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A B S T R A C T

The increasing penetration of renewable energy sources has the potential to contribute towards the decarboni-
sation of the building energy sector. However, this transition brings its own challenges including that of energy
integration and potential grid instability issues arising due the stochastic nature of variable renewable energy
sources. One potential approach to address these issues is demand side management, which is increasingly
seen as a promising solution to improve grid stability. This is achieved by exploiting demand flexibility and
shifting peak demand towards periods of peak renewable energy generation. However, the energy flexibility
of a single building needs to be coordinated with other buildings to be used in a flexibility market. In this
context, multi-agent systems represent a promising tool for improving the energy management of buildings at
the district and grid scale. The present research formulates the energy management of four buildings equipped
with thermal energy storage and PV systems as a multi-agent problem. Two multi-agent reinforcement learning
methods are explored: a centralised (coordinated) controller and a decentralised (cooperative) controller, which
are benchmarked against a rule-based controller. The two controllers were tested for three different climates,
outperforming the rule-based controller by 3% and 7% respectively for cost, and 10% and 14% respectively for
peak demand. The study shows that the multi-agent cooperative approach may be more suitable for districts
with heterogeneous objectives within the individual buildings.
1. Introduction

As stated in the European Green Deal, the European Commission
has set net-zero carbon emission ambitions for 2050 in response to the
emerging climate challenge [1]. Significant progress has been made
in decarbonising the electricity sector in recent years, with solar pho-
tovoltaic (PV), onshore and offshore wind showing evidence of being
promising contributors towards a fully decarbonised energy system [2].
However, renewable solar and wind energy sources are intrinsically
variable by nature and this has the potential to create stability issues for
the electricity grid with the fluctuating supply needing to be balanced
with demand [3]. Villar et al. [4] summarise some of the challenges
faced by the new power system paradigm, that is transitioning from
a centralised power production, to a decentralised production, thus
requiring the need for new flexibility products and markets. The flexi-
bility to manage supply–demand mismatches can come from the supply
side (through the use of dedicated standby conventional power plants

∗ Corresponding author.
E-mail address: alfonso.capozzoli@polito.it (A. Capozzoli).

or storage), through reinforcing interconnections between neighbour-
ing countries or electrical grids [2] or from the demand side [3,5].
Analysing the latter, Demand Side Management (DSM) can be defined
as a set of actions that influence the quantity, patterns of use or the pri-
mary source of energy consumed by end-users [6]. Demand Response
(DR) is one promising pillar of DSM, where consumers curtail or shift
their electricity usage in response to financial or other incentives [7].

As buildings represent about 40% of the total primary energy con-
sumption in Europe [8], they are very relevant to participation in DR. A
significant portion of building energy demand is towards conditioning
the interior spaces for human thermal comfort through the use of Heat-
ing, Ventilation and Air Conditioning (HVAC) systems [9]. These loads
can often be shifted through the use of active thermal energy storage
such as water tanks, and passive thermal mass of the building [10],
thus playing an expanding role in the future smart grid [11,12].
vailable online 28 January 2022
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Nomenclature

Acronym

ASHRAE American Society of Heating, Refrigerating
and Air-Conditioning Engineers

COP Coefficient of Performance
DNN Deep Neural Network
DRL Deep Reinforcement Learning
DR Demand Response
DSM Demand Side Management
HVAC Heating Ventilation and Air Conditioning
KPI Key Performance Indicator
MDP Markov Decision Process
MARL Multi-Agent Reinforcement Learning
MAS Multi-Agent System
PAR Peak-to-Average Ratio
PV Photovoltaic
RL Reinforcement Learning
RBC Rule Based Controller
SHW Sanitary Hot Water
SAC Soft Actor Critic
SOC State Of Charge
TES Thermal Energy Storage

Greek Symbols

𝛾 Discount rate
𝜋 RL policy
𝜏 SAC target smoothing coefficient
𝛼 Temperature parameter of SAC

Roman Symbols

𝐴 A set of actions
𝑆 A set of states
𝐶𝑝𝑒𝑎𝑘 Cost of monthly peak consumption (e )
𝑒𝑖 Electrical energy consumption of building i

(kWh)
ℋ Entropy
𝑐𝑠𝑒𝑙𝑙 Grid feed-in tariff (e /kWh)
𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦,𝑝𝑒𝑎𝑘 Monthly peak electricity load (kW)
𝑐𝑝𝑒𝑎𝑘 Monthly peak load electricity tariff (e /kW)
𝐽 Optimisation objective
𝑃𝑟 Probability
𝑅 Reward function
𝑐𝑒𝑙 Time-varying electricity tariff (e /kWh)
𝑃 Transition probabilities between states

However, a building has to be able to meet a minimum required
eduction in energy consumption before it can participate in such DR
rograms, needing to be aggregated or appropriately coordinated to
ccess flexibility markets. While a significant body of literature has
nvestigated the DSM potential of individual buildings, in reality, all
ntities in a micro-grid setting are interconnected and conventional
SM strategies may result in detrimental effects on the grid reliability

e.g., shifting the peak load to other periods rather than minimising it),
imiting the economic benefits for both utilities and consumers [13,14].

In this context, multi-agent systems (MAS) represent a viable alter-
ative to enhance the DSM of multiple entities. Multi-agent systems find
heir natural use in micro-grid applications, where they are mainly used
n power market scenarios [15,16] and micro-grid management [17,
2

18]. MAS leverage several methods, including mathematical meth-
ods [19], meta-heuristic methods [20], and heuristic methods, that
can be further divided into game-theory based [21] and reinforce-
ment learning based [22–25]. In micro-grid applications, MAS often
considers the entire demand as aggregated by a cognitive agent, as
done in [26], in which the cognitive agent represents the entire micro-
grid demand and coordinates its operation with the generation agents
(reactive) to optimise several objective functions including cost, emis-
sions and grid stability. To fully exploit the flexibility associated with
buildings, the scale of analysis should be between single buildings
and aggregated demand, in the so-called neighbourhood, communities,
districts or integrated micro-grid. In this perspective, Labeodan et al.
[27] analysed the role of MAS in smart-grid integration, while [28]
reviewed the different kinds of MAS applications for smart homes,
highlighting the role of MAS architectures, which are briefly described
below.

MAS architectures can be classified according to two main cate-
gories. The most common ones are the coordinated architecture (cen-
tralised) and the cooperative architecture (distributed). Note that these
can also be combined to create hierarchical architectures. A brief de-
scription of the two main architectures applied to energy management
is provided as follows:

• Coordinated energy management exploits a centralised architec-
ture called cognitive-reactive, in which a cognitive agent uses
as inputs the observations of all the buildings (reactive agents),
that do not have decision-making capabilities, but respond as
actuators to the decision taken by the cognitive agent. As a
result, coordinated energy management is referred to as cen-
tralised training with centralised execution. Hu et al. [13] define
coordination in their review of neighbourhood-level coordination
and negotiation techniques for DSM as an arrangement of group
efforts to harmonise individual efforts in pursuit of common goals.
The limitations of this control strategy are the following: (i)
the exponential growth of the state and action spaces with the
number of reactive agents may limit real-world implementation;
(ii) the centralised control may result in sub-optimal solutions for
specific buildings; and (iii) private information collection (and
their possible sharing) may discourage user participation in a
real-world setting.

