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a b s t r a c t

The management of integrated energy systems in buildings is a challenging task that classical control
approaches usually fail to address. The present paper analyzes the effect of the implementation of a
reinforcement learning-based control strategy in an office building characterized by integrated energy
systems with on-site electricity generation and storage technologies. The objective of the proposed
controller is to minimize the operational cost to meet the cooling demand exploiting thermal energy
storage and battery system considering a time-of-use electricity price schedule and local PV production.
Two control solutions, a Soft-Actor-Critic agent coupled with a rule-based controller, and a fully rule-
based control strategy, used as a baseline, are tested and compared considering various configurations
of battery energy storage system capacities, and thermal energy storage sizes. Results show that the
proposed control strategy leads to a reduction of operational energy costs respect to the fully rule-
based control ranging from 39.5% and 84.3% among different configurations. Moreover the advanced
control strategy improves the on-site PV utilization leading to an average increasing of self-sufficiency
and self-consumption of 40% among different scenarios. The baseline control strategy results more
sensitive to the size of storage whereas the proposed control achieves high savings also when smaller
capacities of battery energy storage systems and sizes of thermal energy storage are implemented. The
outcomes of the work prove the impact of implementation of advanced control as a way to optimize
energy costs with a comprehensive view of the whole integrated energy system considering both
thermal and electrical energy storage operation.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Building sector accounts for 40% of global energy consump-
ion playing a pivotal role in the energy transition and global
arming mitigation processes (IEA, 2019). Renewable Energy
ources (RES), especially photovoltaic (PV) systems, have been
idespread adopted and promoted to sustain the growing en-
rgy demand in buildings (Martinopoulos et al., 2018). Due to
eather-dependent nature of RES, electrical storage solutions
ave been introduced to increase Self-Consumption (SC) of on-
ite renewable energy production providing benefits to both end-
sers and grid operators (Baniasadi et al., 2020).
However, Battery Energy Storage System (BESS) (e.g., Lead-

cid and Li-ion batteries) are characterized by high investment
ost making their adoption unfeasible for many applications (Sha-
ani and Mahmoudimehr, 2018) if incentives provided by pol-
cymakers are not foreseen (Koskela et al., 2019). Nevertheless,
ESS improves PV energy utilization, by addressing the problem
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of the solar energy flexibility. On the other hand, Thermal Energy
Storage (TES) proved to be a sustainable solution making the
Heating, Ventilation and Air Conditioning (HVAC) systems more
flexible to time-varying electricity prices improving capabilities
of the system to shift its demand patterns (Das et al., 2018;
Terlouw et al., 2019).

Considering the dependency of BESS capacity and operation
strategy from building electrical demand patterns, coupling BESS
with TES can lead to several economical and environmental ad-
vantages compared to the implementation of only BESS (Bani-
asadi et al., 2020).

In this context, the identification of optimal management
strategies capable to increase the profitability of storage systems
is a key aspect to address. The optimal operation of storage sys-
tems in buildings with Integrated Energy Systems (IES) is affected
by exogenous factors such as weather, energy demand patterns
and electricity prices which all vary over time. Classical control
strategies are usually not able to consider trade-offs between
multiple and contrasting objectives, such as thermal comfort,
energy consumption, energy flexibility and Self-Sufficiency (SS),
and are not capable to adapt to an evolving system characterized
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Nomenclature

∆t Control sampling time (h)
η Efficiency of photo-voltaic module ()
ηrte Round-Trip efficiency of battery ()
Ûop Global heat exchange coefficient of

opaque envelope (W/m2 K)
Ûtr Global heat exchange coefficient of

transparent envelope (W/m2 K)
Cbuy Electricity buying price (e/kWh)
CB Nominal capacity of battery (kWh)
Csell Electricity selling price (e/kWh)
Edem Building electrical energy demand

(kWh)
Egrid,buy Electricity bought from the grid (kWh)
Egrid,sell Electricity sold to the grid (kWh)
Gridfrac Fraction of electricity supplied by grid

()
PB,ch,max Maximum battery charging power (kW)
PB,ch Battery charging power (kW)
PB,dis,max Maximum battery discharging power

(kW)
PB,dis Battery discharging power (kW)
Pdem Building electrical load (kW)
PPV Photo-voltaic power generation (kW)
Qcap Capacity of chiller (kW)
Qd Building heat demand (kW)
SOCB State-Of-Charge of the battery ()
SOCT State-Of-Charge of the water storage ()
SOCB,max Maximum State-Of-Charge of the bat-

tery ()
SOCB,min Minimum State-Of-Charge of the bat-

tery ()
To Outdoor air temperature (◦C)
Ts Storage temperature (◦C)
Tch Chiller supply temperature (◦C)
Ts,max Storage temperature upper boundary

(◦C)
Ts,min Storage temperature lower boundary

(◦C)

Acronyms

HVAC Heating, Ventilation and Air Condition-
ing

RES Renewable Energy Sources
RBC Rule-Based Control
RL Reinforcement Learning
DRL Deep Reinforcement Learning
SAC Soft-Actor-Critic
DQN Deep Q-Network
MDP Markov Decision Process
POMDP Partially Observable Markov Decision

Process
DNN Deep Neural Networks

by dynamic boundary conditions, including grid requirements,
and constraints (May, 2019; Finck et al., 2018).

To overcome these limitations, researchers worldwide have
ecently focused their efforts in the development and implemen-
ation of advanced control strategies to improve the management
1551
DC Direct Current
AC Alternate Current
TES Thermal Energy Storage
BESS Battery Energy Storage System
SOC State-Of-Charge
TOU Time-Of-Use
SS Self-Sufficiency
SC Self-Consumption

of IES in buildings based on predictive architectures or opti-
mization processes. Comodi et al. (2016) assessed the viability of
introducing a Cold Thermal Energy Storages (CTES) for demand
side management strategies into an existing cooling system of an
institutional building under a Time of Use (ToU) pricing scheme.
The storage was charged during night time to exploit higher
chiller Coefficient of Performance (COP) and lower electricity
price. It was demonstrated that a CTES could increase the overall
energy efficiency and decrease the energy cost by being charged
during off-peak hours with a payback period between 8.9 and 16
years. Arteconi et al. (2015) analyzed a factory building equipped
with Heat Pump (HP) and TES. The TES was charged during
low price periods to cover the whole cooling demand during
occupancy periods. This strategy was able to save about 54% of
the electricity cost related to the cooling process. Ioli et al. (2015)
proposed a novel convex constrained optimization to optimize
the operational cost of cooling system coupled with a TES into
a single zone office building by controlling the storage operation
and zone temperature. The proposed approach achieved 14.8%
cost saving and 6.5% energy saving with respect to the strategy
where zone temperature is fixed. Other strategies have been
developed recently, as in Ren et al. (2021) that analyzed an IES
with an HVAC assisted by a photovoltaic thermal hybrid collector
and a TES. The results showed that using the PV panels to power
the heat pump to charge the TES provided additional energy
flexibility respect to the use of only Demand Side Management
(DSM) strategies. Comodi et al. (2015) managed the integration of
electrical and thermal storage into a nearly Zero Energy Building
(nZEB). Thermal flows were optimized by a Mixed-Integer Lin-
ear Programming (MILP) algorithm to reduce the grid exchange
electricity, while BESS were managed by a Rule-Based Control
(RBC). In that way, the building achieved an SS level of 100%
even though the cost of electrical storage did not justify the
investment. A fuzzy rule control logic was developed by Dim-
itroulis and Alamaniotis (2022) for the charging scheduling of
a BESS within an IES with renewable generation and Electric
Vehicle (EV). The results showed a reduction of the monthly bill
as compared to the linear optimization approach, and to an RBC.
Biyik and Kahraman (2019) proposed a Model Predictive Con-
trol (MPC) for an IES with HVAC system, renewable generation
and BESS to reduce the peak load. The controller provided an
average reduction of 23% in peak electrical demand compared
to a baseline where indoor temperature is kept fixed. Predictive
management for energy supply networks using PV, HP and bat-
tery units was developed by Wakui et al. (2019) by combining
two-stage stochastic schedule programming and RBC to reduce
operating cost. The proposed approach performed better than
the management based on the deterministic schedule planning
and the rule-based management without schedule planning. Re-
cently, Reinforcement Learning (RL) has gained popularity with
the promise to revolutionize building control applications (Wang
and Hong, 2020). In opposition to well-established model based
approaches (i.e., model predictive control), in which a model of
the system is embedded within the controller (Serale et al., 2018;
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arragona et al., 2020), RL follows a model-free approach where
n agent directly learns the optimal control policy by interacting
ith the system through a trial-and-error approach (Sutton and
arto, 2018). In the field of building energy management, RL
as successfully applied to control TES systems (Liu and Henze,
007; Henze and Schoenmann, 2003), thermostat set-points (Bar-
ett and Linder, 2015), lighting devices (Park et al., 2019) and
ESS (Abedi et al., 2022).
Deep Reinforcement Learning (DRL) couples RL framework

