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Abstract

This paper presents new convex conditions to design robust and LPV gains for con-
tinuous time-varying systems subject to saturating actuator and energy bounded
disturbances. The input-to-state stability conditions are used to design controllers
ensuring the minimization of theL2-gain between the disturbance input and the con-
trolled output. Furthermore, optimization procedures to maximize the estimate of the
region of attraction, and the bound to the control signal as well, are formulated. The
efficacy of the proposed methods is illustrated with numerical examples, including a
reference tracking problem, where realistic simulations are performed.
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1 INTRODUCTION

Linear parameter varying (LPV) systems can be used to rep-
resent nonlinear models, simplifying the search for stability
certificates, and the design of filters and controllers. Currently,
studies of LPV processes are on the rise, and several works
can be found in the literature [14]. A great part of the exist-
ing results has been developed by using the Lyapunov theory.
These problems have been solvedwith the use of LinearMatrix
Inequalities (LMIs).
One of the first methods employed on the study of LPV sys-

tems consists in finding a Lyapunov function with a constant
matrix that can guarantee the stability of the entire domain of
the time-varying parameters. These results shed light on the
solution to a great number of problems, although they may
provide conservative results. To diminish the conservatism
associatedwith the use of a single Lyapunovmatrix, newmeth-
ods based on the use of parameter-dependent Lyapunov func-
tions have emerged [6, 23, 10], including delayed Lyapunov
functions used in the context of discrete-time systems [24].
The main challenge when considering parameter-dependent
Lyapunov functions for LPV continuous-time systems is the
computation of the time derivative of the Lyapunov matrix.

The works in [11] proposed LMI conditions to certify the
stability of LPV continuous-time systems. The conditions con-
sider the variation rate of the time-varying parameters to have
known bounds and belonging to a convex polytopic domain.
This fact led to less conservative results when compared with
quadratic stability conditions. In [22], computational issues
associated with solving parameter-dependent Lyapunov func-
tions problems are discussed, exhibiting the growth of LMI
number when the Lyapunov matrix depends on continuous
time-varying parameters.
In [1], LPV systems with piecewise constant parameters

under constant and minimum dwell-time are investigated
yielding conditions to certificate stability for such systems
and to design stabilizing controller. In [3], the stability of
LPV systems with differentiable parameters is investigated.
LPV systems with piecewise constant parameters subject to
spontaneous Poissonian jumps are studied in [2], where con-
ditions for stability analysis and state-feedback control are
developed. A recent approach consists of using a Lyapunov
matrix depending on the filtered time-varying parameter [5],
where the authors show that it allows instantaneous jumps in
the parameter, overcoming the inconvenience of bounding the
time-derivative of the Lyapunov function.
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Working with continuous time-varying parameters may be a
challenging task due to the size and complexity of the problem.
Moreover, the design of controllers in the presence of satu-
rating actuators makes necessary estimating the set of initial
conditions, as well the maximum energy disturbance tolera-
ble, such that the closed-loop system remains stable [7]. Even
for unstable linear open-loop systems, the actuator saturation
makes the closed-loop nonlinear, and, for any state-feedback
control law, the trajectories to the origin depend on the initial
states. See [26] for details.
There are many ways of treating the problem of actuator sat-