• Cooperative energy management exploits a distributed architec-
ture, in which each building is represented by an agent that learns
the optimal policy according to the specific objective function.
As a result, cooperative energy management is referred to as
decentralised training with decentralised execution. Hu et al. [13]
defines cooperation as voluntary efforts of individuals to work
together with the intention of helping each other. The limitations
of this approach are the following: (i) the interaction between
multiple control strategies can lead to a non-stationary environ-
ment thus challenging the learning process; (ii) while the number
of agents grows, a large number of models need to be tuned and
trained, requiring considerable effort for the definition of reward
functions.

1.1. Multi-Agent Reinforcement Learning as a grid-interactive building con-
trol framework for districts

Among the different approaches to MAS, Multi-Agent Reinforcement
Learning (MARL) has recently attracted growing interest, due to its
ability to gradually learn optimal control policies from experiences
acquired from the interactions with the environment. For a compre-
hensive introduction to the broader field of Reinforcement Learning
(RL), the reader is referred to standard textbooks [29], while a short
literature review of RL applications in the built environment is provided

below.
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The application of RL in buildings dates back to the 2000s, with the
first studies employing it for thermal storage [30–32] and HVAC [33]
control, with limited application due to the curse of dimensionality.
However, thanks to the introduction of Deep Reinforcement Learning
(DRL), the number of applications of RL in buildings has increased,
as reviewed by Vázquez-Canteli and Nagy [14] analysing the different
kinds of algorithms and modelling techniques of RL for DR. RL has
been utilised to control a diverse range of energy systems and one
of the advantages lies in its ability to take into account consumer
discomfort and integrate human feedback into the control loop. Mason
and Grijalva [34] provide a comprehensive review of RL with a focus
on autonomous building energy management and Azuatalam et al. [35]
review the role of RL for whole-building HVAC control and successfully
implement a DR-aware RL controller, able to achieve a maximum
weekly energy reduction of 22% compared to a baseline controller. In
their review of RL for building controls, Wang and Hong [36] highlight
the growing research interest of RL and the potential of MARL to
address some of the limitations of other advanced control strategies
such as model predictive control. However, the application of MARL for
building energy management is relatively new. While some pioneering
studies proved the effectiveness of MARL [37–39], further studies need
to be performed to explicitly address the advantages deriving from the
combination of the different algorithms and architectures in buildings.

The majority of RL works in buildings focused the attention on
a single-agent, with the aim to identify effective algorithms for the
energy management problem. Indeed, a further challenge is that the en-
ergy management problem features continuous state and action spaces
(e.g., cooling setpoints, thermal storage state of charge), while many
of the typical RL problems face discrete and low-dimensional action
spaces, addressed using common algorithm such as Deep Q Networks,
which are unlikely to be suitable for such continuous action/state space
environments [40].

Among the most recent RL algorithms, the Soft Actor Critic (SAC) al-
gorithm [41] emerges for its ability to handle a continuous action space
and it has gained significant interest since its first publication. The
effectiveness of the SAC algorithm has been proven in the energy envi-
ronment [42] and for the energy management of single buildings [43].
Biemann et al. [44] compared SAC algorithm with other three actor-
critic algorithms to control the HVAC of a data centre, finding that SAC
algorithm showed substantial improvement in both performance and
sample efficiency. Pinto et al. [45] used a centralised SAC architecture
to optimally control four buildings using the Learn environment [46],
while Deltetto et al. [47] exploited the latter to assess the potentialities
of a centralised SAC controller for incentive-based DR in a small district
of commercial buildings. Although both works provided insights on the
electricity cost of the district, the information of the costs associated
to each building was not investigated. Since the centralised algorithm
does not ensure a bottom-up optimisation, some buildings may face an
increase of costs, that should be carefully assessed. In this framework, it
may be useful to analyse the effectiveness of different RL architectures.
An initial attempt to compare multiple SAC architectures for buildings
control was performed by Dhamankar et al. [48]. The authors provided
an empirical comparison of independent learners (distributed archi-
tecture), centralised critics with decentralised execution (centralised
architecture) and value factorisation learners (hybrid architecture).
The main limitation of that work is related to the comparison of an
average metric, that does not allow to understand the strength and
weakness of each approach, especially shifting the attention from the
district to single buildings.

1.2. Contributions and structure of this work

The literature review presented in the previous section revealed the
following research gaps: the application of advanced control strategies
for DSM to date has largely been confined to single buildings. Among
3

the few studies that analysed multiple grid-interactive buildings, the
focus has been on micro-grid applications with appliance scheduling
or electric vehicles, requiring further analysis on the role of thermo-
statically controlled loads and thermal storage for grid-interaction.

Moreover, there is a lack of studies aimed at comparing different
control architectures when dealing with heterogeneous energy systems.
Indeed, individual buildings may have their own independent objec-
tives and the way by which such individual objectives, when part
of a district, influence control design problems, needs to be further
investigated.

Lastly, considering the multi-objective nature of the grid-interactive
DSM problem, a detailed analysis of the advantages and disadvantages
of each architecture/algorithm is required.

With these research gaps in mind, this work provides the following
contributions and novelty by:

1. Comparing the performance of a coordinated (centralised) and
cooperative (decentralised) MARL architecture for the provision
of DSM in a district of heterogeneous buildings.

2. Analysis of a DRL controlled grid-interactive district at different
scales and time. Assessment of advantages and limitations of
the proposed architectures for specific buildings and the entire
district.

3. Studying the application of a multi-agent SAC RL algorithm to a
district DSM problem with heterogeneous buildings, testing their
robustness in different conditions and assessing the versatility of
different controller architectures.

The presented paper deals with the energy management of four
buildings, equipped with thermal energy storage and PV systems and
formulating the problem as a reinforcement learning based one. Two
SAC-MARL algorithms are explored: a centralised (coordinated) con-
troller and a decentralised (cooperative) controller, which are bench-
marked against a rule-based controller (RBC) that aims at exploiting
electricity tariffs to minimise the cost.

The paper is organised as follows: Section 2 presents a detailed de-
scription of the proposed methods, together with essential background
on the concept and formulation of the RL problem and SAC algorithm.
Section 3 provides a description of the case study and control problem,
followed by the baseline reference controller and KPIs used for compar-
ison. Section 4 presents the design process of the two DRL controller
architectures. Section 5 provides the results of the key findings with
focus on both the comparison of the various MARL architectures against
the baseline controller and the robustness of the agents under different
climate types. Furthermore, Section 6 provides a critical discussion on
these results. Section 7 gives the conclusions and summarises potential
future research directions to enable and enhance the further use of the
SAC MARL technique for real-life energy flexibility applications.

2. Methods

In this section, the methodological framework for the development
and assessment of the performances of the two RL architectures (coor-
dinated and cooperative) is presented. In particular, the methodology is
structured in three steps, as represented in Fig. 1 and described below
in further detail.

Control Problem Definition: The first step describes the environment
used for MARL (Section 2.1) and the case study district (Section 3.1).
The latter firstly describes the analysed buildings, with a focus on
the controllable energy systems and the uncoordinated RBC, which is
used as baseline. Lastly, it provides a description of weather data used
to test the robustness of the proposed control strategies. Section 3.3
describes the control problem and outlines the electricity tariffs which
support the more flexible operation of the energy systems and the
reference baseline controller. To quantify controller performance and
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Fig. 1. Methodological framework overview.
allow comparisons to be made between the controllers, Section 3.4
introduces the set of specific KPIs used in this study.