ith the feature extraction capabilities of Deep Neural Networks
DNN), enhancing the capability to solve complex control prob-
ems (Mnih et al., 2015). With regard to building control, DRL
as applied for the management of supply water temperature
et-point control (Brandi et al., 2020; Coraci et al., 2021), fan
egulation (Chu et al., 2021; Valladares et al., 2019), indoor tem-
erature set-point control (Du et al., 2021; Gao et al., 2019), TES
ystems both at single (Vázquez-Canteli et al., 2019; Wang et al.,
016) and multiple building level (Pinto et al., 2021).
Comprehensive review works recently published can support

he interested reader in discovering details on the potentiali-
ies of DRL applied to building energy management challenges.
n Vázquez-Canteli and Nagy (2019) was analyzed the application
f DRL to support Demand Response (DR) policies in buildings
ighlighting the lack of real-world case studies in the current
cientific literature. Han et al. (2019) focused on the application of
RL for controlling occupant comfort identifying the necessity to
ntroduce human-feedback within the control loop. A DRL agent
as used by Sanaye and Sarrafi (2021) to control the operation of
he Combined Heat and Power (CHP) generation unit and the gas-
ired boiler in an hybrid system with PV panels, solar collectors,
ind turbines, a hot water storage tank and batteries. This control
trategy reduced the operational cost of a residential complex
ith respect to two different RBC strategies. Anvari-Moghaddam
t al. (2017) proposed an energy management based on a multi-
gent system for IES in a microgrid to reduce operational cost
nd to ensure user’s needs. Particularly, a Bayesian Reinforce-
ent Learning (BRL) control was used for the battery operation,
hich was coordinated with other agents in charge of collect-

ng and sharing information, making predictions of renewable
eneration and providing computation services. Another work
ocused on the use of a Q-Learning algorithm to reduce the bill
f a smart-building with PV generation, electrical storage and EV
tation (Kim and Lim, 2018). Wang and Hong (2020) discussed
ignificant findings related to utilization of prediction of external
isturbances, the definition of the control actions and the lack
f real implementation of DRL strategy in buildings. Moreover,
rom the same work (Wang and Hong, 2020) emerged the lack of
tudies in which both thermal and electrical storage are coordi-
ated simultaneously with an advanced control strategy. In their
nalysis, Kathirgamanathan et al. (2021) emphasized the lack of
tudies on data-driven controllers considering multiple source of
nergy flexibility in buildings including BESS, TES and local re-
ewable generation. Considering these aspects, the present work
nalyzes the application of a control strategy based on a DRL
gent coupled with a RBC to optimally manage the IES of an office
uilding characterized by on-site PV generation and the simulta-
eous presence of BESS and TES equipment. The works intends to
ighlight the impact of advanced control strategies on the storage
peration in integrated energy systems also considering different
onfigurations of BESS capacities and TES sizes.

.1. Contribution and structure of the work

The management of storage systems is a key factor to consider
n buildings with IES to enhance energy flexibility and reduce
perational costs. Traditional controls may behave sub-optimally
1552
due to their lack of adaptability and their reactive approach.
The design and implementation of storage solutions, including
BESS and TES, is usually performed by different actors which are
also responsible of the definition of their control logic. Failure to
consider proper control strategies in the design stage may result
in oversized storage systems and consequently higher investment
costs (Liu et al., 2020; Sharma et al., 2019).

The introduction of advanced control strategies based on a
predictive and adaptive approach can enable a better manage-
ment of multiple storage technologies in buildings. These con-
trollers, thanks to their predictive and adaptive nature, can in-
crease the effectiveness of storage equipment during building
operation making competitive also solutions characterized by
relatively low sizes and capacities. Accounting for the effect of
advanced control strategies in the design stage can limit invest-
ment costs by adopting storage solutions that otherwise could
be considered not suitable. For instance, in Medved et al. (2021)
the authors highlighted that most approaches to storage system
sizing do not take into account storage daily performance which
could contribute to determine appropriate sizes and capacities of
storage equipment.

With this in mind, the present paper aims to analyze the per-
formance of a DRL strategy coupled with a RBC against a fully RBC
to manage the operation of a chiller system coupled with a cold-
water storage tank for an office building with on-site electricity
generation and battery system. The analysis was carried out for
multiple configurations of the energy systems including different
sizes of TES and different capacities of BESS. A state-of-the-art
DRL algorithm, namely Soft-Actor-Critic (SAC), was implemented.
SAC proved to be a promising solution in building energy man-
agement applications thanks to its innovative formulation and
rapid convergence time (Biemann et al., 2021). While most of
papers make use of Deep Q-Network (DQN) framework to handle
discrete action spaces, this paper exploits a novel formulation of
the SAC algorithm recently introduced in Christodoulou (2019)
capable to deal with discrete action settings. The analysis was
carried out in a simulation environment which employs Ener-
gyPlus (Crawley et al., 2000) as dynamic simulation software
coupled with Python.

On the basis of the reasoning presented in this section, the
main contributions of the present paper can be summarized as
follows:

• Demonstrate the energy and cost benefits of adopting ad-
vanced DRL-based control strategies in IES characterized by
BESS and TES equipment over classical RBC approaches.

• Evaluate the flexibility potential and the storage manage-
ment which can be achieved with the adoption of advanced
control strategies integrating a comprehensive management
of the whole IES.

• Analyze the effectiveness of advanced control strategies
with the variation of sizes of TES and capacities of BESS
equipment highlighting the impact of the control also on the
selection of storage in buildings.

• Adopting a novel formulation of the SAC algorithm specif-
ically designed for discrete control actions differently from
the commonly implemented DQN framework.

The paper is organized as follows: Section 2 introduces the
case study and the control problem, Section 3 describes the
methodological framework and provides information about DRL
control, Section 4 reports implementation details of the different
control strategies and configuration of the energy system. Sec-
tion 5 reports the results obtained while the last two sections
include discussion and conclusions.
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Fig. 1. Schematics of the electrical and cooling systems of the analyzed case study.
. Formulation of the control problem

In the present work, the effect of the adoption of advanced
ontrol strategies on the operation of IES in buildings considering
ifferent configurations of storage was evaluated for an office
uilding located in Turin, Italy. The building is equipped with a
ES system (i.e., a cold water storage tank) that is operated as a
uffer between the building and an air-to-water chiller. The IES
lso includes a mono-crystalline silicon PV module and a lithium-
on electrical battery (i.e. BESS). Further, technical specifications
f the components is provided in Section 4.
Fig. 1 shows a simplified schema of the electrical and cooling

ystems of the analyzed case study. The building electrical load
Pdem) is determined by the electrical demand of the chiller and
irculation pump. The electrical system is formed by a Direct
urrent (DC) bus and Alternate Current (AC) bus interfaced by a
ono directional AC/DC inverter. On the DC bus a PV system and
BESS are installed. The PV and the battery are connected to the
C bus by a DC/DC converter. Grid is not allowed to charge the
ESS according to the normative of many European Countries, but
t is used to assist in matching electricity demand of the building
nd renewable power generation at each time-step (Cui et al.,
017). At each step if local RES production is not zero the PV
njects energy into the system according to the following priority:
i) building, (ii) BESS, (iii) grid.