uration and one known method is applying the modified sector
condition, introduced by [12] and used in [10] for discrete-
time LPV systems. In [13] the authors investigate precisely
known and time-invariant systems with asymmetric saturat-
ing actuators using nonlinear sector condition and piecewise
quadratic Lyapunov candidate functions. In [8], L2 control
of continuous-time LPV systems with saturating actuators is
studied, employing the modified sector condition to deal with
the saturation problem, and the Pólya theorem to reduce the
conservatism of the proposed method. Homogeneous poly-
nomially parameter-dependent state-feedback controllers for
LPV systems with saturating actuators are also studied in
[21]. The authors developed conditions to improve the esti-
mates of the region of attraction (R.A.) for the closed-loop
systems. The results obtained with parameter-dependent con-
trol laws are compared, in terms of the size of R.A., with
robust controllers. Recently, the fault estimation problem for
aero-engine LPV system has been considered in [28] with actu-
ator and sensor faults under disturbances. See also [30] for a
model predictive based approach. Local stabilization condi-
tions under saturation, control signal quantisation, and state
nonlinearity are given in [25] where amplitude bounded dis-
turbances are taken into account. However, the nonlinearity
is required to fulfill (local) Lipschitz conditions and the state
space matrices must be time-invariant. In [19], the input-to-
state practical stability, and a commonLyapunov functionwere
employed to design adaptive fault-tolerant tracking controllers.
A switched nonlinear model was employed, and a constant
Lyapunov matrix was used in the derivation of the conditions.
In [31], the control design problem dealing with unavailable
states was addressed. The unknown states were compensated
via a new form of K-filters. In [15], the dynamic output-
feedback control problem for continuous-time LPV systems
was addressed, but still requiring the continuity of the parame-
ter variation. Thus themainmotivating issues for this work are
i) relaxing the requirement of continuity of the time-varying
parameter, ii) designing a controller depending on a filtered
version of the time-varying parameter, reducing actuator stress
due to noise parameter measurements, iii) handling saturat-
ing actuators and energy disturbance signals. In particular, all

the above-mentioned works require bounded parameter varia-
tion rate, which may limit the applicability of conditions. Our
proposal overcomes such an issue.
This work proposes conditions, written in the form of

LMIs to design robust, and LPV state-feedback gains for
time-varying continuous systems subject to saturating actu-
ator and energy bounded disturbances. The state-feedback
gains designed depend on the filtered time-varying parame-
ter. Additionally, when designing time-varying controllers for
time-varying systems in real situations, the noise on the param-
eter measures may induce abrupt changes in the gain values
and, consequently, in the control signal. Therefore, one may
expect early damages on actuator due to wear and fatigue.
Hence, filtering the time-varying parameter and guarantee-
ing that the closed-loop filtered system is stable may produce
state-feedback gains with smaller variance over time. Inspired
by [20], the methods proposed in this article consider the
filtered parameter on the stabilization problems and, as an
advantage over the existing literature, there is no need to know
the bounds of the time-derivative of the parameter and such
function does not need to be continuous. Moreover, the pro-
posed technique provides local stability certificates for the
closed-loop system for a set of initial conditions and distur-
bance limits. In this sense, different optimization problems can
be addressed: i)minimize theL2 gain between the disturbance
and measured output, ii) maximize the set of initial conditions
such that the closed-loop remains stable, iii)minimize the con-
trol signal limit such that the closed-loop system is stable, or
iv) maximize the disturbance energy tolerance.
The main contributions of this paper are to provide new

design conditions formulated as convex optimization proce-
dures. Moreover, the presented approach relaxes the funda-
mental assumption of constrained parameter time-derivative
of LPV systems. Therefore, the new local stabilization design
conditions for polytopic LPV systems present the following
features under less restrictive hypothesis than the aforemen-
tioned methods:

1. the parameter of the LPV system may be discontinuous,
allowing unbounded time-derivative rates;

2. the designed controller employs a filtered version of
the system’s parameter, naturally leading to smoother
control signals;

3. minimization of the L2 gain between the disturbance
and measured output;

4. maximization of the estimate of the region of attraction.

This paper is structured as follows: in the next section, we
formulate the main problem. In Section 3, some preliminar-
ies and auxiliary results are given. In Section 4, we present
the main contributions followed by some selected convex opti-
mization procedures such as to maximize either the estimate
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of the region of attraction, the minimization of the L2 gain
between the exogenous signal and the output of the system.
Numerical examples are provided in Section 5, where the effi-
cacy of our approach is illustrated. The conclusions of this
work are summarized in Section 6.
Notation: The symbol ⋆ stands for symmetric blocks in a

matrix. Identity and zero matrices are represented by I and 0,
respectively. The set of real numbers is denoted by ℝ. M ∈
ℝn×nu is a matrix of dimensions n×nu with real entries and x ∈
ℝn is a vector with n positions and real entries. The transpose
of a matrixM isM⊤, andM⊤ = M > (≥)0 denotes a sym-
metric positive definite (semi-definite) matrix M . He(M) =
M +M⊤ and diag (X, Y ) represents a block diagonal matrix,
and trace(M) denotes the sum of the diagonal elements of a
square matrixM .