Controller Design & Training: The second step of the methodol-
ogy analyses the main components of the RL problem. In particular,
Section 4.1 presents the design of the action-space to analyse the
possible control actions that can be taken by the agents. Section 4.2
similarly presents the state-space design which is the information pro-
vided by the environment to the RL agents. Section 4.3 formulates the
reward functions for each architecture analysed to quantify controller
performance with respect to control objectives.

Deployment & Benchmark: The last step focuses on the deployment
and benchmarking of the trained agents. In particular, to test their
robustness, the controllers are deployed in several climates, previously
described in Section 3.1 and their performance is evaluated through
several KPIs (Section 3.4).

2.1. CityLearn environment

The work exploits a modified version of the CityLearn environ-
ment [46] to train and deploy the various MARL controllers. CityLearn
is a simulation environment based on OpenAI Gym, specifically built to
enable training and evaluation of RL models at the building and district
levels. The simulation environment allows control, with an hourly
timestep, of a district of buildings managing cooling and sanitary hot
water (SHW) storage with different architectures (centralised or dis-
tributed). The environment structure, with a detailed description of the
metadata and input related to its functioning are provided by Vázquez-
Canteli et al. [46]. The original environment was modified by focusing
on a district of only four buildings (described further in Section 3.1).
Further, the heat pump size and its COP evolution are defined according
to [45], taking into account the reduced capacity during low external
temperature periods and the effect of external temperature and partial
load ratio.

2.2. Reinforcement Learning

RL is an aspect of artificial intelligence, where an agent learns
to take the optimal set of actions through interaction in a dynamic
4

environment (such as a building subject to changing weather conditions
and varying grid requirements), with the goal of maximising a certain
reward quantity [34].

The traditional RL problem can be formalised as a Markov Decision
Process (MDP) containing four elements:

1. 𝑆, a set of states (e.g., thermal energy storage state of charge,
outdoor relative humidity)

2. 𝐴, a set of actions (e.g., thermal energy storage discharge rate)
3. 𝑟 ∶ 𝑆 × 𝐴, a function describing the reward as a result of taking

a specific action
4. 𝑃 ∶ 𝑆 ×𝐴×𝑆′ ∈ [0, 1], transition probabilities between the states

Given a state, for every action that the agent takes, this leads to a
new state in the environment and based on this, the agent is either
rewarded or penalised for taking that particular action. The reward is
a feedback mechanism to the agent to indicate how well it is performing
at each time step. For the state 𝑆𝑡 to satisfy the Markov property, the
future state must only be dependent on the current state and current
actions, i.e., the future state is independent of the past state, given the
present state [29]. The learning problem is further complicated when
considering real-world applications featuring many agents. In this case,
the learning process is more challenging, as each agent sees a non-
stationary environment that is also changing due to the actions of the
other agents [14]. In fact, the Markov property may become invalid
due to this non-stationarity and hence MDPs do not provide the same
theoretical grounding for such MARL problems [49]. According to
the employed MARL architecture, the problem can be classified as an
MDP characterised by a joint action space with a single reward in a
centralised setting, or as a Markov Game characterised by multiple
action spaces and rewards in a decentralised setting. Wong et al. [50]
provide a high-level overview of the multi-agent learning problem,
detailing some of the above issues.

2.2.1. Soft actor critic deep reinforcement learning
The soft actor-critic (SAC) algorithm, an off-policy maximum en-

tropy actor-critic algorithm, as first proposed by Haarnoja et al. [41]
is used in this research. An actor-critic method has been selected for
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its ability to combine advantages of both value-based and policy-based
methods.

The SAC differs from traditional actor–critics insofar as the SAC
maximises the information entropy of state apart from the conven-
tional cumulative rewards. Standard RL maximises the expected sum
of rewards:

𝐽 (𝜋) =
∑

𝑡
E(𝑠𝑡 ,𝑎𝑡) 𝜌𝜋 [𝑟(𝑠𝑡, 𝑎𝑡)] (1)

AC, however, favours stochastic policies and it does this by modifying
he objective function with an additional term of the expected entropy
ℋ ) of the policy:

(𝜋) =
∑

𝑡
E(𝑠𝑡 ,𝑎𝑡) 𝜌𝜋 [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛼ℋ (𝜋(⋅|𝑠𝑡))] (2)

Here 𝛼 and ℋ (𝜋(⋅|𝑠𝑡)) is the trade-off between entropy and reward.
he advantage of entropy maximisation is that it can lead to policies
hat can explore more and are able to capture multiple modes of near-
ptimal strategies [41]. Increasing entropy can also prevent the policy
rom prematurely converging to a bad local optimum. The control
roblem can be extended to an infinite horizon by introducing the
iscount factor 𝛾, the value of which varies between 0 (that prioritises
olicies with high immediate rewards) and 1 (which considers future
ewards as important as current ones). At test time, stochasticity is
emoved and the mean action is used instead of a sample from the
istribution. The SAC algorithm is summarised in Algorithm 1 with the
ull details available in [41].
Algorithm 1: SAC algorithm adapted from [41]
Input: Policy (actor) and soft-Q (critic) DNNs
Initialise target network weights
Initialise experience replay buffer with random policy samples
for each episode do

for each step do
sample actions from policy
sample transition from the environment
store the transition in the replay buffer

end
for each gradient update step do

update the soft-Q DNN weights
update the policy DNN weights
update the target DNN weights

end
end
Output: Optimised actor and critic DNNs

The SAC DRL agent was developed in Python using the PyTorch
ibrary [51]. The version of SAC implemented in this paper assumes

constant entropy regularisation coefficient (𝛼) over the course of
training.

3. Case study district & control problem

This section provides a description of the case study. In Section 3.1,
the energy systems and weather climates used for the analysis are
outlined. Next, the control problem is analysed in Section 3.3 and lastly,
the KPIs used for the analysis are presented in Section 3.4.

3.1. District

The district includes four buildings: a restaurant, and three multi-
family buildings, which can be further demarcated as prosumers which
do not export electricity (Building 2 and Building 4) and prosumers
which export electricity (Building 1 and Building 3). Each building is
equipped with PV panels, a reversible heat pump, an electric heater and
two storage devices (chilled water and SHW). The control problem
focuses on the energy management of the two storage devices per
5

Table 1
Climate zones (per ASHRAE definitions) considered in this study.

Climate zones Location 𝑇𝑚𝑖𝑛 [◦C] 𝑇𝑚𝑒𝑎𝑛 [◦C] 𝑇𝑚𝑎𝑥 [◦C] 𝑇𝜎 [◦C]

2A Houston, TX 20.0 27.5 35.5 3.0
3A Atlanta, GA 16.0 25.5 36.0 4.0
5A Chicago, IL 8.5 22.0 35.0 4.5

building, with the aim of optimising costs, profile shape and self-
consumption. To quantify the effects of the control strategy, several
KPIs, described in the next subsection, have been used.

The district electrical load is mainly influenced by the building
cooling loads and, as a result, the analysis focuses only on the summer
period (defined as the 1st June to 31st August), which represents the
simulation period used in this study.