The electric chiller supplies cold water at constant set-point
alue (Tch). The thermal storage can be operated in a temperature
ange between Ts,min and Ts,max. The thermostatic control of the
uilding was not considered in this application as the building
ooling demand is considered as an external disturbance of the
ystem along with weather conditions and electricity prices. To
his purpose building cooling demand is evaluated in advance
o maintain fixed conditions of indoor air temperature and rel-
tive humidity given the influence of weather and occupancy
chedules.
The aim of the controller is to minimize the electricity cost

f the chiller and circulation pump by managing three different
ooling operation modes and BESS operation at each time step.
The three different cooling operation modes showed in Fig. 2

re (i) charging mode, where cooling energy is provided to both
torage tank and building (if requested) simultaneously, (ii) dis-
harging mode, where cooling energy is provided to the building
o meet the demand only through the storage and (iii) chiller
1553
cooling mode, where cooling energy is provided to the building
exclusively through the electric chiller.

Discharging mode and chiller cooling mode were introduced
considering that the system configuration was not conceived to
provide cooling to the building via two separate sources at the
same time. However the two modes were introduced to allow the
control agent to select during building operation at each control
step the one that is optimal according to boundary conditions
(i.e. employ chiller also during high price periods due to high PV
production).

The proposed control strategy couples DRL to manage the
cooling system operation with RBC which is employed to manage
the BESS. Conversely, the baseline employs a fully RBC strategy to
manage both BESS and cooling system operation. The case study
was designed to assess the effect of adopting advanced control
strategies also considering the performance for different sizes and
capacities of TES and BESS, respectively.

3. Methodology

This section describes the methodological steps and the main
methods adopted in the present work. The case study introduced
in Section 2 was used as a testbed to assess the effectiveness of
an advanced control strategy consisting of a DRL coupled with a
RBC for an office building with IES.

A DRL control agent was developed and trained in order to
identify the optimal control policy for the management of the
cooling modes. The performance of the proposed control strat-
egy was evaluated against a baseline consisting of a fully RBC
for different configurations of storage systems. A different DRL
control agent was trained for each configuration resulting from
the combination of BESS capacity and TES size.

3.1. Design of baseline and proposed control strategies

As introduced in the previous section, the baseline controller
employs a fully RBC approach. This strategy was conceived to
simulate the performance of classical control approaches ap-
plied to manage TES and BESS as two distinct systems. Two
RBC strategies were separately designed to control the cooling
operation modes and BESS without sharing mutual information
between the two. This hypothesis was deemed legitimate since
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Fig. 2. Schematics of the three different modes of the cooling system analyzed.
I
w
a

m
m
t
p
u

(
a
c
f
d
d
o
c
h
i

ESS and TES equipment are usually implemented by different
takeholders.
On the other hand, the proposed controller employs an ap-

roach where DRL control agent was coupled with an RBC strat-
gy. The BESS system was managed by the same RBC strategy em-
loyed by the baseline controller. Conversely, the management of
ooling operation modes which involves TES was implemented
hrough an advanced DRL controller which exploits also informa-
ion on PV production and BESS status. The reason behind the
hoice to couple SAC with an RBC controller is that this latter
trategy is very effective in managing BESS considering building
emand, electricity price, and PV production (Amato et al., 2021;
uusu et al., 2019). However, the management of cooling modes
equires an advanced controller capable of considering also the
oundary conditions determined by the PV system and the BESS
n selecting the optimal action. Thanks to this approach, the
roposed controller operates with a comprehensive perspective
f the whole energy system.

.2. Deep reinforcement learning control

In the RL framework, a control agent learns the optimal control
olicy by interacting with the controlled environment through a
rial-and-error process. RL can be mathematically formulated as a
arkov Decision Process (MDP), which is normally characterized
y a 4-values tuple, including: state, action, transition probabilities
nd reward function. The state is a mathematical representation
f the controlled environment, including the set of features that
RL agent receives in order to determine a control action, which

s defined as observation. If the observation is a subset of the state,
his results in a Partially Observable Markov Decision Process
POMDP). The action corresponds to the control signal that the
gent has identified as the best to be applied to the system. The
ransition probabilities defines the probability that the environ-

′
ent has to move from a certain state (s) to another (s ), if a d

1554
defined action a is applied to the system. The reward function
measures the control performance of the agent in achieving the
desired objectives.

The final goal of an RL control agent is to efficiently learn the
optimal control policy (π ). The control policy maps the relation-
ships between state of the environment and the control action
to maximize the cumulative sum of future rewards (Sutton and
Barto, 2018).

There are two methods in the RL framework to identify the
optimal control policy: value-based and policy-based. Value-based
methods aim at learning the value function, which estimates the
effect and benefit of taking a specific action a starting from state
s. Policy-based methods do not employ the value function as a
proxy, but attempt to learn directly the optimal control policy π .
n general, value-based methods are more simple and efficient,
hile policy-based methods have better convergence properties
nd are capable to handle highly stochastic continuous problems.
Another characterizing aspect of RL algorithms is the policy

ethod, which can be divided between on-policy and off-policy
ethods. On-policy RL algorithms attempt to directly improve

he policy that is used by the agent to generate decisions. Off-
olicy methods evaluate a policy that is different from the one
sed to select actions (Sutton and Barto, 2018).
In this work a modified version of SAC was implemented

Christodoulou, 2019). SAC is a state-of-the-art off-policy DRL
lgorithm which showed excellent performance in solving several
ontrol tasks (Haarnoja et al., 2019). SAC was originally developed
or continuous action spaces, thus, a modified version, derived for
iscrete action settings, was implemented to solve the proposed
iscrete control problem. The discrete SAC algorithm was chosen
ver the DQN algorithm, which is normally used for discrete
ontrol problem. The reason lies in the lower dependence on the
yperparameters tuning of discrete SAC algorithm while achiev-
ng state-of-art performance in terms of sample efficiency. Fig. 3

escribes the discrete SAC algorithm implemented in this work.
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Fig. 3. Discrete SAC schema.
The figure shows that the Actor-Critic architecture employs
wo function approximators. The Actor has the aim to determine
he optimal action for a given specific state of the controlled
nvironment (policy-based), while the Critic evaluates the deci-
ions made by the actor (value-based). The actor and the critic
re parametrized as DNN. The actor is employed in both the
ontrol loop and learning loop while the critic is employed only
uring learning. This framework is generally coupled with an off-
olicy implementation, enabling the re-utilization of the previous
xperience collected by the agent in order to improve the control
olicy (i.e. replay memory). Moreover, the SAC policy is trained to
aximize the expected sum of future rewards and the expected
ntropy of the policy at the same time, as defined in Eq. (1):

∗
= argmaxπφ

E[

∞∑
t=0

γ t (rt + αHπ
t )] (1)

here Hπ
t is the Shannon entropy term, which is a constant

erm which associates to each state a probability distribution over
he possible actions. Through this approach, the agent has the
ossibility to explore during the training phase, while, during the
eployment phase, the mean value of the distribution is used to
elect deterministic actions, ensuring a robust control policy. The
erm α is the entropy regularization coefficient which indicates
he relative importance of the entropy term with respect to
eward term. γ represents the discount factor for future rewards
nd rt is the reward obtained by the agent at the timestep t.
In the modified version of the SAC algorithm the critic net-

ork, also called soft-Q network, outputs directly the Q-value of
ach possible action. The parameters of the critic network are
pdated in order to minimize the error JQ expressed as follows:

Q (θ ) = E(st ,at )∼D[
1
2
(Qθ (st , at ) − (r(st , at )

+ γ Est+1∼p(st ,at )[Vθ (st+1)]))2] (2)

where D is the replay buffer and Vθ st+1 is estimated by means
of a target network. In practice two different critic networks are
employed and the minimum of their two outputs is employed to
compute the above objective. The actor network, also called pol-
icy network, directly outputs the action probabilities. The losses
1555
employed to update the policy network are calculated according
to the following formula:

Jπ (φ) = Est∼D[πt (st )T [αlog(πφ(st )) − Qθ (st )]] (3)

In the following sub-sections the design of the action-space, of
the reward function and of the state space are introduced along
with the training strategy employed.

