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Comparison of standard and stabilization free Virtual
Elements on anisotropic elliptic problems

Stefano Berrone, Andrea Borio, Francesca Marcon1,∗

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino.

Abstract

In this letter we compare the behaviour of standard Virtual Element Methods

(VEM) and stabilization free Enlarged Enhancement Virtual Element Methods

(E2VEM) with the focus on some elliptic test problems whose solution and diffu-

sivity tensor are characterized by anisotropies. Results show that the possibility

to avoid an arbitrary stabilizing part, offered by E2VEM methods, can reduce

the magnitude of the error on general polygonal meshes and help convergence.

Keywords: Virtual Element Method, Poisson problem, Polygonal meshes,

Anisotropy

2020 MSC: 65N12, 65N30

1. Introduction

In recent years, polytopal methods for the solution of PDEs have received a

huge attention from the scientific community. VEM were introduced in [1, 2, 3]

as a family of methods that deal with polygonal and polyhedral meshes without

building an explicit basis of functions on each element, but rather defining the5

local discrete spaces and degrees of freedom in such a way that suitable polyno-

mial projections of basis functions are computable. The problem is discretized
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with bilinear forms that consist of a polynomial part that mimics the opera-

tor and an arbitrary stabilizing bilinear form. In [4], error analysis focused on

anisotropic elliptic problems shows that the stabilization term adds an isotropic10

component of the error, independently of the nature of the problem. In [5], a

modified version of the method, E2VEM, was proposed, designed to allow the

definition of coercive bilinear forms that consist only of a polynomial approxima-

tion of the problem operator. In this letter, we apply the two methods to solve

some test Poisson problems with anisotropic solutions and diffusivity tensors.15

For each test, we compare the relative energy errors done by each method.

Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary. We look for a

solution of Poisson problem with homogeneous Dirichlet boundary conditions,

that in variational form reads: find u ∈ H1
0(Ω) such that

(K∇u,∇v)Ω = (f, v)Ω ∀v ∈ H1
0(Ω) , (1)

where (·, ·)Ω denotes the L2(Ω) scalar product and we assume f ∈ L2(Ω) and20

K ∈ [L∞(Ω)]2×2 is a symmetric positive definite matrix.

2. Problem discretization

We consider a star-shaped polygonal tessellation Mh of Ω satisfying the

standard VEM regularity assumptions (see [3, 5]). Let k ∈ N such that k ≥ 1

and, ∀E ∈Mh, let Π∇k,E : H1(E)→ Pk(E) be such that, ∀v ∈ H1(E),

(
∇Π∇k,Ev,∇p

)
E

= (∇v,∇p)E ∀p ∈ Pk(E) and


∫
∂E

Π∇k,Ev =
∫
∂E

v if k = 1 ,∫
E

Π∇k,Ev =
∫
E
v if k > 1 .

2.1. Standard Virtual Element discretization

According to [3], we define the following virtual space on any E ∈Mh:

VE
h,k =

{
vh ∈ H1(E) : ∆vh ∈ Pk(E) , vh|e ∈ Pk(e) ∀e ⊂ ∂E, vh|∂E ∈ C0(∂E) ,

(vh, p)E =
(
Π∇k,Ev, p

)
E
∀p ∈ Pk(E) /Pk−2(E)

}
, (2)
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and the relative global space Vh,k = {vh ∈ H1
0(Ω): vh|E ∈ VE

h,k ∀E ∈ Mh}.

Then (1) can be discretized by defining, ∀E ∈ Mh, the stabilizing bilinear

SE : VE
h,k × VE

h,k → R such that, denoting by χE(vh) the vector of degrees of

freedom of vh on E (see [3]),

SE (uh, vh) = χE(uh) · χE(vh) ∀uh, vh ∈ VE
h,k ,

and looking for uVh ∈ Vh,k that solves

∑
E∈Mh

(
KΠ0

k−1,E∇uVh ,Π0
k−1,E∇vh

)
E

+‖K‖L∞(E) S
E
(
(I −Π∇k,E)uVh , (I −Π∇k,E)vh

)
=

∑
E∈Mh

(
f,Π0

k−1,Evh
)
E
∀vh ∈ Vh,k , (3)

where Π0
k−1,E denotes the L2(E)-projection on Pk−1(E) or [Pk−1(E)]

2
, depend-

ing on the context.25

2.2. Enlarged Enhancement Virtual Element discretization

In [5], the space defined in (2) has been modified in order to allow the discrete

problem to be well-posed without the need of defining a stabilizing bilinear form.

Let `E ∈ N be given ∀E, such that, denoting by NE the number of vertices of

E,

(k + `E)(k + `E + 1) ≥ kNE + k(k + 1)− 3 .

We define

WE
h,k,`E =

{
vh ∈ H1(E) : ∆vh ∈ Pk+`E (E) , vh|e ∈ Pk(e) ∀e ⊂ ∂E,

vh|∂E ∈ C0(∂E) , (vh, p)E =
(
Π∇k,Ev, p

)
E
∀p ∈ Pk+`E (E) /Pk−2(E)

}
, (4)

that can be seen to have the same degrees of freedom of VE
h,k. Let Wh,k,` =

{vh ∈ H1
0(Ω): vh|E ∈ WE

h,k,`E
∀E ∈ Mh}. Then, we can discretize (1) by

looking for uWh ∈ Wh,k,` such that, ∀vh ∈ Wh,k,` ,∑
E∈Mh

(
KΠ0

k+`E−1,E∇uWh ,Π0
k+`E−1,E∇vh

)
E

=
∑

E∈Mh

(
f,Π0

k−1,Evh
)
E
. (5)

The proof of well-posedness of (5) for k = 1 can be found in [5], while its30

extension to k > 1 will be the subject of an upcoming work.
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(a) Polymesher (b) Cartesian (c) Concave

Figure 1: Meshes used in tests.