Moreover, as weather conditions influence the cooling load and
control strategy, the effects of weather variation on the behaviour and
robustness of the controllers was analysed. Whilst studies have inves-
tigated the ability of DRL to adapt to different operating conditions
(e.g., weather conditions [52], occupancy and set point changes [53]),
there is a necessity to study how multiple agents address these changes
for each of the cooperative and coordinated environments, which may
lead to a non-stationary problem. On the grounds of this, each agent
is trained on one climate (2A) and further deployed in the other two
climates (3A and 5A), as summarised in Table 1. The climate zones
considered are diverse in nature and are as per the ASHRAE standard
definitions. This analysis aims to evaluate and compare the ability of
the two controllers to adapt to different environmental conditions.

3.2. Energy systems at building level

Fig. 2 shows a schematic of the control architecture with details
of the energy systems for a representative building of the district,
while a comprehensive formulation of the mathematical problem can
be found in [54]. In particular, the scheme highlights the controlled
systems (chilled water and SHW storage) and their interaction with
other energy systems. The heat pump can either charge the chilled
water storage and satisfy the heating and cooling energy demand of
the building, although the current analysis only focuses on the summer
period. The electric heater is used to charge the SHW storage and to
meet the SHW demand, while non-shiftable loads can be satisfied using
electricity from PV or imported from the grid. Furthermore, Table 2
reports in detail the geometrical features of the buildings, together with
the capacity of the two controlled systems (storage) and the PV size.

It can be noticed that, despite having the same floor area, the
three multi-family buildings are characterised by different cooling,
heating and appliances loads. Indeed, to represent user stochasticity,
probabilistic regression models were trained from different open source
datasets [54] to create realistic instances of indoor temperature set
point, SHW consumption and appliances schedules. Accordingly, the
two storage devices are sized to satisfy three times the maximum hourly
demand, of cooling and SHW loads respectively, while the heat pump
and electric heater are sized to always ensure the meeting of building
loads [54]. Based on this information, an optimal control strategy
should leverage PV electricity to partially offset non-shiftable, cooling
and SHW loads, or even charging thermal storage during renewable
overproduction periods, exploiting the energy multi-carrier nature of
the control problem.

Lastly, to analyse the contribution of renewable electricity to the
building load, Fig. 3 displays PV self-consumption and export for each
building, together with their net load for the first three days of the
simulation period for climate 2A. As highlighted earlier, Building 1 and
Building 3 are prosumers, exporting a certain quantity of energy. On the
other hand, Building 2 and Building 4 self-consume renewable energy.
It is crucial to notice that the building electrical demand, affected by

climatic conditions, directly determines the ability of a prosumer to
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Fig. 2. Building energy management control scheme.
Table 2
Summary of building geometrical features and energy systems in district.

Type Floor area Volume TES SHW storage PV
[m2] [m3] capacity [kWh] capacity [kWh] capacity [kW]

Building 1 Restaurant 230 710 235 50 50
Building 2 Multi-family 3130 9550 150 75 20
Building 3 Multi-family 3130 9550 200 70 60
Building 4 Multi-family 3130 9550 185 105 20
Fig. 3. Electrical load profile for each building in the district for Climate 2A.
export electricity or not. The energy systems are managed with two

controller architectures (Section 4), which aim to reduce operational

costs and to flatten the aggregated load profile, exploiting the existing

sources of flexibility.
6

3.3. Definition of the control problem

The controllers were designed to manage the charging and dis-
charging of chilled water and SHW storage systems for the district of
buildings, with the aim to minimise electricity costs, reduce cluster
demand peaks and maximise self-consumption. The electricity price
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Table 3
Electricity tariff including energy terms and peak terms [55].

On-peak [$/kWh] Off-peak [$/kWh] Sold [$/kWh] Peak [$/kW]

Price 0.0549 0.0189 0.0100 11.02

tariffs and the PV production are the main drivers of the district cost.
In particular, the electricity price (𝑐𝑒𝑙), chosen according to [55], varies
rom 𝑐𝑒𝑙,𝑜𝑓𝑓−𝑝𝑒𝑎𝑘 = 0.01891 $/kWh during off-peak hours (21.00–12.00)
o 𝑐𝑒𝑙,𝑜𝑛−𝑝𝑒𝑎𝑘 = 0.05491 $/kWh during on-peak hours (12.00–21.00).
oreover, a cost related to the monthly peak load of the district was

onsidered and defined below:

𝑃𝑒𝑎𝑘 = 𝑐𝑃𝑒𝑎𝑘 ∗ 𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦,𝑃 𝑒𝑎𝑘 (3)

here 𝑐𝑃𝑒𝑎𝑘= 11.02 [$/kW] is the tariff related to the monthly peak
oad 𝑃𝑀𝑜𝑛𝑡ℎ𝑙𝑦,𝑃 𝑒𝑎𝑘 [kW], evaluated as the maximum district load for
ach month. In the context of coordinated energy management, if the
luster of buildings is managed by the same aggregator, it would face
cost related to the district monthly peak demand, that the controller

hould try to minimise, since it could represent a not negligible part
f the total cost faced by the district. Furthermore, any electricity
verproduction can be sold to the grid according to the following tariff:
𝑠𝑒𝑙𝑙= 0.01 $/kWh. The electricity tariffs are summarised in Table 3.

To benchmark the performance of the two DRL architectures, a RBC
as used as baseline. The RBC uses a distributed architecture, with the
im to minimise individual building energy cost. This is achieved by
xploiting the electricity tariff, charging chilled water and SHW storage
ver the night period and discharging uniformly over the day to reduce
lectricity consumption during on-peak hours. In this configuration,
he individual building controller does not share any information with
he other buildings. To avoid a sudden shifted peak that could lead to
igher cost, both charging and discharging operations are uniform.

.4. Key performance indicator design

Due to the multi-objective nature of the problem, the optimal con-
rol strategy needs to optimise multiple objectives, finding a trade-off
etween all. Several KPIs [56], shown in Table 4, are used to quantify
he performance of the controller, considering: an economic KPI (Cost),
rid-interaction KPIs (Peak, Peak-to-average ratio (PAR), Daily Peak and
aily PAR) and flexibility KPIs (Flexibility Factor, Self-sufficiency). To
nalyse the effects of the proposed control strategies on a daily basis,
his study calculates and investigates Peak and PAR during the entire
imulation period and at a daily granularity, to emphasise building
nteraction with the grid. Furthermore, the self-sufficiency indicator,
efined as the ratio between self-consumption and total consumption, is
ntroduced to quantify the impact of the control strategy on renewable
lectricity integration. Lastly, the flexibility factor, defined as the ratio
etween off-peak imported electricity consumption and total imported
lectricity consumption, is used to analyse the amount of electricity
onsumed during each tariff period. The mathematical definition of
hese KPIs is provided in Table 4.

. Design of multi-agent reinforcement learning control strategies

This section describes the design of the two DRL architectures,
enoted as coordinated (centralised) and cooperative (distributed) ap-
roaches. Section 4.1 provides a description of the state-space, Sec-
ion 4.2 outlines the action-space and finally Section 4.3 details the re-
ard functions utilised by each approach. Together, these characterise

he MARL approach utilised.
Fig. 4 shows the framework of the two proposed DRL architectures.

he image on the left describes the coordinated architecture. System
evel information is shared with the control level, which coordinates
7

ctions using all the information available for the cluster of buildings,
Table 4
KPIs Used in MARL controller comparisons.