3.2.1. Action-space design
The control action determines the operation mode of the cool-

ing system at each time step. Since three operation modes were
defined for the proposed case study, the action-space was de-
signed as a discrete space as follows:

A(t) = [0, 1, 2] (4)

where 0 correspond to discharging mode, 1 to chiller cooling
mode and 2 to charging mode as described in Section 2.

3.2.2. Reward function design
The reward measures the performance of the controller after

selecting an action at each time step. The controller operates
with the aim to minimize the energy cost related to the energy
exchanged between the electrical grid and the system (Egrid).
Electrical energy can be imported from the grid when there is
no PV power generation and the BESS system is out of charge.
Electrical energy is injected to the grid when PV power generation
excesses the building electrical demand and the BESS system is
fully charged. The electrical energy exchanged with the grid was
defined as negative when it is imported from the grid and positive
when injected. The reward function was defined as follows:{
r(t) = βEgrid(t) · Cbuy(t) if Egrid(t) < 0
r(t) = βEgrid(t) · Csell(t) if Egrid(t) > 0

(5)

where Cbuy(t) and Csell(t) are defined according to the schedule
price for buying and selling electricity and β is a factor introduced
to weight the magnitude of the reward, namely reward scale, and
it is considered an hyperparameter of the algorithm.
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.2.3. State-space design
The state-space includes all the variables employed by the

AC control agent to determine at each time step the optimal
ontrol action capable to maximize the stream of future rewards.
oreover, the state-space may include information relative to
istorical values of the variables describing the behavior of the
ystem and future values of external disturbances. In this work,
nformation about historical values were introduced to account
or slow-responsive thermal dynamics of the components of the
ontrolled system (Wang and Hong, 2020). At the same time,
uture values of external disturbances were introduced since they
an provide crucial information that the agent can leverage to
ptimally solve the control problem. In the present paper perfect
redictions of external disturbance were employed.
More detailed information on the variables included within

he state-space are provided in Section 4.

.2.4. DRL training
The control policy of the SAC agent was trained on a model

f the proposed case study described in Section 2. During the
raining process a specific period called episode was presented
ultiple times to the control agent in order to gradually improve

ts control policy by enabling the exploration of different trajec-
ories. At the end of this process the trained agent was statically
eployed on the same episode in order to evaluate its control
erformance. The static deployment of a SAC agent was achieved
y stopping the update of the parameters determining the control
olicy and employing the actor network to select the optimal
ontrol actions given the state of the environment.

.3. Design of BESS and TES configurations

Different configurations consisting in the combination of var-
ous volumes of the cold-water storage tank and nominal ca-
acities of the BESS were investigated. The aim is to find out
ow the proposed advanced control strategy can improve the
erformance with respect to a classical control strategy while
mplementing storage equipment with various sizes and capac-
ties. The objective is to evaluate if the introduction of advanced
ontrol strategies could support the introduction of equipment
haracterized by lower sizes and capacities. Thus, reducing the
nitial investment cost which is decisive to guarantee the spread
f the storage technologies.
More detailed information on the configurations of BESS and

ES are provided in Section 4.

. Implementation

The test facility analyzed in this work consists of two study
ooms, one control room and a technical room. The technical
oom is not served by the air-conditioning system and the storage
ank is placed within it.

The facility is a prefabricated building with a rectangular lay-
ut. The floor area is 196.3 m2 (11.25 × 17.45 m). The interior

gross floor conditioned area is around 96.8 m2. The ceiling height
is 2.8 m at the minimum and 3.7 m at the maximum above the
floor level, due to the different tilt angles of the roof, which are
13.4◦ on SE side and 15◦ on NW side. The features of the building
envelope are reported in Table 1.

The chiller has a reference capacity Qcap of 12 kW and refer-
nce COP of 2.67. The reference COP is provided by the employed
hiller model provided by EnergyPlus and it is calculated consid-
ring a reference leaving chilled water temperature of 6.67 ◦C

and a reference entering condenser fluid temperature of 35 ◦C.
The design water mass flow rate during charging phase (ṁS) is
.2 kg/s while during discharging phase (ṁ ) is 0.35 kg/s. This
S
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Table 1
Features of the building envelope.
Feature Value

Conditioned floor area 96.8 m2

Conditioned volume 501 m3

Envelope surface/conditioned volume ratio 0.85 m−1

Transparent/opaque envelope surface ratio 6.6%
Opaque envelope surface 400 m2

Ûop 0.16 W/m2 K
Ûtr 0.55 W/m2 K

latter value corresponds to the sum of the design mass flow rates
of the three air-conditioned zones. The supply water temperature
at the outlet of the chiller was set equal to 7 ◦C. The TES operates
in the range between 10 ◦C and 18 ◦C which correspond to a
state-of-charge (SOCT ) of 1 and 0, respectively.

The HVAC system serving the building can meet the cooling
demand through the electric chiller or the TES. The building
cooling demand was considered as an external disturbance of the
system and was calculated through EnergyPlus considering an
indoor air temperature of 26 ◦C and a relative humidity of 55%
during occupancy periods which occur between 09:00 and 18:00
from Monday to Friday. During these periods, the zones were
supposed to be occupied at their maximum capacity (i.e. 3 people
for the control room and 10 people for the two study rooms).
No regular occupancy was expected for the technical room. The
air infiltration rate was set to 0.15 h−1, a typical value for office
buildings. The air ventilation rate for the control room and the
study rooms was set to 10 L/s per person resulting in 30 L/s and
100 L/s, respectively.

The price of the electrical energy drawn from the grid to
operate the chiller unit and auxiliary equipment is based on
a Time-Of-Use (TOU) tariff structure commonly implemented
in Italy. The weekly period is divided into low price, medium
price and high price periods, corresponding to 0.03 e/kWh, 0.165
e/kWh and 0.3 e/kWh respectively. The tariff rates of the elec-
tricity were designed in order to discriminate the values for the
optimization application starting from a real value of the high
price period. This approach has been found to be effective in
ensuring better discrimination of time periods of the day based
on the price of electricity providing the agent with faster con-
vergence to the optimal control policy. Specifically the low and
medium price values were chosen to be respectively 1/10 and 1/2
of the highest one. Table 2 reports a summary of electricity prices
used in this work.

The price of the electrical energy sold to the grid from the PV
overproduction was assumed equal to 0.01 e/kWh according to
data extracted from the Italian regulator.

The weather file used is the reference weather file (ITA
TORINO-CASELLE IGDG.epw) available in EnergyPlus for Torino,
Italy. Considering that the system under investigation involves
the optimization of a cooling system the simulation period was
limited from June to August. Both the control and simulation time
steps were set equal to 1 h.

The efficiency of mono-directional DC/AC was assumed to be
equal to 90% and the efficiency of DC/DC converters to 95%.

The experiments were carried out in a co-simulation envi-
ronment combining Python and EnergyPlus (Brandi et al., 2020).
Building dynamics and the cooling system were implemented in
EnergyPlus while the electrical system including PV and BESS was
developed in Python along with the different control strategies.
The interaction between Python and EnergyPlus was handled
through Building Control Virtual Test Bed (BCVTB) (Wetter, 2011).
Further details on the co-simulation environment are provided in

Section 4.6.
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Table 2
Details of electricity prices used in this work in e/kWh.
Day Hour of the day

00:00–07:00 07:00–08:00 08:00–19:00 19:00–23:00 23:00–24:00

Mon–Fri 0.03 0.0165 0.3 0.0165 0.03
Sat 0.03 0.0165 0.03
Sun 0.03
S
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Table 3
PV parameters.
Parameter Value

Nominal power 3 kW
Surface 22 m2

ηSTC 0.15
Tilt angle 33◦

Azimuth angle 116◦

4.1. Modeling of the PV system

The model of the PV system was implemented through a
ython class. Solar position was imported from the pvlib pack-
ge (Holmgren et al., 2018). A commercial mono-crystalline sili-
on photo-voltaic module was modeled in the proposed environ-
ent. The selected module has a specific power of about 80 W/m2

nd an efficiency (η) of 15% under standard conditions (solar
rradiance GSTC = 1000 W/m2, cell temperature TSTC = 25 ◦C,
ir Mass AMSTC = 1.5), as described by Durisch et al. (2007) and
eported in Eq. (6).