2 PROBLEM FORMULATION

Consider the following LPV system subject to saturating actu-
ators (to simplify the notation, the dependence on t will be
omitted for the time-varying parameters):

ẋ = A(�)x + B(�)sat (u) + Bw(�)w
y = C(�)x +Dw(�)w

(1)

where x ∈ ℝn is the state vector and u ∈ ℝnu is the control
input. The symmetric and decentralized saturation function,
sat (u), can be written as

sat
(

u(r)
)

= sign
(

u(r)
)

min(|u(r)|, �(r)), r = 1,… , nu, (2)

where � ∈ ℝnu , and �(r) is the maximum allowed level of the
signal u(r) due to the saturation of the rtℎ actuator. The exoge-
nous signal w ∈ ℝnw is energy-bounded belonging to the set

W =
{

w ∈ ℝnw ∶ ‖w‖22 ≤ �−1
}

, (3)

with ‖w‖22 =
∞

∫
0

w⊤(�)w(�)d�. The matrices A ∈ ℝn×n, B ∈

ℝn×nu , Bw ∈ ℝn×nw , C ∈ ℝny×n, and Dw ∈ ℝny×nw depend
linearly on �. All of these matrices can be generically written
as Q(�) =

∑N
i=1 �iQi, � ∈ ΛN , where Qi, i = 1,… , N , are

the vertices of the polytope and ΛN is the unit simplex:

ΛN =

{

� ∈ ℝN ∶
N
∑

i=1
�i = 1, �i ≥ 0, i = 1,… , N

}

. (4)

As usual in LPV literature, we suppose the on-line availabil-
ity of the time-varying parameter �, which has no restriction
imposed on its variation rates. Moreover, it may even present
discontinuities. These assumptions match some realistic con-
ditions, such as allowing one to handle systems with jumps in
the parameters, as it occurs in the class of switching systems.
In the sequel, we formalize the main problem addressed.

Definition 2.1. A closed-loop system is said input-to-state sta-
ble (ISS), if for all w ∈ W and x(0) ∈ R0, the corresponding
trajectories are bounded, i.e., they are confined in RA and
if the disturbing is vanishing, then the trajectories converge
asymptotically to the origin [7].

Problem 1. Consider the continuous-time system under sat-
urating actuators (1)-(4), that depend linearly on the time-
varying parameter �. Design a state-feedback controller
depending linearly on smooth version of �, ensuring that:

1. the closed-loop system, which will be presented in the
following section, is said ISS.

2. The value of
√


 , 
 > 0, is an L2-gain between the
exogenous input and the system output, thus verifying

‖y‖2 =
√


(‖w‖2 + b), (5)

for any w ≠ 0 ∈ W , and where the bias term b is due to
the non-null initial condition.

Associated with the items 1-2 of Problem 1, some optimiza-
tion procedures, presented in Section 4, can be derived.

3 PRELIMINARY RESULTS

Due to the assumptions on the time-varying parameter �, we
may expect discontinuities and fast changes that could affect
the performance of the actuators. Moreover, the discontinu-
ities on � impact the search for a Lyapunov candidate function,
since unbound terms may arise in its time derivative. To over-
come such issues, we propose to use a filtered version of �,
leading to a smoother parameter signal which will be used to
certify the stability. By hypothesis, we assume � is (at least)
piecewise continuous over the interval [t − �, t], allowing to
write for � > 0