KPI Formula Units

Cost
𝑛
∑

𝑖
𝑒𝑖 ∗ 𝑐𝑖 [$]

Peak max
𝑛
∑

𝑖

𝑒𝑖
𝛥𝑡

[kW]

Daily-Peak
∑𝑛𝑑𝑎𝑦

𝑖 𝑃𝑒𝑎𝑘𝑑𝑎𝑦
𝑛𝑑𝑎𝑦

[kW]

Peak-to-average ratio (PAR) 𝑃𝑒𝑎𝑘
∑𝑛

𝑖 𝑒𝑖∕𝑛𝑑𝑎𝑦
[-]

Daily-PAR
∑𝑛𝑑𝑎𝑦

𝑖 𝑃𝐴𝑅𝑑𝑎𝑦

𝑛𝑑𝑎𝑦
[-]

Self-sufficiency (SF)
∑𝑛

𝑖
∑𝑇

𝑗=1 min (𝑃𝑉𝑖,𝑗 , 𝑒𝑖,𝑗 )
∑𝑛

𝑖 𝑒𝑖
[%]

Flexibility factor (FF)
∑𝑛

𝑖 𝑒𝑖,𝑜𝑓𝑓−𝑝𝑒𝑎𝑘
∑𝑛

𝑖 (𝑒𝑖,𝑜𝑓𝑓−𝑝𝑒𝑎𝑘 + 𝑒𝑖,𝑜𝑛−𝑝𝑒𝑎𝑘)
[-]

with the aim of finding the optimal coordination. On the other hand,
the cooperative management (image on the right) exploits multiple con-
trollers, that share only common information such as weather forecast,
grid information or district total electrical load, to find the best policy
for each building.

4.1. Design of action-space

The case study considers the problem of optimising a cluster of
buildings composed of prosumers, by acting on the charging and dis-
charging processes of the thermal storage in the buildings. More specif-
ically, the control actions are related to chilled water storage, that can
be charged with a heat pump and discharged to meet building cooling
demand, and a SHW storage, that can be charged by an electric heater.
Therefore, each building has two control actions and, depending on the
type of architecture considered, the number of controller actions is two
(cooperative RL) or eight (coordinated RL).

For each control time step (with a resolution of one hour), the DRL
agent selects actions between [−1,1], where −1 represents a complete
discharge of the storage system and 1 represents a complete charge.
The action-space is then constrained between [-1/3,1/3], to facilitate
realistic charging and discharging time, according to [30]. The action-
space is represented by a tuple of eight values for the coordinated
controller and four tuples of two values for each of the four cooperative
controllers.

4.2. Design of state-space

The agents learn the optimal control policy, observing the effects
of its actions on the environment states. Therefore, the definition of
the state-space, together with the reward function, is crucial to help
the learning process of the controller and represents one of the points
of differentiation between the two architectures. The variables selected
by both architectures are reported in Table 5 with further commentary
below.

The variables can be categorised into weather, district and building
states. Both architectures use weather and district variables, while the
main difference is related to the building variables. In particular, the
coordinated architecture has access to information for all buildings,
e.g., by collecting the State of Charge (SoC) of the eight storage devices,
exploiting the information to optimally control the buildings. On the
other hand, the cooperative architecture exploits only the information
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Fig. 4. Coordinated and cooperative control architectures.
Table 5
State-space description for coordinated and cooperative DRL agents.

Variable Unit

Weather
Outdoor air temperature [◦C]
Outdoor air temperature forecast (1, 2, 6 hr ahead) [◦C]
Direct solar radiation [W∕m2]
Direct solar radiation forecast (1, 2, 6 hr ahead) [W∕m2]
Diffuse solar radiation [W∕m2]

District
District total load [kW]
Electricity price (𝑐𝑒𝑙) [$/kWh]
Electricity price forecast (1, 2 hr ahead) [$/kWh]
Hour of day [h]

Building
Non-shiftable load [kW]
Solar generation [kW]
Chilled water storage SoC (state of charge) [-]
SHW storage SoC [-]

related to the controlled building, being unaware of the information
from other buildings.

Weather variables, such as outdoor air temperature, direct and
diffuse solar radiation, were included to account for their influence on
the cooling load. For outdoor air temperature and direct solar radiation,
both short (1 and 2 h ahead) and medium (6 h ahead) term forecasts
were used to exploit the potential predictive capabilities of the con-
trollers. CityLearn considers the weather as estimated with a generic
model with a pre-calculated prediction error. In detail, the prediction
error increases with the forecast time-horizon for both temperature and
solar radiation. The errors start from 2.5% for 6 h ahead predictions and
they increase up to 10% for 24 h ahead. Therefore, the PV generation
is evaluated considering a prediction model of the solar radiation with
a pre-determined accuracy.

Common variables amongst the buildings were included in district
states, such as hour of day, electricity price and electricity price fore-
casts, with a time horizon of 1 and 2 h ahead, together with the district
total electrical load. The states involving information of the specific
energy system were categorised as building variables, such as the appli-
ance electrical load (non-shiftable load), the PV electricity production,
8

and the SOC of the cooling and SHW storage devices. As previously
explained, for the coordinated architecture, the centralised controller
collects these four variables for each building, together with district
and weather variables, to find the control strategy. The cooperative
architecture, however, exploits only the four states of the controlled
building.

4.3. Design of reward functions

The reward function must be representative of the defined control
problem and it assesses the effectiveness of the control policy. In this
work, comparable reward functions were defined for the coordinated
(Section 4.3.1) and cooperative 4.3.2 RL controllers, to benchmark
their respective performance. Reward function definition is indirectly
related with the previously defined KPIs. The KPIs were defined ac-
cording to the objective functions that the controller had to achieve.
However, the results of the training process are only affected by the
cumulative values of the reward function, and not by the evolution of
the single KPIs. In fact, KPIs were evaluated to assess the performance
of the control policy in a post-processing phase, after the reward (which
includes different contrasting objectives) reached convergence.

4.3.1. Reward function for coordinated RL controller
For the coordinated DRL controller, the reward (𝑅) was formulated

as a linear combination of three different contributions: the profile
flattening term, a cost term and an overproduction term. This is defined
as follows:

𝑅 =
𝑛
∑

𝑖=1
𝑒𝑖
2 × 𝑘1 +

𝑛
∑

𝑖=1

|

|

min (𝑒𝑖, 0)||× 𝑐𝑒𝑙 × 𝑘2 +
𝑛
∑

𝑖=1

|

|

max (𝑒𝑖, 0)||× 𝑐𝑠𝑒𝑙𝑙 × 𝑘3 (4)

The formulation of the flattening term employs a square factor, that
leads to a more homogeneous consumption of the cluster [45]. On the
other hand, the second and third terms are related to the electricity
used/produced from the cluster, with the final goal of reducing opera-
tive costs. In particular, 𝑒𝑖 is negative if the building imports electricity
from the grid and positive if the building sells electricity to the grid.
For a specific building, these two terms are mutually exclusive, as the
last term assumes electricity overproduction, whereas the second term
assumes electricity import from the grid. This formulation is used to
reduce electricity costs for the buildings (second term) and to increase
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Table 6
Reward function hyperparameter values.