= f (G, AM, Tout ) (6)

The PV panels tilt angle has been chosen from the world
ataset provided by Jacobson and Jadhav (2018). Thus, the tilt
ngle was set to 33◦, whereas the azimuth is constrained by
he orientation of the test facility. These inputs along with solar
adiation and incidence angle allow to compute the PV power
eneration (PPV ) at each time-step which was calculated as the

product of the efficiency and incident solar radiation. Table 3
recaps the parameters of the PV module.

The nominal power of the PV system of 3 kW was chosen in
order to match up the peak power of the building total electrical
demand.

4.2. Modeling of the BESS system

The battery system was simulated through a Python class. A
simple and widely adopted model was implemented according
to Amato et al. (2021). The model involves the estimation of
the State-Of-Charge (SOC), which it was considered sufficiently
accurate for carrying out a preliminary evaluation of the impact
of BESS installation, even though the degradation of the battery
is not taken into account. The calculation of the SOC at each time
step t was performed according to the set of equations reported
in Eq. (7):⎧⎪⎨⎪⎩

SOCB(t) = SOCB(t − 1) + ηrte
PB,ch(t)∗∆t

CB
(charge)

SOCB(t) = SOCB(t − 1) −
PB,dis(t)∗∆t

CB
(discharge)

(7)

where SOCB(t − 1) is the SOC at the previous time step and
ηrte is the round-trip efficiency. PB,ch and PB,dis are the average
power exchanged in the period between two consecutive the
time steps (∆t) between the BESS and the system during charging
and discharging process respectively. CB is the battery nominal
capacity. Safety constraints were introduced in order to preserve
battery lifetime. Charging and discharging processes have to re-
spect two limits defined by P and P . These values
B,ch,max B,dis,max

1557
Table 4
BESS characteristics.
Parameter Value

Round-Trip Efficiency 0.96
Maximum discharging power 1C
Maximum charging power 0.5C
SOCB,min 10%
SOCB,max 90%

Table 5
TES configurations.
Volume [m3] UA-value [W/K]

10.0 12.0
8.0 10.3
6.0 8.5
3.0 6.0

are introduced in the technical specifications to avoid too rapid
charging/discharging operations. Typically, maximum charging
and discharging power are different and when the power exceeds
these thresholds, the controller limits it to the maximum recom-
mended values. In order to preserve the health of the battery,
the levels of the SOC were constrained by the minimum and
maximum values provided by the manufacturer (i.e. SOCB,min,
OCB,max).
The characteristics of the BESS considered in this work were

gathered from the data sheet of a modular Li-ion battery available
on the market and reported in Table 4.

In compliance with the typical values for the lithium-ion tech-
nology the minimum SOC value (SOCB,min) was set equal to 10%
and the maximum SOC value (SOCB,max) was set equal to 90% for
a total Depth of Charge of 80% (Amato et al., 2021). An initial SOC
of 50% was imposed. The maximum charging power (PB,ch,max)
nd maximum discharging power (PB,dis,max) were set equal to
.5 times and 1 time the nominal capacity of the battery (CB)
espectively.

.3. Setup of BESS and TES configurations

As introduced in Section 3 the baseline and the proposed con-
rol strategies were implemented considering different capacities
f BESS and different sizes of TES.
Table 5 reports for each size of TES the total volume and

he corresponding UA-value considered to estimate heat losses.
he largest size of 10 m3 was chosen considering 3-times the
aximum daily cooling demand of the building. The smallest size
f 3 m3 was chosen considering 2-times the maximum hourly

cooling demand of the building. The intermediate values were
picked up according to commercial sizes between minimum and
maximum values.

Table 6 reports the features of the various configurations of
the BESS. A commercial capacity for the battery unit of 2.4 kWh
has been chosen as a reference. This value was selected according
to the maximum value of the building electrical demand on an
hourly basis. The other two capacities of BESS are supposed as
obtained by connecting in series two and three units respectively.

Eventually, Table 7 summarizes all the configurations resulting
from the combination of the different capacities of BESS and sizes
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able 6
ESS configurations.
Capacity
[kWh]

Max charging
power [kW]

Max discharging
power [kW]

Units in
series

2.4 1.2 2.4 1
4.8 2.4 4.8 2
7.2 3.6 7.2 3

Table 7
Configurations simulated for the experiment.
Configuration BESS capacity [kWh] TES volume [m3]

1 2.4 10.0
2 4.8 10.0
3 7.2 10.0
4 2.4 8.0
5 4.8 8.0
6 7.2 8.0
7 2.4 6.0
8 4.8 6.0
9 7.2 6.0
10 2.4 3.0
11 4.8 3.0
12 7.2 3.0

of TES that have been tested with both baseline and proposed
control strategy.

4.4. Implementation of the baseline fully rule-based control

As introduced in Section 3, the baseline strategy manages both
he operational modes of the cooling system (and consequently
he TES) and BESS through two different RBC strategies. The
aseline RBC strategy operates the cooling system in charging
ode whenever the price of electricity is low (i.e. between 11
.m and 7 a.m during Mondays and Saturdays and between 0 a.m
nd 24 p.m during Sundays) and the temperature of the TES is
reater than 12 ◦C. During these periods the storage is charged
ntil its temperature reaches 10 ◦C or the price of electricity rises.
he cooling system is operated in discharging mode whenever
he building cooling demand is not zero until this value returns
o zero or the temperature of the TES is greater than 18 ◦C. If
he temperature of the TES is greater than 18 ◦C and building
ooling demand is not zero the cooling system is operated in
hiller cooling mode.
A simple still effective controller inspired from previous sci-

ntific literature (Ruusu et al., 2019; Amato et al., 2021) was
mplemented for BESS management. The BESS is charged when
V generation is greater than the building electrical demand,
therwise it is discharged. More specifically, during charging
rocess the PV surplus is diverted to the BESS if it is allowed by
he constraints on charging power (PB,ch,max) and maximum SOC
SOCB,max). If PV generation is greater than the sum of building
lectrical demand and BESS capacity the remaining overproduc-
ion is diverted to the grid. During discharging, the BESS works
n parallel with the PV to meet the electrical demand. If the
ontribution from both PV and BESS is not sufficient to meet the
uilding electrical load the grid is employed to meet the demand.

.5. Implementation of the proposed control strategy based on DRL
oupled with RBC

As introduced in Section 3 the SAC agent manages the three
ooling operation modes (i.e. charging mode, discharging mode
nd chiller cooling mode) while the BESS is managed by the
ame RBC strategy described in the section above. The SAC agent
s defined through the reward function, the action space and
1558
Table 8
Variables included in the state space.
Variable Min

value
Max
value

Unit Timestep

Outdoor Air
Temperature (To)

7.0 40.0 ◦C t

TES SOC (SOCT ) 0.0 1.0 – t, t − 1, t − 2
BESS SOC (SOCB) 0.0 1.0 – t
Building Cooling
Demand (Qd)

0.0 10.0 kW t, t + 1, . . . ,t + 24

PV power generation
(PPV )

0.0 3.0 kW t, t + 1, . . . ,t + 24

Electricity price (Cbuy) 0.03 0.3 e/kWh t, t + 1, . . . ,t + 24

Table 9
Hyperparameters of the SAC control agent.
Hyperparameter Value

Discount factor (γ ) 0.99
Learning rate 0.001
Boltzmann temperature coefficient (α) 0.2
Number of hidden layers 2
Number of neurons per hidden layer 256
Activation Function ReLu
Optimizer Adam
Batch size 32
Number of training episodes 30
Reward magnitude weight-factor (β) 100

the state space. Table 8 reports the variables included in the
state-space.

The state-space was conceived to provide to the agent com-
prehensive information about the whole IES including PV produc-
tion and BESS status. Observations of the storage tank including
the SOC (SOCT ) evaluated at the current timestep t and up to two
timestep (t − 2) in the past were provided to the agent. These
values carry information about the amount of cooling energy
actually stored and its evolution over time.

The SOC of the BESS is also a key-information provided to
the agent to correctly manage the operation of the cooling sys-
tem. BESS is operated to provide electricity to the chiller and
the pumping system during high price periods. This value was
provided only at the current timestep t due to lower inertia of
BESS compared to TES.

