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Abstract 
In resistance spot welding, the quality of welds is not only affected by the correct design of the welding cycle, 
but also by the electrode degradation that occurs over time. This work proposes a novel approach to indirectly 
monitor the electrode degradation during welding by analyzing the electrode displacement signal from a non-
contact sensor embedded in the welding machine and the electrode tip shape obtained from carbon imprint 
tests. As a result of an experimental campaign involving more than 1200 weld spots, the electrode speed during 
the final hold stage has been determined as the most explanatory feature describing the electrode displacement. 
Based on the mechanical strength of spot welds, the electrode contact face area has been defined as the most 
representative feature characterizing electrode degradation. A regression analysis has been carried out to infer 
a relationship between the electrode speed and the contact area representative of tool wear. A Neural Network 
has been built to use some features extracted from the electrode displacement signals to predict the contact 
area and thus indirectly the electrode degradation. 

 

Keywords: Resistance Spot Welding, Electrode Degradation, Electrode Displacement, Wear Monitoring, 
Neural Network 
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1. Introduction 
Resistance Spot Welding (RSW) is a joining technique commonly used in many industrial fields because of 
its easiness, automatability, and low production costs [1]. Although these advantages, the assessment of the 
quality of spot welds poses some issues because of the complexity of the joining process and the presence of 
several interacting factors, including the chemical composition of the sheet stack, electrode wear, machine 
compliance, and so forth. Moreover, the non-direct visibility of the joint, because the weld nugget remains 
inside the sheet stack, makes necessary time-consuming experimental campaigns and destructive tests to 
evaluate joint quality, with an economic loss for companies [2]. Therefore, considerable attention has been 
devoted to monitoring the welding process to gain information contained in the welding signals (e.g., welding 
voltage and power, electrode displacement, dynamic resistance of the sheet stack) to control the process, ensure 
quality welds, or predict in real-time nugget size and mechanical strength of spot welds.  

Zhao et al. [3] used some features extracted from the electric power signal to feed a Neural Network (NN) and 
predict the nugget size of spot welds. X. Wan et al. [4] built a NN based on the features extracted from voltage 
signal to predict different quality levels (e.g., weld strength and nugget size) of spot welds. The same authors 
[5] also used a NN to predict both the nugget dimension and the mechanical strength of spot welds based on 
some features extracted from the electrical resistance signal. Other works have also been conducted for weld 
quality prediction [6] [7] by analyzing the electrode displacement during welding. Y.S. Zhang et al. [8] used a 
neuro-fuzzy system to manage the welding current to balance the electrode wear and, hence, keep a constant 
joint quality (i.e., similar nugget size and mechanical strength) over time. Xia et al. [9] found a clear 
relationship between the abrupt change of electrode displacement during the welding expulsion and the 
corresponding amount of expelled material. L. Zhou et al. [10] have employed two different adaptive control 
strategies by using respectively the electrode displacement signal and the dynamic resistance signal with the 
aim to monitor the process in non optimal welding conditions. When the weld spot was carried out close to the 
sheets edge, as well as when there was a gap between the sheets to be welded,  the control strategy by means 
of electrode displacement signals outperformed the one with the dynamic resistance signal of the sheet stack. 
Zhao et al. [11] employed process signals to obtain the optimal values of several welding quality indexes, such 
as the nugget dimension, mechanical strength, electrode displacement peak, and stored energy in the joint 
before to reach the failure. 
 