Variable Coordinated controller Cooperative controller

𝑘1 −10−5 −10−4

𝑘2 −5 −5
𝑘3 −350 −350

self-consumption in buildings (third term), penalising it when selling
electricity rather than trying to exploit renewable overproduction. Con-
sidering that in the SAC framework the magnitude of the reward has
effects on the results, the terms k1, k2 and k3 were defined to maximise
the reward, while balancing the flattening term and the economic
results. Therefore, these terms were varied, to achieve optimal trade-off
between performance at single building and district scale. The values
chosen for the coordinated DRL coefficients (𝑘1, 𝑘2, 𝑘3) are reported in
Table 6.

4.3.2. Reward function for cooperative RL controller
To allow a fair comparison among the two architectures, the reward

of the cooperative DRL controller was formulated as for the coordi-
nated case, using a linear combination of three terms related to the
profile flattening, the imported electricity and the self-consumption.
The general formulation of the reward (𝑅𝑖) for building 𝑖 is as follows:

𝑅𝑖 =
𝑛
∑

𝑖=1
𝑒2𝑖 × 𝑘1 + |

|

min (𝑒𝑖, 0)|| × 𝑐𝑒𝑙 × 𝑘2 + |

|

max (𝑒𝑖, 0)|| × 𝑐𝑠𝑒𝑙𝑙 × 𝑘3 (5)

The main difference with respect to the previous architecture (coor-
dinated RL controller) is related to the self-consumption and cost terms.
While the profile flattening term is similar, the imported electricity
and self-consumption terms consider only the controlled building, with
the same aim of Eq. (4) previously described. For example, Building 2
and 4 will never experience the overproduction term, due to the lower
capacity of PV panels. The values of the three coefficients (𝑘1, 𝑘2, 𝑘3)
are reported in Table 6. It is important to notice that the 𝑘1 term
for the two architectures are different. This is due to the fact that in
the coordinated approach, the entire electricity consumption of the
district is squared, while for the cooperative approach the electricity
consumption of each building is first squared and then summed up
for all the buildings. Analysing the two quantities previously described
(average district power squared and the sum of squared power of each
building) a suitable value of k1 for each architecture was set.

As mentioned in Section 2, DRL algorithms are characterised by sev-
eral hyperparameters, that directly influence controller performance.
These parameters need to be tuned according to the specific control
problem and they can be further divided into RL hyperparameters and
control problem related hyperparameters. To obtain a fair benchmark
among the two controllers, RL hyperparameters (decay rate, temper-
ature coefficient, learning rate) were subjected to a hyperparameter
optimisation, the results of which are reported in Appendix A to pro-
mote the reproducibility of the analysis. To perform hyperparameter
optimisation, a grid-search process was used, exploring the search
space completely. However, prior to that, domain expertise knowledge
and previous experiences were used to constrain the possible search
space. Moreover, control problem hyperparameters include the episode
length, the starting period of learning and the training episodes, on
which a specific analysis was performed. Fig. A.11, reported in
Appendix A, shows the evolution of the reward function with the
number of episodes. To account for stochasticity the mean and standard
deviation of 15 simulations were used. It is possible to notice that
after the environment initialisation and around 3 episodes the reward
function stabilises. Furthermore, as the number of episodes grows, the
standard deviation of the coordinated architecture tends to increase,
9

while the standard deviation of the cooperative architecture remains
stable. Therefore, the analysis of the results suggested that a trade-
off between simulation period and variance can be found at around 5
episodes, selected for the work. The controllers were then tested over
3 months (an episode) using the three climates described in Table 1.

5. Results

This section describes and analyses the results obtained from the
implementation of the two DRL architectures, comparing them with
the benchmark RBC strategy. Section 5.1 describes the results of the
deployment of both controllers for climate zone 2A (Table 1). More
specifically, the financial cost accruing to single users and to the district
are described, highlighting how a part of the total cost is related to
the district peak, and how the different architectures influences the
latter. Following this, the attention is shifted towards the district load,
with a focus on storage operation and self-consumption, quantifying
the results of cooperative and coordinated approaches at this level.
Moreover, the section compares the different use of energy under the
control strategies and quantifies the advantages based on several KPIs.
Lastly, Section 5.2 presents a summary of the results for deployment
for other climates than that outlined in (Table 1) based on the same
KPIs.

5.1. Comparison with baseline RBC

Fig. 5 shows the energy consumption costs for each building (left)
and the energy consumption and peak load (penalty) costs for the dis-
trict (right). Results are presented for the 3 months simulation period.
As it can be seen, both coordinated and cooperative RL result in a
lower cost at the district level, namely 3% and 7% savings, respectively.
However, the main difference between the two approaches is related
to single building costs. For the coordinated approach, Building 2 and
4 experience a cost increase in comparison to RBC strategy of 4% and
3%, compensated by the reduction of the peak term. On the other hand,
the cooperative architecture shows a cost reduction for each building,
leading to greater overall savings at the district scale.

To analyse further the basis for these results, Fig. 6 shows the
district electrical load evolution with the three control strategies for
a three day period during the first week of June. This figure highlights
the contribution of both PV self-consumption and PV export. Fig. 6 (a)
shows how the uncoordinated RBC approach leads to demand peaks
during the night due to the charging of the storage devices during
these periods, while discharging them during the day, exporting the
overproduction of renewable electricity around 12 p.m., June 1. On
the other hand, Fig. 6 (b) shows the coordinated approach, tries to
exploit PV production as well as flattening the load profile. Lastly,
Fig. 6 (c) displays the cooperative approach, in which buildings try to
reduce peak consumption, as at around 6 a.m., June 1, and maximise
self-consumption, which can be attributed to a reduction of electricity
export of Building 1 and Building 3 around 12 p.m., June 1.

To understand the differences between the two proposed control
strategy and the baseline, a detailed comparison is provided for Build-
ing 1 in Fig. 7 for a three day period. The plotted variables are
normalised with respect to their maximum values and include: the
state of charge (SOC) for the cooling and SHW storage, the solar
radiation, the outdoor temperature and the electricity price. These
variables have been selected to highlight the behaviour of an optimal
control strategy. Indeed, the best control policy for a prosumer aims
at maximising self-consumption, exploiting the lower electricity price
and resulting in the minimum district peak demand. To achieve such
objectives, both coordinated and cooperative controller shift the charge
between the two storage (TES (cooling) and SHW) devices, thereby
flattening building electrical load. In particular, they tend to charge the
chilled water storage during the night, exploiting the lower ambient
temperatures (higher COP) and the SHW TES during the day, to use
possible PV over-production. The two storage devices are discharged
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Fig. 5. Cost related to the energy term for each building (left) and total district cost, sum of energy and peak terms (right), for the different control strategies over the entire
simulation period.
Fig. 6. District electrical load profile for each control strategy during a three-days period.
during high-electricity price periods and low period of PV production,
to obtain a flatter profile.

Furthermore, to assess the ability of the controller to adapt to
weather conditions and grid requirements, the mean values and stan-
dard deviations of SOC for storage devices for a single day period,
averaged over the entire season have been showed in Fig. 8. It can be
noticed how both RL controllers have higher standard deviation for TES
10
state of charge compared to RBC, explained noticing the variability of
SHW and weather conditions, that strongly affect cooling demand. It is
important to highlight that the optimal control strategy should not be
searched looking at mean values, since the control actions of a specific
building depends on: weather conditions, electricity price, building
load and grid requirements, in turn influenced by other building control
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Fig. 7. Comparison of control strategies for Building 1.
actions. However, Fig. 8 can be used to understand how much optimal
control actions can be influenced by external factors.