Polymesher Cartesian Concave

order 1 order 3 order 1 order 3 order 1 order 3

avg
‖AS‖∞
‖AΠ‖∞

1.05 0.27 1.00 0.23 0.93 0.27

Table 1: Test case 1. Average ratio through refinement between the infinity norms of the

polynomial part AΠ and the stabilizing part AS of the stiffness matrix in standard VEM.

3. Numerical results

In all the test cases, we consider problem (1) on the unit square. We dis-

cretize the domain with the three families of polygonal meshes that are depicted

in Figure 1, the first one being obtained using Polymesher [6], while the second

one is a family of standard cartesian meshes and the third one is composed

of concave polygons. We compare the two methods described in the previous

section by observing the behaviour of the relative error computed in energy

seminorm as

e? =

(∑
E∈Mh

∥∥∥√K∇(u−Π∇k,Eu
?
h

)∥∥∥2

L2(E)

) 1
2

∥∥∥√K∇u∥∥∥
L2(Ω)

? = V,W .

In the plots, we show the rate of convergence α computed using the last two

computed errors.

3.1. Test case 135

In the first test, we define the forcing term f such that the exact solution is

u(x, y) = 10−2xy(1 − x)(1 − y)(e20x − 1), whereas K = 8 · 10−3(e1e
ᵀ
1) + e2e

ᵀ
2 ,
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(a) Order 1, Polymesher mesh
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(c) Order 1, Concave mesh
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(d) Order 3, Polymesher mesh
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(e) Order 3, Cartesian mesh
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(f) Order 3, Concave mesh

Figure 2: Test case 1. Convergence plots.

where e1 and e2 are the vectors of the canonical basis of R2. Figure 2 displays

the behaviour of the errors obtained with the two methods and the ratio eV/eW ,

for orders 1 and 3, with respect to the maximum diameter of the discretization.40

The results show that the two methods behave equivalently on Cartesian and

Concave meshes, whereas E2VEM performs better on the Polymesher meshes

with order 1, while the two methods tend to have the same behaviour with

higher orders. This is due to the strong anisotropy both of the solution (that

presents a strong boundary layer in the x-direction close to the boundary x = 145

of the domain) and of the diffusivity tensor K. Indeed, as we can see from

Table 1, for k = 1 the stabilizing part of the VEM bilinear form is of the

same order of magnitude as the polynomial part, while for k = 3 we can see

that the polynomial part is predominant. This induces larger errors (see Figure

2a) for the standard method on general polygonal meshes, such as the ones in50

the Polymesher family, since the stabilization is an isotropic operator. This

effect is not felt by the E2VEM method since its bilinear form consists only

on a polynomial part that correctly takes into account the anisotropy of the

tensor K. The difference between the two methods is mitigated on Cartesian

and Concave meshes since they are by construction aligned with the principal55
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(a) Order 1, Polymesher mesh
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(b) Order 1, Concave mesh
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(c) Order 2, Polymesher mesh
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(d) Order 2, Concave mesh

Figure 3: Test case 2. Convergence plots.

Polymesher Cartesian Concave

order 1 order 2 order 1 order 2 order 1 order 2

avg
‖AS‖∞
‖AΠ‖∞

1.11 0.62 1.00 0.56 2.97 4.02

Table 2: Test case 2. Average ratio through refinement between the infinity norms of the

polynomial part AΠ and the stabilizing part AS of the stiffness matrix in standard VEM.

directions of the error (see the error analysis done in [4]). Notice that in this

case the presence of non-convex polygons does not affect the results.

3.2. Test case 2

In the second test, the exact solution is u(x, y) = sin(2πx) sin(80πy) and

K = e1e
ᵀ
1 + 6.25 · 10−4(e2e

ᵀ
2). In Figure 3 we display the error plots for orders 160

and 2 and Table 2 reports again the average ratio between the polynomial and

stabilizing parts of the standard VEM bilinear form. The results for Cartesian

meshes are consistent with the previous test, hence the convergence plots are not

reported for brevity. However, we observe from Figure 3a that with Polymesher
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meshes the E2VEM method reaches the asymptotic rate of convergence before65

the standard VEM method. This is due to the very strong anisotropy of the

solution, due to its highly oscillating behaviour in the y-direction. Moreover,

in this case the presence of non-convex polygons induces larger errors in the

standard VEM, as we can see from Figures 3b and 3d. Notice that this fact can

be related to the predominance of the stabilizing part as we can see in Table 2.70

4. Conclusions

In this letter, we compare standard VEM and E2VEM on some Poisson test

problems. Numerical results show that in the presence of strong anisotropies

of the solution and diffusivity tensor, with general convex polygonal meshes,

lowest order E2VEM perform better than VEM. In some strongly anisotropic75

cases, we observe better performance of E2VEM also for higher orders in the

presence of non-convex polygons. In all the other cases, the two methods behave

equivalently.
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