The electricity price is the main driver of the agent choices
since it strongly influences the reward. Current value was pro-
vided to the agent along with the exact values for 24 h ahead. The
electricity price schedules were supposed to be always known.

The building cooling demand together with the PV power
generation is a fundamental information to optimally manage the
controlled system. Also, the values related to time step t to time
step t+24 were provided to the agent. The predictions of building
cooling demand and PV power generation were assumed to be
perfectly known.

Eventually, information about outdoor air temperature were
included in order to provide knowledge about its influence on
the COP of the chiller unit. Despite being a key information, the
solar irradiation was not included in the state-space since the PV
power generation is directly related to this variable.

Table 8 reports the maximum and the minimum values that
were employed to re-scale the state space through a min–max
normalization before providing the variables to neural network
models.

Besides the definition of state-space, action-space and reward
function, the SAC algorithm is characterized by a series of hy-
perparameters. The settings of these hyperparameters adopted in
this application are reported in Table 9.

Each episode (i.e. one cooling season lasting from June to
August) is presented to the SAC control agent 30 times in order
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Fig. 4. Architecture of the co-simulation environment.
o train the control policy for each configuration. At the end of
he training process the SAC agent was statically deployed for
ne single deployment episode corresponding to the same cooling
eason as the training episode. In the static deployment approach,
he agent is implemented as a static entity, meaning that the
ontrol policy is no longer updated, and any learning goes on.
hen the SAC agent is statically deployed the control policy is
etermined by the weights resulting from the last update (i.e., the
ast control step of the last training episode) of the training phase.
or this reason, as common practice, the static deployment of the
AC agent was performed on the same period (i.e., from June to
ugust) of the training. In fact, during the deployment process the
erformance of the agent during the training period could provide
good indication of the stability of the learned control policy.

.6. Co-simulation environment

The experiments were carried out in a co-simulation environ-
ent combining Python and EnergyPlus through the BCVTB. Fig. 4
escribes the architecture of the co-simulation environment. The
rchitecture is organized in two sides.
The EnergyPlus side is formed by a model of the building dy-

amics and of the cooling system (comprising of the air-to-water
hiller and TES) receiving at each time-step information from the
eather data file and a controller which selects the cooling mode.
his model provides in output the state variables (i.e. outdoor air
emperature, TES SOC and Building Cooling Demand) employed
y SAC agent evaluated at each time-step. Moreover, the Energy
lus model produces additional information such as building
lectrical load and direct and diffuse solar irradiation employed
y the PV and BESS models.
The Python side of the co-simulation environment is formed

y the PV and BESS models and by the control strategies em-
loyed to manage the integrated energy system. The PV model
mploys solar irradiation to calculate the PV power generation
hich is one of the state variables provided to the SAC agent. The

ESS SOC is evaluated through the BESS model which receives

1559
information to whether charge or discharge the battery from the
BESS RBC strategy described in Section 4.4. This strategy manages
the BESS according to building electrical load (provided by Ener-
gyPlus and determined by chiller and pump operation), PV power
generation and electricity price (provided to Python through a csv
file). The electricity price is furtherly forwarded as a state variable
employed by both the SAC agent and the RBC strategy to select
the cooling mode at each time-step. Once the BESS operation is
evaluated, the environment evaluates the energy exchanged with
the electrical grid which determines the reward obtained by the
SAC agent along with the electricity price. The final component of
the Python side is represented by either the SAC agent or the RBC
strategy employed to select the cooling mode. The SAC strategy
makes use of all the information included within the state space
and the reward function to learn the optimal control policy. The
RBC strategy, as described in Section 4.4, employs only TES SOC
and electricity price to determine the control action.

Eventually, the control action is forwarded to EnergyPlus in
order to advance the simulation to next time-step. The interface
between python and EnergyPlus is managed through BCVTB and
the ExternalInterface function of EnergyPlus. BCVTB is a software
environment that allows the users to combine different soft-
wares for co-simulation. The interaction orchestrated by BCVTB
between Python and EnergyPlus is dynamic, and take place at
each time-step of the simulation process.

5. Results

This section reports the results of the implementation of the
methodology introduced in Section 3.

A SAC control agent coupled with RBC was simulated together
with a baseline fully RBC strategy during the cooling season in
the period ranging from June to August for different sizes and
capacities of TES and BESS, respectively. For the sake of simplicity,
in the following sections the proposed controller which couples
SAC with RBC is indicated as SAC, while the baseline fully RBC

strategy is simply indicated as RBC.
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able 10
nergy imported from grid (Egrid,buy), energy sold to grid (Egrid,sell), Cost of
lectricity and cost savings obtained from the implementation of SAC agent and
BC strategy.

Config Egrid,buy [kWh] Egrid,sell [kWh] Cost [e] Cost savings
[%]

SAC RBC SAC RBC SAC RBC

1 314.70 871.40 380.90 919.10 6.0 16.9 64.7
2 223.70 749.10 274.60 776.80 6.5 14.7 55.8
3 172.40 628.60 222.30 636.50 3.9 12.5 68.8

4 292.20 872.70 357.50 928.10 6.9 16.9 59.2
5 310.60 750.90 355.90 786.40 8.9 14.7 39.5
6 147.90 632.00 193.70 648.00 3.4 12.5 72.8

7 355.40 861.10 420.80 928.90 8.2 18.1 54.7
8 231.10 747.20 281.90 796.20 5.2 14.9 65.1
9 188.20 636.60 230.40 667.30 5.3 12.5 57.3

10 281.20 797.00 358.50 862.00 7.7 49.2 84.3
11 209.10 693.00 271.70 740.70 4.9 24.5 80.0
12 178.00 591.50 233.20 622.40 6.1 12.5 51.2

Table 10 reports both electrical energy imported from and sold
o the grid together with the electricity costs achieved by imple-
enting SAC and RBC strategies for each configuration during the
hole simulation period. The last column of the table reports the
onetary savings achieved through the implementation of SAC
trategy.
The results in Table 10 show that SAC control policy learnt to

inimize the interactions with the electrical grid with respect to
BC strategy. Across all configurations the energy imported from
rid and energy sold to grid were on average 67% and 61% lower
or SAC strategy compared to RBC strategy. RBC performance in
erms of operational cost improved with the increasing of BESS
ize. A cost reduction between 26.1% and 74.3% was achieved by
he baseline strategy when nominal capacity was increased from
.4 kWh to 7.2 kWh.
Independently from TES size, RBC achieved the best perfor-

ance with a BESS capacity of 7.2 kWh (i.e. configurations 3,
, 9 and 12). The increase of TES size beyond 6 m3 did not
ead to significant improvements in terms of operational costs of
BC strategy for the configurations implementing the same BESS
apacity (i.e. configurations from 1 to 6).
Similarly to RBC, the operational cost with the SAC control

gents decreased with the increase of BESS capacity. However,
ue to their intrinsic stochastic nature in the training process and
nitialization of the neural network policy their performance did
ot show a linear pattern.
SAC strategy led to the best performance with the configu-

ations implementing 8 m3 and 10 m3 leading to a monetary
xpense of 3.4 e and 3.9e, respectively.
The SAC control agents led to a better performance than the

BC with an economic savings ranging from 39.5% to 84.3%.
he highest difference between the two control strategies were
chieved for configuration 10 implementing both TES and BESS
ith the lowest sizes.
Table 11 reports the building electrical consumption over the

imulation period (Edem) along with the percentages indicating
he contribution of each source by implementing SAC and RBC
trategies. PVfrac , BESSfrac and Gridfrac indicate the percentage of
lectrical demand satisfied by PV generation directly provided to
he building, by BESS and through the grid, respectively.