Fig. 9 reports on the evolution of exported electricity at district
level for the two controllers and the baseline over the entire simulation
period (3 months). Although the absolute exported quantities only
represent a small percentage of the total district consumption, their
comparison can provide insights into the effectiveness of the control
strategies, since minimisation of exported electricity is one of the most
effective ways to reduce costs. Given that one of the objectives of
the RL controllers is to minimise exported electricity and considering
Fig. 9, it can be observed how the uncoordinated RBC is outperformed
by the two proposed control strategies. In particular, the cooperative
RL reduces the electricity sold to the grid by approximately a quar-
ter compared to the coordinated controller, consequently increasing
savings.

To relate the storage operation with the controller performance
benefits, Fig. 10 shows the electricity consumption at a district level
for the entire simulation period (3 months) as follows: (i) on-peak
periods with direct building consumption; (ii) off-peak periods with
direct building consumption; (iii) PV production and associated self-
consumption, and; (iv) storage discharge (either from the grid or PV)
and used to charge either the cooling and SHW storage. Furthermore, to
assess the contribution of storage for the integration of renewable en-
ergy sources, the bar plot also includes results considering the absence
of storage (No Storage), which results in self-consumption from PV
being halved compared to the RBC case. The effectiveness of the RBC
strategy is evident by examining the consumption reduction during on-
peak periods with respect to the No Storage scenario. Despite slightly
increasing the amount of on-peak period electricity consumption, the
coordinated controller further increases the advantages with respect to
RBC, reducing off-peak electricity optimally using the thermal storage,
leading to cost savings. These advantages are even greater for the co-
operative controller, which shows a slight increase of self-consumption
11
Table 7
Results of the MARL controllers deployed on Climate 2A (performance improvement
in brackets).

KPI Climate 2A

RBC Coordinated Cooperative

Cost [$] 10663 10311 [-3.3%] 9927 [-6.9%]
Peak [kW] 171 154 [-9.7%] 147 [-13.8%]
Daily-Peak [kW] 123 125 [+2.0%] 109 [-11.2%]
Peak-to-average ratio (PAR) [-] 2.31 2.13 [-7.7%] 2.05 [-11.2%]
Daily-PAR [-] 1.66 1.72 [+4.2%] 1.51 [-8.5%]
Self-sufficiency [%] 0.240 0.243 [+1.6%] 0.248 [+3.5%]
Flexibility Factor (FF) [%] 0.66 0.62 [-5.7%] 0.64 [-2.0%]

and the highest storage operation, emphasising the role of storage
towards the optimal energy management of the district.

Lastly, in order to analyse the performance of the three controllers,
Table 7 summarises the values assumed by the KPIs to assess the
benefits provided by the two RL architectures for the entire simulation
period (3 months). The table also shows different KPIs for the RBC, used
as a benchmark, while displaying the same KPIs for the coordinated and
cooperative architectures with relative improvement (or worsening) in
square brackets. For all but the last two KPIs, a lower value indicates
a better control policy. Therefore, is it clear that the cooperative
architecture outperforms the coordinated architecture especially for the
daily-Peak and daily-PAR, where the coordinated controller performs
worse than RBC. The coordinated controller is able to reduce costs and
peaks with respect to the RBC of around 3% and 10%, respectively.
Examining the flexibility factor, it can be seen how both RL controllers
perform worse than the RBC. However, the flexibility factor KPI was
lower for the DRL controllers because of the decreasing use of off-peak
tariff energy consumption.
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Fig. 8. Daily average hourly scale profiles of SOC with relative standard deviations for the three control strategies in Building 1.
Fig. 9. Comparison of district cumulative exported electricity between control strategies over the entire simulation period (3 months).
5.2. Deployment of RL controllers for different climates

Tables 8 and 9 report the results of the deployment in climates
3A and 5A, comparing the performance of the two RL controllers
with respect to RBC. These two climates are characterised by a lower
12
temperature and solar radiation, thus requiring less cooling energy in
the summer period, as highlighted by the lower costs. The analysis
of the three tables presented has the role to study the robustness of
the controllers, here highlighted by the use of KPIs at a different time
horizon (Peak, Daily-Peak) as well as examining the adaptability of



Applied Energy 310 (2022) 118497G. Pinto et al.
Fig. 10. District energy disaggregation comparison over the entire simulation period (3 months).
Table 8
Results of the MARL controllers deployed on Climate 3A (performance improvement
in brackets).

KPI Climate 3A

RBC Coordinated Cooperative

Cost [$] 10258 10237 [-0.2%] 9806 [-4.4%]
Peak [kW] 179 174 [-2.4%] 156 [-12.5%]
Daily-Peak [kW] 121 117 [-2.6%] 106 [-11.7%]
Peak-to-average ratio (PAR) [-] 2.61 2.6 [-0.3%] 2.34 [-10.1%]
Daily-PAR [-] 1.77 1.76 [-0.5%] 1.60 [-9.4%]
Self-sufficiency [%] 0.250 0.255 [+2.2%] 0.258 [+3.5%]
Flexibility Factor (FF) [%] 0.65 0.616 [-5.2%] 0.623 [4.1%]

the architectures to different climates. It can be observed that the
cooperative approach exhibits better performance in climate zones 2A
and 3A, achieving significant advantages (7% and 4%, respectively) in
terms of economic costs, while the coordinated architecture performs
slightly better in climate zone 5A. This results can be explained
noticing that climate 5A is characterised by lower external temperature
and solar radiation, that strongly reduce the need of cooling energy,
limiting the flexibility provided by the chilled water storage and of
the RL control strategy. In general, both architectures achieve better
performance with respect to RBC, despite their effectiveness is greatly
influenced by climatic conditions. In particular, the main drivers of the
problem, district costs and peak, are similar to RBC values shifting the
controller from climate 2A to climate 5A, while the controller retains
substantial improvement for daily-values, highlighting its stability.

6. Discussion

Grid-interactive buildings can exploit energy flexibility to increase
the energy efficiency of each individual building and provide advan-
tages to the grid, with a key role in the energy transition. This research
aims to exploit different DRL architectures to enhance the energy
grid-interaction for a district of buildings. The DRL controllers were
designed to act on building active thermal storage systems, with the
aim to exploit energy flexibility, minimising the energy cost for both
the individual buildings and the entire district. Moreover, the prob-
lem involved time-varying electricity tariffs, including a peak-related
13
Table 9
Results of the MARL controllers deployed on Climate 5A (performance improvement
in brackets).

KPI Climate 5A

RBC Coordinated Cooperative

Cost [$] 8946 8856 [-1%] 8874 [-0.8%]
Peak [kW] 150 145 [-3.3%] 145 [-2.7%]
Daily-Peak [kW] 111 98 [-11.7%] 99 [-10.6%]
Peak-to-average ratio (PAR) [-] 2.42 2.4 [-0.6%] 2.42 [+0.2%]
Daily-PAR [-] 1.8 1.63 [-9.3%] 1.65 [-7.9%]
Self-sufficiency [%] 0.270 0.275 [+2.1%] 0.275 [+1.9%]
Flexibility Factor (FF) [%] 0.69 0.645 [-6.4%] 0.649 [-5.9%]

term, to incentivise a rational use of electricity amongst the different
buildings and to favour cooperation and coordination. To assess the
performances of the two DRL control architectures, an uncoordinated
RBC was introduced as a baseline, due to widespread use of this
strategy for thermal storage control and to provide a fair comparison
between the different RL architectures. The same information (state-
space) was provided to each controller (with the only exception of
information specifically related to that architecture). Moreover, the
reward function formulation was also conceived with the same objec-
tives, reducing imported electricity and demand peaks and increasing
self-consumption.