�(t) = �−1
t

∫
t−�

�(�)d�, ∀t > 0, (6)

where � holds the convex sum property [5]:
N
∑

i=1
�i =

N
∑

i=1
�−1

t

∫
t−�

�(�)d�. By using the linearity property,

the integral and sum operators are interchangeable, leading to
N
∑

i=1
�i = �−1

t

∫
t−�

N
∑

i=1
�i(�)d� = �−1

t

∫
t−�

d� = 1. Moreover, from

(6), the fundamental theorem of calculus allows us to write

�̇(t) = �−1
(

�(t) − �(t − �)
)

. (7)

Even for piecewise continuous functions, it is possible to see
that �̇(t) is always finite and bounded for all t ∈ [−�,+∞].
Another important aspect is that, for strictly positive values
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of �, �(t) can be seen as a smoothed approximation of �(t).
Furthermore, the bigger �, the smoother �(t), as shown in [9].
To facilitate the following manipulations, the saturation

function is rewritten in terms of the dead zone function [26]
which is defined byΨ(u) = u−sat (u). By considering a static
feedback control law depending linearly on the parameter �,
u = K(�)x, with K(�) ∈ ℝnu×n, and the dead-zone function
Ψ(u), it is possible to rewrite system’s equation (1) as

ẋ = Aclx − B(�)Ψ(u) + Bw(�)w, (8)

where Acl = A(�) + B(�)K(�) is the closed-loop dynamic
matrix, whenever |u(r)| ≤ �(r), r = 1,… , nu.
System (8) is nonlinear because of Ψ(u) hence, the local

stability is required to characterize the allowed initial condi-
tions ensuring their respective trajectories go to the origin. The
set of all initial conditions resulting in trajectories that con-
verge to the origin is denoted by RA ⊆ ℝn, being called the
region of attraction. Such a region can be non-convex, open,
and even unbounded in some directions, mading its charac-
terization non trivial [26]. Therefore, we provide an estimate
region, RE ⊆ RA , as large as possible.
Moreover, because of Problem 1, we are also interested in

a subset R0 ⊆ RE , as large as possible, consisting of the
initial conditions such that the respective closed-loop trajec-
tories converge to the origin without leaving RE , for a given
disturbance w with bounded energy �−1, i.e., for w ∈ W .
We employ the sector nonlinearity to handle the saturating

actuator in (8). Thus, if we provide that the control signal u and
an auxiliary signal v ∈ ℝnu belonging to the set

S(u − v, �) =
{

u ∈ ℝn, v ∈ ℝn ∶ |u(r) − v(r)| ≤ �(r)
}

, (9)

∀r = 1,… , nu, then, the following generalized sector con-
dition [26, 12] concerning with the dead-zone nonlinearity:

Ψ(u)⊤S(�)
(

Ψ(u) − v
)

≤ 0 (10)
is verified for any positive definite diagonal matrix S(�) ∈
ℝnu×nu . We choose v with similar structure to the signal u, i.e.,
we consider v = G(�)x, with G depending linearly on � is
an extra degree of freedom in the design conditions. We con-
sider a non-quadratic Lyapunov function candidate, depending
linearly on the parameter �, given by

V (x, �) = x⊤P (�)−1x. (11)

Such a choice of structure for the Lyapunov candidate function,
allows us to keep a relatively low computational requirement
while providing a solution for Problem 1 for a large class of
systems. Moreover, taking a parameter independent Lyapunov
candidate function leads to a controller that cannot be adapted
to parameter changes, yielding to more conservative results.
To estimate the region of attraction,RE , we use a level set of

the Lyapunov function associated with the closed-loop system:

LV (�) =
⋂

∀ �∈Λ
E (P (�)−1, �) (12)

with � > 0 and the ellipsoidal set

E (P (�), �) = {x ∈ ℝn
| x⊤P (�)−1x ≤ �−1}. (13)

The level set presented in (12) remains as an infinite dimen-
sional condition, since all values of � in the continuous set Λ
must be verified. The following lemma, developed in [16],
where the proof can be found, presents an equivalent form to
compute such a set through a finite dimensional condition.