In the case of RBC strategy, independently from TES size, the
mplementation of different BESS capacities had no influence on
he percentage contribution of PV generation directly feeding the
uilding and the electrical energy demand as can be seen for
he configurations 1–3, 4–6, 7–9 and 10–12, respectively. Gen-

rally, SAC led to lower energy consumption compared to RBC,

1560
able 11
ontribution of the different sources (PVfrac , BESSfrac and Gridfrac ) to the building
lectrical demand (Edem) obtained by SAC and RBC strategy for the different
onfigurations.
Config Edem [kWh] PVfrac BESSfrac Gridfrac

SAC RBC SAC RBC SAC RBC SAC RBC

1 1070.5
1090.7

0.56
0.08

0.14 0.12 0.30 0.80
2 1075.4 0.58 0.21 0.23 0.21 0.69
3 1064.2 0.55 0.29 0.34 0.16 0.58

4 1073.10
1083.0

0.60
0.08

0.13 0.12 0.27 0.80
5 1078.70 0.50 0.21 0.23 0.29 0.69
6 1069.10 0.58 0.28 0.34 0.14 0.58

7 1070.20
1072.2

0.52
0.09

0.15 0.11 0.33 0.80
8 1064.30 0.53 0.25 0.22 0.22 0.69
9 1063.60 0.51 0.31 0.32 0.18 0.59

10 1055.70
1075.1

0.57
0.15

0.16 0.11 0.27 0.74
11 1053.30 0.54 0.26 0.20 0.20 0.65
12 1058.00 0.54 0.29 0.30 0.17 0.55

as shown by second and third column (i.e. Edem) suggesting that
SAC learnt a better management strategy. Moreover, as shown
by column PVfrac , the SAC strategy was capable to better exploit
PV generation to feed the building with respect to RBC. In the
case of baseline controller the percentage contribution of PV
generation directly feeding the building ranges between 8% and
15% increasing with the reduction of TES size. SAC outperformed
RBC exploiting the PV production in a range between 50% and 60%
across all configurations.

With the increasing of the BESS capacity RBC was capable
to shift the contribution from the grid to the BESS. SAC and
RBC showed similar utilization of the BESS system among all
configurations.

Considering the configurations implementing the smallest
BESS capacity of 2.4 kWh (i.e. configuration 1, 4, 7, 10) the
configuration 10 is the one which led to the highest operational
cost despite the lowest percentage of electricity drawn from
the grid with respect to configurations 1, 4 and 7. This pattern
suggests that in that case the RBC controller was forced to rely
on electrical grid to operate the chiller during high-price periods
due to not enough thermal or electrical energy stored.

Key indicators to assess the performance of PV-BESS systems
are the SS and the SC, the former describing the amount of the
demand which is satisfied by the local generation, the latter the
amount of the local generation which is consumed in place. SC
also indicates the economic viability of the PV systems which
is usually increased through the introduction of BESS. Since the
BESS is charged only through PV, the value of PV generation
employed to calculate SS and SC comprises the PV generation
directly feeding the building and the electricity provided to the
building by the BESS.

Fig. 5 shows the SS and SC resulted from the implementation
of SAC and RBC strategies for all the configurations of storage
analyzed.

The results show that TES volume did not significantly af-
fect SS and SC values. SAC performed significantly better than
RBC, increasing SS and SC with an average value of 40% con-
sidering all the configurations. Moreover, RBC performance was
affected by BESS capacity both in terms of SS and SC, whereas
SAC managed to maintain their values almost constant among the
configurations.

Table 12 reports the TES operation in terms of thermal en-
ergy charged (Charge) and discharged (Discharge) along with
the percentage of the building cooling demand (Demand) satis-
fied through storage discharging by implementing SAC and RBC
strategies.
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able 12
hermal energy exchanged by the TES during charging (Charge) and discharg-
ng (Discharge) phases and percentage of building cooling demand satisfied
Demand) by implementing the different control strategies.
Config Charge [kWhth] Discharge [kWhth] Demand [%]

SAC RBC SAC RBC SAC RBC

1 1825.0
3307.4

1703.0
3132.8

54.30
99.962 1630.1 1494.3 47.65

3 1594.4 1488.2 47.43

4 1643.3
3281.0

1518.6
3129.0

48.40
99.775 1975.9 1829.3 58.34

6 1622.1 1508.6 48.06

7 1895.2
3160.2

1775.4
3046.3

56.57
97.068 1649.4 1538.1 48.99

9 1548.0 1435.6 45.74

10 1429.2
2234.8

1351.4
2131.9

43.00
67.8811 1444.8 1372.6 43.68

12 1420.9 1339.9 42.65

The results show that the operation of the thermal storage was
ot influenced by the capacity of BESS when the RBC is employed.
n the other hand, SAC managed the system by charging less the
ES when the capacity of the BESS is higher. Moreover, while
he RBC almost fully met the building cooling demand through
ES discharging for the configurations implementing a TES size
reater than 6 m3, SAC met only the 48.7% on average among all

configurations.
These patterns along with the results presented in Tables 10

and 11 suggest that SAC learnt to optimally manage the cooling
system and the thermal storage in coordination with local PV
production and BESS.

Figs. 6 and 7 report the SOC profiles for both BESS and TES
resulted from RBC and SAC implementation for configuration
3 and 10 respectively during the month of August. The black
 s
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dotted lines indicates the beginning of a different week (i.e. from
Monday to Sunday).

Configuration 3 implements the highest sizes for both TES
and BESS (i.e., 10 m3 and 7.2 kWh). It can be observed that SAC
learnt to manage the thermal storage to maintain in average a
lower SOC of the system compared to RBC. In particular, the
SAC agent charged the TES at the beginning of the week and
gradually released this energy during the first days of the week.
Despite the controllers directly act only on the operational state
of the cooling system, the control strategies affected also the
operation of the BESS. The BESS was charged and discharged more
frequently when the SAC strategy is adopted compared to the
case implementing RBC strategy.

The variation of the SOC of BESS and TES for configuration 10
which implements the lowest sizes for both TES and BESS (i.e.
3 m3 and 2.4 kWh) is reported in Fig. 7. Also in this case SAC
anaged the cooling system in order to maintain the SOC of the

hermal storage as low as possible. This pattern is particularly
vident during weekends in which RBC maintained a SOC close
o 1 while SAC maintained it close to zero until the beginning
f the successive week. Also for this configuration SAC showed a
ore variable use of the BESS system than RBC strategy.
Figs. 8 and 9 better depict how the different management

trategies of the cooling modes affected the behavior of the whole
nergy system. The figures show in three subplots the trend of
everal variables on hourly basis for five days of the simulation
eriod (i.e. between Friday 14-08 and Tuesday 18-08). For the
ake of simplicity, only the results obtained for configuration 10
mplementing a TES size of 3 m3 and a BESS capacity of 2.4 kWh
re presented. This configuration was chosen since it resulted as
articularly representative of the difference between SAC and RBC
trategies. The top subplot reports the building total electrical
oad and the sources through which it is met. Moreover, the
ubplot reports the PV power production and its dispatchment.
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Fig. 6. TES and BESS SOC resulted by SAC and RBC implementation during the whole simulation period for system configuration 3.
Fig. 7. TES and BESS SOC obtained by SAC and RBC during the whole simulation period for system configuration 10.
he central subplot shows the building cooling demand and the
ources employed to meet it along with the cooling energy pro-
ided by the chiller to charge the TES. The bottom subplot depicts
he trend of SOC for TES and BESS along with electricity price
alues scaled with a min–max normalization.
Fig. 8 presents the results with reference to RBC strategy.

ccording to this strategy the TES is charged whenever the price
f electricity drop to its minimum value. This behavior generated
n electricity demand due to chiller operations mainly during
ight hours when the PV production is null. As a consequence,
he system was forced to import energy from the grid during
ow-price periods. Until 09:00 AM there is no electrical demand
rom the building and the PV fed the BESS. When the building
s occupied, the TES was discharged to meet the cooling demand
hile the building electrical load is determined only by circula-
ion pumps which were powered by PV production. Through this
pproach, the import of electricity from the grid during high-price
eriods was avoided. When the BESS was fully charged the PV
verproduction was sold to the grid. Since for configuration 10
he BESS capacity is relatively small, the amount of energy sold to
he grid during this period is considerable. During the last hours
1562
of the day the thermal energy stored within the TES is exhausted
and the systems was forced to use the chiller to meet the cooling
load. The PV generation was not sufficient to meet the electrical
load, and as a consequence, BESS and grid were employed during
high-price periods as shown in the bottom subplot. Moreover,
it can be noticed that at the beginning of the weekend the RBC
strategy immediately charged the TES due to the occurrence of
a low price period. The TES was fully charged after few hours
and was not discharged until the beginning of the next week. In
these periods TES lost part of its thermal energy to the ambient,
resulting in a sub-optimal management of the system.