All these works have assessed the spot weld quality regardless of electrode degradation. This phenomenon can 
be neglected for experimental tests where a limited number of spots are realized with unused electrodes, 
whereas it assumes notable importance on spot weld quality when electrodes are used hundreds of times, as it 
occurs in industrial production. In this case, electrodes are subjected to complex and different damage 
mechanisms, such as plastic deformation, pitting, creep, and thermal fatigue [12], because of the collective 
effects of elevated temperature, high mechanical pressure, and atomic diffusion between electrodes and sheets 
[13]. This leads to the degradation of electrodes with different macroscopic evidence. On one hand, the 
irreversible deformation of the electrode tips causes an increase of the face areas, which reduces current 
density. As a result, welding using a current value as designated when the electrodes were new will lead to 
substandard spots due to insufficient current density. On the other hand, electrode wear yields an irregular 
electric current distribution through the sheet stack that contributes to a worsening of the joint quality and 
reduces the repeatability of weld performances. For these reasons, electrode tip diameter and contact area are 
commonly accepted as parameters characterizing the electrode degradation [14]. Many works have focused 
attention on the electrode wear effect on weld quality, but often with a lack of accurate methodologies for a 
quantitative prediction of electrode degradation. Some authors have proposed some approaches to monitor the 
electrode deterioration through the analysis of the welding signals, including welding current, dynamic 
resistance, electrode displacement. L. Zhou et al. [15] exploited the similarity techniques among several 
electrical resistance curves over time for the detection of electrode deterioration. The evolution of the dynamic 
resistance signal over time has been associated with the different electrode wear stages by establishing a 
qualitative technique for the online monitoring of electrode degradation. Y.S. Zhang [16] used Statistical 
Process Control techniques applied to the electrode displacement signal for monitoring the stability of the 
RSW process during the electrode deterioration. Based on the variation of the electrode displacement curves, 
they also set a Neuro-Fuzzy control of the welding current to compensate for the electrode wear on weld 
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Fig. 1. Geometry of the truncated cone electrodes. 

 

An endurance test based on AWS D9.8 M standard has been performed to investigate the electrode 
degradation. Hundreds of spot welds were consecutively realized using the same welding cycle until the full 
damage of the electrodes, which was based on the results of the shear tension tests. The spot weld cycle used 
in the RSW tests is schematically displayed in Fig. 2. Previous pilot experimentation had been carried out to 
define the process parameters. 

 
Fig 2. Schematization of the spot weld cycle used in the experimental campaign. 

 

The endurance test was carried out by using 9 couples of overlapped sheets, namely panel weld, with a 300 
mm x 200 mm size, Fig. 3.  Each couple of sheets was spot welded along 9 rows of 15 points each. Overall, 
1215 spots were welded. The specified edge and weld spacing distances and the execution sequence were 
maintained on all the panel welds.  



5 
 

 

 
Fig. 3. Edge and weld spacing distances used on the panel welds for the endurance test according to the AWS D9.8 M standard. 

 

Overall, the procedure adopted during the welding campaign is described in the following: 

a) The initial contact area of the unused electrode tips was assessed through a carbon imprint test. In this test, 
a metal sheet wrapped in two paper layers was used. The outermost layer was made of black carbon paper, 
whereas the other one was blank paper.  A complete welding cycle was executed without flowing the electric 
current. The electrode imprints left by the carbon papers on the white one were used as a measure of the damage 
of the electrode faces. 

b) The zeroing of the electrode displacement signal was performed by closing with a little pressure, without 
the application of welding current, the electrodes against the sheet stack. The zero signal was defined when 
the electrode faces were in contact with the sheet surfaces. 

c)  The first spot weld was realized on the weld panel. After that, three successive spot welds were performed 
on overlapped strips to obtain three welded samples for the shear tension test. In this way, the mechanical 
strength of the weld spots obtained from unused electrodes could be determined. 

d) Further spot welds were realized on the overlapped sheet for the endurance test. Whenever a row of 15 spot 
welds was executed (Fig. 3), the electrode degradation was measured through the carbon imprint test by the 
imprints left on blank paper. After that, the endurance test could continue. Whenever a couple of overlapped 
sheets was welded (135 welds), three welded samples were prepared for the shear tension test. Thus, the 
mechanical strength of spot welds could be detected at different stages of electrode degradation.  

e) The above-mentioned procedures were repeated for each of the 9 pairs of welded panels.  

The shear tension samples were 30 mm x 100 mm, with an overlapping area of 30 mm according to the JIS Z 
3136 (Japanese Standards Association, 2018), Fig. 4. Shims on the sheets ends were used to avoid the bending 
of the weld panels during the experimentation. The shear tension tests were carried out with a crosshead speed 
of 10 mm/min by employing a standard testing machine. Shear tension strength has been evaluated as the 
maximum force reached during the test. The peak load has been considered as the parameter to evaluate the 
effect of electrode degradation on joint quality. The critical wear damage of electrode has been determined as 
soon as the strength of the spot welds reduced below a threshold value, identified as 80% of the initial peak 
load [14], [19]. 
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Fig. 4. Geometry of the shear tension samples according to JIS Z 3136 standard. 