Lemma 3.1. Suppose that V (x, �) is a Lyapunov function
for system (8). Then, the level set (12) can be equivalently
computed by using the finite dimensional condition

LV (�) =
⋂

∀ �∈Λ
E (P (�)−1, �) =

N
⋂

i=1
E (P −1i , �) (14)

for � > 0 and E (Pi, �) = {x ∈ ℝn; x⊤P −1i x ≤ �−1}.

4 MAIN RESULTS

The main contribution of this work is the proposition of new
design conditions of an LPV state-feedback gain stabilizing
systems depending linearly on time-varying parameters and
under saturating actuators. Because of the use of smoothed
parameter � given in (6), the systems’ parameter may have
jumps.

Theorem 4.1. Consider a continuous-time system described
by (1)-(4). If there exist symmetric positive-definite matrices
Pi ∈ ℝn×n, matrices Ui ∈ ℝnu×n, Zi ∈ ℝnu×n, diagonal
positive-definite matrices Si ∈ ℝnu×nu , with i = 1,… , N , and
given positive real scalars �, �, and 
 such that
⎡

⎢

⎢

⎢

⎢

⎣

He
(

AjPi+BjZi
)

− 1
�
(Pj−Pk) −BjSi + U⊤

i Bwj PiC⊤
j

⋆ −Si − S⊤i 0 0
⋆ ⋆ −I Dw

⊤
j

⋆ ⋆ ⋆ −
I

⎤

⎥

⎥

⎥

⎥

⎦

< 0,

(15)
[

Pi Z⊤
i − U

⊤
i

⋆ �2(r)�

]

≥ 0, (16)

� − � ≥ 0, (17)
hold, for all i, j, k = 1,… , N , and r = 1,… , nu, then the
time-varying gains given by

Ki = ZiP
−1
i , (18)

are such that the control law u = K(�)xwithK(�) computed as
K(�) =

∑N
i=1 �iKi ensures a ISS closed-loop system, providing

a solution to Problem 1, that is:
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1. for w = 0, the trajectories of the closed-loop system
initiated in the set RE = LV (�), with LV given in (12)
converge to the origin without leaving this set;

2. for any w ∈ W , w ≠ 0, the trajectories of (8) remain
confined in RE = LV (�) for all initial conditions
belonging to R0 = LV (�), with � = (�−1 − �−1)−1;

3. for any w ∈ W , w ≠ 0, and x(0) ∈ LV (�),
√


 is a
guaranteed L2-gain between the exogenous inputw and
the output y, ensuring (5) with b = x(0)⊤P (�)−1x(0).

Proof. The proof is given in two parts: one for the local ISS
and L2-gain of the closed loop system, and another for the
inclusion of the level set into S. Stability part: Multiply (15)
by �i(t), i = 1,… , N , and sum it up to get the terms depending
in i expressed in terms of �(t). Additionally, replace Z(�) =
K(�)P (�), U (�) = G(�)P (�), and S(�) = T (�)−1, multiply the
obtained equation by �k(t − �), for k = 1,… , N , �j(t), for
j = 1,… , N , and sum it up to get,
⎡

⎢

⎢

⎢

⎢

⎣

R −B(�)T (�)−1 + P (�)G(�)⊤ Bw(�) P (�)C(�)⊤

⋆ −T (�)−1 − T (�)−T 0 0
⋆ ⋆ −I Dw(�)⊤

⋆ ⋆ ⋆ −
I

⎤

⎥

⎥

⎥

⎥

⎦

< 0.

withR = AclP (�)+P (�)A ⊤
cl −�

−1
(

P (�)−P
(

�(t−�)
)

)

, and
Acl as in (8). By employing (7) and the convexity properties
of the polytopic representation, one has −�−1

(

P (�)−P
(

�(t−

�)
)

)

= −
∑N
i=1 �

−1(�i(t) − �i(t − �)
)

Pi =
∑N
i=1 �̇iPi = Ṗ (�).