Fig. 9 shows the results obtained by SAC control strategy.
The agent tried to charge the thermal storage during low-price
periods close to arrival time of occupants in order to minimize
heat losses to the ambient due to storage inactivity. Through
this approach, the SAC strategy was capable to reduce electrical
energy consumption due to TES charging and, consequently, to
consume less electrical energy than RBC as reported in Table 11.
During the first hours of occupancy in working days the SAC agent
followed a similar policy to RBC powering circulation auxiliaries
through PV production and charging the BESS at the same time.
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Fig. 8. Trends of the electrical load, cooling load and SOC obtained by RBC strategy between Friday 14-08 and Tuesday 18-08 for configuration 10.
However, during the central hours of working days, the control
policy learnt by the SAC agent is completely different from RBC.
The agent switched the system in chiller cooling mode in order
to leverage PV production to feed the chiller avoiding to sell
renewable energy to the grid and maximizing SC. When the
PV production was not sufficient, the BESS previously charged
was employed. During the last hours of the occupancy period
which are still characterized by high electricity prices, the cooling
system was switched again to discharging mode since the PV
and BESS could not meet the electrical load of the chiller. In this
period the PV production was employed to operate the circulation
pumps and charge the BESS while the excess of energy was
sold to the grid. Moreover, SAC control strategy during weekend
awaits Sundays to charge the TES in order to minimize electricity
cost even during low-price periods and maximizing SC. Through
this approach the SAC agent was also capable to limit TES heat
losses compared to RBC strategy.

6. Discussion

The results obtained by applying RBC and SAC strategies for an
ES of an office building provided interesting information about
he impact of an advanced control strategy on the sizing and
peration of energy storage solutions.
SAC was capable to outperform RBC in terms of operating cost
or all the configurations of TES and BESS tested. RBC proved to

1563
be very sensitive to storage capacities resulting in a huge impact
on the operational cost. This aspect is particularly relevant for the
BESS capacity.

On the other hand, SAC strategy was able to achieve consid-
erable economic savings also with small capacities, but as the
storage capacities increase, the improvement achieved was lower
than those achieved by RBC. SAC did not show a clear dependency
of the operating cost from the capacities of the storage systems,
rather it learnt effective control policies for each configuration.
Larger BESS helped SAC in reducing the TES utilization while a
similar pattern was not observed for RBC.

BESS is largely considered as the best way to increase SC.
However, the operating costs decrease as long as the PV produc-
tion is sold to the grid leaving no room of improvement of SC
levels. Advanced control strategies such as SAC proved to be a
viable solution to increase SS and SC levels also with relatively
low capacity of the BESS. This is an important aspect to consider
given that BESS has a great impact on the total investment cost
of energy systems. Reducing the energy exchanged with the elec-
trical grid results in higher profitability of storage technologies
and higher flexibility of the building IES. When PV production is
sold to the grid the performance of the system in terms of SC
degrades. For this reason, SAC aimed at matching PV production
and chiller operation as much as possible. In this way, SAC not
only avoided unnecessary BESS operations, which would have

involved electrical losses due to the round-trip efficiency and
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Fig. 9. Trends of the electrical load, cooling load and SOC obtained by SAC control strategy between Friday 14-08 and Tuesday 18-08 for configuration 10.
converter efficiency, but it also managed effectively the system
with smaller capacity of BESS.

Eventually the energy consumption and PV contribution to
uilding electrical demand was not affected by the capacity of
ESS when RBC was employed. The reason might be that RBC
trategy employed two distinctive strategies for both BESS and
ES. These controllers were responsible only for their relative
ystem and did not share information between each other. As
consequence, the RBC controller managing the cooling system
peration was not aware of PV production and BESS SOC and
ice versa. This aspect strongly limited the capability of the RBC
o optimally control the proposed system despite the reasonable
ontrol rules implemented. This fact clearly shows the limitations
f traditional control approaches.
In fact, the RBC strategy implemented in this work was devel-

ped making the hypothesis that in classical control approaches
he different storage solutions are managed by control laws un-
ware of other systems. This assumption was deemed reasonable
onsidering that BESS and TES are usually implemented in ex-
sting buildings by different stakeholders in different periods
f time. Moreover, installers and maintainers usually lack of
ompetences to design an integrated control system capable to
oordinate multiple storage equipment.
Conversely, SAC based its decision process on a set of infor-

ation including those relative to PV production and BESS status.
his approach provided to the agent with a comprehensive view
1564
of the operation of the whole IES, enabling the identification of a
better control policy compared to RBC. Moreover, SAC leveraged
predictions of external disturbances to furtherly optimize the
decision process.

SAC outperformed the RBC in managing the PV-BESS system,
even though the control action does not directly act on the
battery. High levels of SS and SC make the use of electricity
storage technologies much more desirable from the point of view
of the building flexibility. Moreover, SAC was capable to achieve
appreciable levels of SS and SC with configurations implementing
small sizes of the storage systems.

These results suggest that advanced control strategies are nec-
essary elements to be integrated in a system where the number
of connections and prosumers is drastically increasing.

7. Conclusion and future work

The paper explored the effect of the implementation of ad-
vanced control strategies in a office building with on-site elec-
tricity generation and storage technologies. The objective of the
proposed controller was to minimize the operational cost of the
system during the cooling season by exploiting TES and BESS as
energy flexibility sources to shift cooling and electrical demand
according to price schedules and local PV production.

Two control solutions, a DRL agent coupled with a RBC and
fully RBC strategy, were tested and analyzed for different BESS
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apacities and TES sizes. The controllers were designed to adjust
he operation mode of the cooling system deciding whether to
harge/discharge the thermal storage to satisfy building cool-
ng demand or to directly employ the chiller. The BESS was in
oth cases managed through a rule-based strategy. A state-of-
he-art SAC algorithm modified for discrete action settings was
mplemented as DRL control strategy.

The implemented fully RBC strategy based its decisions only
n TES SOC and electricity price. Thus, it was not aware of local
V production or BESS status. This resulted in sub-optimal control
olicy especially when the capacities of TES and BESS were small.
SAC proved to be capable to learn better control policy com-

ared to RBC given the same storage capacities reducing the
perating cost between 39.5% and 84.3%. RBC resulted more sen-
itive to the storage size, giving greater importance to the initial
esign, whereas SAC achieved high savings also when smaller
apacities were implemented. The advantage with respect to
BC narrows down as the capacities were increased. For the
ame BESS capacity installed, SAC control strategy was capable
o notably increase the levels of SS and SC, reducing the en-
rgy exchanged with the grid and increasing building energy
lexibility.

In conclusion, the results obtained highlighted the importance
f implementing advanced control strategies in the design frame-
ork of IES in buildings. However, the proposed SAC control
trategy despite its model-free definition is not completely in-
ependent by a modeling effort since it was trained for several
pisodes before converging to the final solution. Therefore, future
orks will be focused on the following directions:

• Extending the present work in order to analyze the per-
formance of the proposed strategy during the whole year
including the heating season. Moreover, the present work
will be broaden to include a more detailed modeling of
the PV-BESS system also considering Maximum Power Point
Tracking (MPPT) techniques to maximize PV power output
to the BESS system.

• Analyzing the proposed strategy applied to different build-
ings and case studies in order to better characterize the
effectiveness of advanced control strategies applied to in-
tegrated energy systems.

• Benchmarking the proposed method against other advanced
control strategies (i.e. MPC) in order to provide a more
comprehensive view of the benefits provided by its imple-
mentation.

• Evaluating the opportunities to share the control policy
learnt from one building to target buildings characterized
by similar features (i.e. transfer learning) enhancing the
scalability and generalizability of the proposed solution.

Eventually, the analysis of DRL control policies provided useful
nformation to improve the operation of storage technologies
efining guidelines for the design of more efficient RBC strategies
hrough the definition of an optimized set of rules.
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