The displacement of the moving electrode has been acquired by the non-contact sensor for all the spot welds 
performed in the endurance test. The post-processing of the electrode imprints and electrode displacement 
signals, the statistical analysis, and the learning algorithm, based on a Neural Network, used to monitor and 
predict electrode degradation, are discussed in the following paragraphs. 

 

3. Results and Data Analysis 
 

3.1 Shear tension tests 
The results of the shear tension tests are displayed in Fig. 5. Three colors (black, blu, and red) have been used 
to discriminate the weld spots with different mechanical properties as a function of the number of welds. The 
colored points have also been used in the figures that follow in the main text. Black dots highlight the region 
where the mechanical strength of the spot welds is always over the minimum shear strength value, 8 kN, and 
with repetitive values (0-800 range). Blue dots describe a transition zone where the weld spots start to show 
less repeatability with the occurrence of a noteworthy lowering of the weld strength (800-1000 range), with 
the occurrence of the first weld spot with shear strength lower than the minimum value. Finally, red dots mark 
an unstable welding process characterized by high variability of the strength values, often below the minimum 
shear strength. In this region, the electrode wear is such as to produce undersized welded nugget, often with 
local unwelded areas (1000-1245 range). 

 
Fig. 5. Shear tension strength of the welded spots at varying number of welds. 
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 Fig. 7. Geometrical features extracted from the electrode carbon imprint vs. the number of welds. 

 

All the geometrical features change continuously with the electrode degradation. The contact area increases 
over time because of the plastic deformation at elevated temperatures of the electrode face (Fig. 7a). Initially, 
the contact area increases with low variability and a steep rate, then, as the pitting zones formed and grew, the 
variability becomes larger whereas the rate reduces. The equivalent diameter has been directly computed by 
the contact area, so a similar behavior can be observed for this feature (Fig. 7b) and the major contact length 
(Fig. 7d). The perimeter and minor contact length of the electrode imprints show an overall increase, even if 
with a higher variability than the other geometrical features (Fig. 7c, Fig. 7e). The circularity factor constantly 
decreases until about 700 welds, and then it starts to show a variable trend (Fig. 7f). 

 
Fig. 8. Failure load of the welded joints vs. the electrode imprint features. 
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Fig. 8a displays the failure load of the spot welds as a function of the contact area. The mechanical strength 
values increase in variability when the contact area overcomes 62 mm2 (2.2 times greater than the initial contact 
area) and, for some weld spots, it can be observed a drop of their mechanical strength. It should be noted a 
clear distinction of the black dots from the others as for the shear tension values displayed in Fig. 5. The same 
tendency is for the equivalent diameter, Fig. 8b, since it is directly computed from the contact area. The other 
geometrical characteristics extracted from the electrode imprints, as displayed in Fig. 8c to Fig. 8f, do not 
evidence a clear transition between sounds joints and improper spot welds, being black, blue, and red dots 
overlapped in some regions of the graphs. Based on such considerations, the contact area can be regarded to 
be the geometrical characteristic of the electrode imprint more capable to describe the influence of the electrode 
degradation on the joint strength. Therefore, the contact area has been chosen as the wear indicator to estimate 
electrode degradation. Since the electrode face cannot be measured continuously during a real industrial 
process, this geometrical feature has been evaluated through the electrode displacement signal measured during 
the welding process. 

 

3.3 Electrode displacement processing 
Fig. 9 displays a typical electrode displacement curve (Fig. 9a) from the beginning of the current passage to 
200 ms after its shutdown (Fig. 9b). The electrode displacement signal is triggered by the welding current; 
therefore, the electrode signal is acquired as soon as the welding current starts to pass through the electrodes 
and the sheet stack. At that time, the electrodes are already pressed on the sheet stack because of the previous 
squeeze stage and, thus, the electrode displacement starts with a negative value. As the current rises, the region 
of the sheet stack crossed by the current increases in temperature and expands its volume. Such thermal 
expansion causes a lifting of the top electrode (i.e., the moving electrode) during the welding until it reaches a 
peak, which is related to the nugget size [22], [23]. Then, the temperature of the sheets reduces when the 
electric current drops, with a consequent volumetric contraction and reduction of the electrode displacement. 
It should be noted that the electrode displacement does not end up with the zeroing of the electric current 
because of the electrode indentation on the sheet surfaces.  