The control problem was formulated allowing the DRL controllers
to exploit forecast information about electricity price and weather
for searching the optimal policy. However, despite SAC DRL use of
historical data to speed up the training process, the interaction be-
tween different buildings, requires a simulation environment for the
training of the controllers. Some key observations for the application
and scalability of DRL controllers are related to their computational
cost and robustness. Considering that the coordinated architecture
scales exponentially with the number of buildings, while the coop-
erative architecture scales linearly, a cooperative architecture may
represent the best solution, but as the number of buildings increases,
the non-stationarity of the environment can influence the stability of
the cooperative control policy. The present work tried to reduce some
of the variability associated with DRL controllers performing hyperpa-
rameter optimisation, adopting a similar reward function and studying
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the evolution of the cumulative reward with episodes. However, as
highlighted by Fig. A.11, the inherent stochasticity of the coordinated
architecture is higher with respect to cooperative architecture. After
the training period, the two controllers achieved superior performance
compared to the RBC and took advantage of their predictive nature to
flatten the load profile, reducing maximum peak and consequently cost.
Table 7 demonstrates the advantages of the cooperative controller over
the coordinated controller, particularly when considering daily peaks
(11% reduction of the cooperative controller compared to a 2% increase
of the coordinated controller) and the reduction of energy costs (7%
reduction compared to 3%). Moreover, the two RL controllers differ
due to PV self-consumption, which is slightly higher for the cooperative
controller.

The reward function formulation plays a crucial role to achieve spe-
cific objectives, therefore trade-offs between different terms should be
carefully considered. In this perspective, the cooperative architecture
is more flexible to the formulation of the reward function, designed to
represent user needs in particular, while the coordinated architecture
should be defined to achieve high-level performance, averaging over
single building requirements. For the specific application considered in
this paper, cooperative controller proved to perform better since it was
able to search a better control policy oriented to the maximisation of
self-consumption. On the other hand, in a coordinated architecture,
the results obtained for Building 2 and 4 suggest that, despite reducing
district costs, some users may experience increased costs, discouraging
them from participating in this type of control. Based on this result, we
concluded that in heterogeneous context, with different energy systems
and users’ needs, a cooperative architecture can be more flexible.
Furthermore, the work highlighted that despite the relation among the
reward function with some of the KPIs, the multi-objective nature
of the problem and the different scales analysed makes important to
analyse KPIs in addition to the cumulative reward. Indeed, looking only
at reward function as performance indicator, the analysis could lack
information about the costs faced by individual buildings, as in the
case of the coordinated controller. To test the robustness of the learned
optimal policy for both architectures, the controllers were deployed
in two other climates. Tables 8 and 9 highlight that, despite both
controllers performing better than the RBC, the deployment conditions
can highly affect maximum peak and PAR, while they do not influence
daily controller performances on average (Daily-Peak and Daily-PAR).

6.1. Limitations

A key concern about the comparison between the architectures is
whether the conclusions drawn from the current case study can be
generalised. For instance, it should be noticed that for Climate 5A, the
performance of the coordinated controller is marginally better that of
the cooperative controller, not allowing to identify a superior alterna-
tive among cooperative and coordinated architectures. Furthermore,
the comparison between the two architectures is influenced by the
hyperparameter settings, the number of training episodes, the formula-
tion of the reward function, the inherent stochasticity of DRL and the
case study itself. As a consequence the findings cannot be considered
generalised and thus need further investigations. The study had the aim
to produce a fair comparison among the architectures, using the same
hyperparameters, except for number of neurons related to the state–
action space. Moreover, also the reward function was conceived to
have the same structure, despite the different information the controller
exploits. Lastly, the aim of the work was to analyse the effect of the two
control strategies for the buildings in the district and the district itself.
The computational comparison of the two algorithms was beyond the
aim of the paper and may represent a limitation that will be addressed
by the authors in a future work. However, the influence of the number
of buildings on the computational cost and the effectiveness of the
control strategies is important to be assessed especially when different
14

architectures are compared.
7. Conclusions and future work

The present paper considered the design and application of two
different DRL controller architectures, with the aim to compare them
with the uncoordinated RBC. The problem was formulated to minimise
both energy consumption cost and energy demand peak for a district,
while trying to increase renewable electricity self-consumption, using
a similar reward functions to benchmark the performances of the two
DRL controllers.

Relative to the baseline, the two architectures, coordinated and
cooperative, showed a cost reduction of 3% and 7%, respectively,
together with a peak reduction of 10% and 14%, respectively. More-
over, both controllers achieved an increase in self-sufficiency and a
reduction, over the 3 deployment climates of 10% and 9% for daily-
peak and daily-PAR, respectively, demonstrating the robustness of the
learnt policies.

In conclusion, both architectures outperformed the uncoordinated
RBC, representing a potential alternative approach for grid-interactive
district energy management. The research highlighted that, if buildings
have heterogeneous objective functions, the multi-agent architecture
can capture the preferences of single buildings. This architecture is
therefore suitable when dealing with multiple buildings where different
energy systems are present or when the operational preferences are spe-
cific for each building, such as thermal comfort conditions or renewable
electricity over production.

Future work will focus on:

• The application of the presented methodology on a district fea-
turing a larger number of buildings and also considering a model
predictive control strategy. In particular, the computational cost
at different scale of analysis will be compared to assess the
advantages and limitations of each controllers, together with a
performance comparison.

• The implementation of a peer-to-peer architecture within a tai-
lored interactive urban environment (e.g., CityLearn). Such an
architecture provides additional benefits in the presence of re-
newable overproduction, enhancing the advantages of coopera-
tion (or coordination) among buildings, thereby allowing a more
comprehensive analysis to be carried out.
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Fig. A.11. Evolution of the reward function with episodes.
Table A.10
Settings of the DRL hyperparameters for coordinated and cooperative architectures.
Hyperparameter Coordinated controller Cooperative controller Search Space

DNN architecture 4 Layers (2 hidden) 4 Layers (2 hidden) –
Neurons per hidden layer 256 64 [64,128,256]
DNN Optimiser Adam Adam –
Batch size 512 512 –
Learning rate (𝜆) 0.001 0.001 [0.001,0.005,0.01]
Discount rate (𝛾 ) 0.99 0.99 [0.9,0.95,0.99]
Decay rate (𝜏) 0.005 0.005 [0.001,0.005,0.01]
Temperature coefficient (𝛼) 0.05 0.05 [0.01,0.05,0.1]
Table A.11
Settings of the control problem hyperparameters for coordinated and cooperative
architectures.

Hyperparameter Coordinated controller Cooperative controller

Learning starts 2208 2208
Target model update 1 1
Episode Length 2208 Control steps 2208 Control steps
Training Episodes 5 5

Appendix A. Deep reinforcement learning hyperparameters

Table A.10 list the SAC hyperparameters for the two architectures,
along with the optimisation space analysed. Table A.11 shows the
hyperparameter of the control problems, along with the final config-
uration selected to perform the analysis, while Fig. A.11 displays the
evolution of the reward function with the number of episodes.
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