eijn� 1)li,

Ln ¼
Xd
i,j¼1

p(a� ei þ ejjn)k(ai � 1)(aj þ 1)

and Lnþ1 ¼
Pd

i¼1 li
(nþ 1)

Xd
i¼1

p(aþ eijnþ 1)(ai þ 1):

The proof now proceeds by showing that the ansatz
π( ·|n) specified by equation (4.4) solves equation (B 1).
First, we note that if the ansatz is true, then the following
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recurrence relations hold:

p(ajn) ¼ 1
nþ 1

Xd
i¼1

(ai þ 1)p(aþ eijnþ 1),

p(a� eijn� 1) ¼
ai(n� 1þ

Xd

i¼1 ai)

n(ai � 1þ ai)
p(ajn)

and p(a� ei þ ejjn) ¼
ai(aj þ aj)

(aj þ 1)(ai � 1þ ai)
p(ajn):

9>>>>>>>>>>=
>>>>>>>>>>;

(B 2)

Applying (B 2) and dividing by π(a|n) in (B 1) we get

dnþ
Xd
i¼1

X
j=i

kaiaj ¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

X
j=i

kai(ai � 1)(aj þ aj)
ai � 1þ ai

: (B 3)

By fixing ai = n, the following condition is necessary:

d(n� 1þ ai) ¼ d n� 1þ
Xd
i¼1

ai

 !
liPd
i¼1 li

þ k(n� 1)
X
j=i

aj: (B 4)

If we further set n = 1, we get

liPd
i¼1 li

¼ aiPd
i¼1 ai

: (B 5)

Moreover, if we take equation (B 4) and sum over all i = 1,…,
d, we get

(d� 1)d(n� 1)þ d
Xd
i¼1

ai ¼ d
Xd
i¼1

ai þ k(n� 1)(d� 1)
Xd
i¼1

ai,

which further implies

Xd
i¼1

ai ¼ d

k
: (B 6)

Together with equation (B 5), this implies

ai ¼ dli

k
Pd

i¼1 li
: (B 7)

Taking again equation (B 3), we can manipulate the third
summand on the right-hand side (r.h.s.) in order to recast the
equation into the following form:

dn ¼ �
Xd
i¼1

X
j=i

kaiaj þ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

X
j=i

kai(ai � 1þ ai)(aj þ aj)
ai � 1þ ai

�
Xd
i¼1

X
j=i

kaiai(aj þ aj)
ai � 1þ ai

:

In this way, the fraction in the third summand on the r.h.s.
can be simplified, and part of what remains cancels out
with the first summand of the same side, getting

dn ¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

X
j=i

kaiaj �
Xd
i¼1

X
j=i

kaiai(aj þ aj)
ai � 1þ ai

¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

Xd
j¼1

kaiaj �
Xd
i¼1

kaiai

�
Xd
i¼1

Xd
j¼1

kaiai(aj þ aj)
ai � 1þ ai

þ
Xd
i¼1

kaiai(ai þ ai)
ai � 1þ ai

:

In the first summand on the last line, we can collect all terms
that do not depend on the index j, getting

dn ¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

Xd
j¼1

kaiaj

�
Xd
i¼1

kaiai � nþ
Xd
i¼1

ai

 !Xd
i¼1

kaiai

ai � 1þ ai

þ
Xd
i¼1

kaiai(ai þ ai)
ai � 1þ ai

,

and manipulating further the last summand, we find

dn ¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

Xd
j¼1

kaiaj

�
Xd
i¼1

kaiai � nþ
Xd
i¼1

ai

 !Xd
i¼1

kaiai

ai � 1þ ai

þ
Xd
i¼1

kaiai(ai þ ai � 1)
ai � 1þ ai

þ
Xd
i¼1

kaiai

ai � 1þ ai
:

Finally, cancelling the third summand on the r.h.s. with the
sixth and by combining the fourth with the last, we get

dn ¼ d(n� 1þPd
i¼1 ai)Pd

i¼1 li

Xd
i¼1

liai
ai � 1þ ai

þ
Xd
i¼1

Xd
j¼1

kaiaj �
�
nþ

Xd
i¼1

ai � 1
�Xd

i¼1

kaiai

ai � 1þ ai
:

(B 8)

Now, using (B 6) and (B 7), we have

Xd
i¼1

kai
Xd
j¼1

aj ¼ nd

and

dPd
i¼1 li

Xd
i¼1

liai
ai � 1þ ai

¼
Xd
i¼1

kaiai

ai � 1þ ai
,

making equation (B 8) identically satisfied. B
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Appendix C
Proof of theorem 4.3. We first rewrite equation (B 1), where the
κij are set to zero for all j≠ (i + 1)d and to a constant value κ
otherwise. We get the condition

Rn ¼ Ln�1 þ Ln þ Lnþ1, (C 1)

where

Rn ¼ p(ajn)
Xd
i¼1

li þ dnþ
Xd
i¼1

kaia(iþ1)d

" #
,

Ln�1 ¼ dnPd
i¼1 li

Xd
i¼1

p(a� eijn� 1)li,

Ln ¼
Xd
i¼1

p(aþ ei � e(iþ1)d jn)k(ai þ 1)(a(iþ1)d � 1)

and Lnþ1 ¼
Pd

i¼1 li
(nþ 1)

Xd
i¼1

p(aþ eijnþ 1)(ai þ 1):
We now note that, if the uniform ansatz is true, the following
recurrence relations also hold:

p(aþ eijnþ 1) ¼ nþ 1
nþ d

p(ajn)

and p(a� eijn� 1) ¼ nþ d� 1
n

p(ajn):

Plugging the ansatz (4.7) and these recurrence relations into
(C 1), we get that equation (C 1) holds if and only if

dnþ
Xd
i¼1

kaia(iþ1)d ¼ d(nþ d� 1)þ
Xd
i¼1

k(ai þ 1)(a(iþ1)d � 1):

This simplifies to 0 = δ(d− 1)− κd. Such a condition is identi-
cally satisfied under the hypothesis of the theorem which
guarantees

k ¼ d� 1
d

d: B
7:20200243
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