 
Fig. 9. A typical (a) electrode displacement curve with (b) the corresponding spot weld cycle. 
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Fig. 12. Scatter plots of the electrode wear indicator, i.e., the contact area, vs. the predictive variables. 

 

The scatter plots displayed in Fig. 12 confirm the relationship between the selected features extracted from the 
electrode displacement and the contact area. An increase in the contact area leads to a reduction of the 
maximum displacement and standard deviation. Conversely, the distance between the electrode displacement 
curves and the initial one increases, as shown by the scatter plot of the Euclidean distance in Fig. 12d. Both 
the average decreasing slope and the skewness show a clear relationship with the contact area. The standard 
deviation and the average decreasing slope are the electrode displacement features most correlated with the 
contact area, with a Pearson correlation coefficient of - 0.79 and 0.82, respectively. A statistical framework 
based on a regression analysis has been used to infer a relationship between the electrode wear indicator (i.e., 
contact area) and the electrode displacement curve. Moreover, a Machine Learning algorithm has been built 
to predict accurately the evolution of electrode contact area with the number of spot welds, based on some 
features extracted from the electrode displacement curve.  

 

3.4 Inferential analysis 
The purpose of the inferential analysis is to find an accurate mathematical model that can explain the 
relationship between predictive variables and a response variable. In this work, the candidate predictive 
variables are the statistical indexes extracted from the electrode displacement curve discussed in the previous 
paragraph, while the response variable is the contact area extracted from the electrode imprint images. From 
an inferential standpoint, the multicollinearity problem among predictors is an important issue; indeed, in the 
case of dependency among predictors, the explanation of the response variable would be assigned incorrectly 
to predictors. An adequate technique to address this issue is to define a correlation matrix involving the 
correlation coefficient computed for each pair of predictors to detect linear dependency on one another. Table 
1 displays the correlation matrix with the predictive and response variables obtained from the welding tests. 
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Fig. 13. Fitting of the contact area vs. normalized decreasing speed with the polynomial regression model. 

 

Fig. 14 displays the graphical residual analysis needed to check whether the preliminary assumptions about 
the linear regression are satisfied or not. In particular, the normal distribution of residuals and homoscedasticity 
are required. Fig. 14a shows the residuals over the number of observations, while Fig. 14b shows the residuals 
over the fitted values by the regression model. Both the scatter plots do not reveal any issue about the 
homogeneity of variance. Fig. 14c displays the histogram of residuals and Fig. 14d depicts the normal 
probability plot of residuals. It appears that the distribution of the residuals cannot be considered significantly 
different from the normal distribution, except for the extreme zones. 

 
Fig. 14. Graphical residual analysis. 
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3.5 Predictive analysis 
The purpose of the predictive analysis is to determine an algorithm that can predict accurately the electrode 
wear indicator through the electrode displacement signal. In PHM activity, Artificial Intelligence and Machine 
Learning algorithms are attracting a huge amount of interest both in industrial and academic fields [26]. The 
reason is the extraordinary predictive capabilities of such algorithms. Thus, a Machine Learning algorithm 
based on a Neural Network has been built to predict the wear indicator, the electrode contact area, by using all 
the selected features from the electrode displacement signal discussed earlier. Since the number of predictors 
and the number of observations used are quite limited, selecting a high number of neurons per layer and/or 
many layers would likely cause overfitting. For this reason, starting from a shallow Neural Network of one 
hidden layer and ten neurons, the optimal architecture was established by trial and error by changing both the 
number of neurons and the number of layers. The final NN architecture has involved two fully connected 
hidden layers and five neurons for each one. A sigmoid activation function has been used in hidden layers, 
whereas a linear activation function has been implemented for the output layer. A Bayesian regularization 
training function has been used to minimize the combination of the squared errors and weights, and to ensure 
good generalization properties in the test set. The dataset involves the inspected weld spots, split in 75% for 
the training set and 25% for the test set. The NN architecture is represented in Fig. 15. 

 
Fig. 15. Neural Network architecture. 

 

The performances of the Neural Network are displayed in Fig. 16 and summarized in Table 3. The error has 
been evaluated as the difference between the observed value (i.e., electrode contact area) and predicted value, 
whereas the relative error has been computed as the ratio of the error and the observed value. 