Since T (�) and P (�) are regular matrices, we pre- and post-
multiply the last inequality by diag

(

P (�)−1, T (�), I, I
)

. More-
over, we use the fact P (�)P (�)−1 = I to write Ṗ (�)P (�)−1 +
P (�)Ṗ (�)−1 = 0, or simply −P (�)−1Ṗ (�)P (�)−1 = Ṗ (�)−1,
yielding

⎡

⎢

⎢

⎢

⎢

⎣

W F P (�)−1Bw(�) C⊤(�)
⋆ −T (�)⊤ − T (�) 0 0
⋆ ⋆ −I Dw

⊤(�)
⋆ ⋆ ⋆ −
I

⎤

⎥

⎥

⎥

⎥

⎦

< 0,

with W = He(P (�)−1Acl) + Ṗ (�)−1 and F = −P (�)−1B(�) +
G(�)⊤T (�)⊤. By applying the Schur complement, and pre- and
post-multiplying the resulting inequality by

[

x⊤ Ψ(u)⊤ w⊤
]

and its transpose, it is possible to get V̇ (x) + 
−1y⊤y−w⊤w−
2Ψ(u)⊤S(�)

(

Ψ(u) − G(�)x
)

< 0, where V (x) = x⊤P (�)−1x,
and V̇ (x) = ẋ⊤P (�)−1x + x⊤P (�)−1ẋ + x⊤Ṗ (�)−1x. With
u = K(�)x and v = G(�)x, and supposing that these signals
belong to the set S(u − v, �) given in (9), then the generalized
sector condition (10) is ensured and it is possible to guar-
antee that V̇ (x) + 
−1y⊤y − w⊤w < 0, meaning that with
�1 = max

�∈Λ
�
(

P (�)
)

, �2 = min
�∈Λ

�
(

P (�)
)

we verify �1‖x‖2 ≤

V (x) ≤ �2‖x‖2. Moreover, with w = 0 for t ≥ t0, we have
V̇ (x) ≤ −
−1y⊤y+2Ψ(u)⊤S(�)

(

Ψ(u)−G(�)x
)

≤ −�3‖x‖2 <

0 for a small enough �3 > 0. Thus, V (x) = x⊤P (�)−1x given
in (11) is a Lyapunov function for the closed-loop system (8),
allowing us to conclude on the local ISS stability of such a
system.
Inclusion part: In the previous part, we required that sig-

nals u and v belong to the set S. In this part of the proof, we
demonstrate that the choice of initial conditions x(0) ∈ LV (1)
ensures such a property.
If additionally to (15), the inequality (16) is also verified,

multiply it by �i(t), i = 1,… , N , add it up, and replace Z(�)
and U (�) by K(�)P (�) and G(�)P (�), respectively, pre- and
post-multiply the obtained inequality by diag

(

P (�)−1, 1
)

and
its transpose, and apply Schur complement, to get P (�)−1 −
[

K(�)(r) − G(�)(r)
]⊤�−2(r)�

−1[K(�)(r) − G(�)(r)
]

≥ 0 for all r =
1,… , nu. This last inequality can be pre- and post-multiplied
by x⊤ and its transpose, respectively, yielding x⊤P (�)−1x ≥
x⊤

[

K(�)(r) − G(�)(r)
]⊤�−2(r)�

−1[K(�)(r) − G(�)(r)
]

x for all r =
1,… , nu. With u = K(�)x, v = G(�)x, and taking the initial
condition x(0) ∈ LV (�), we have that, due to the stability
of the system, x⊤P (�)−1x ≤ V (x(0)) = x(0)⊤P (�)−1x(0) ≤
�−1. Therefore, it is possible to write 1 ≥ �V (x(0)) ≥
�x⊤P (�)−1x ≥ |u(r) − v(r)|2∕�2(r), which allows us to conclude
that |u(r) − v(r)| ≤ �(r). Thus, inequality (16) ensures that the
generalized sector condition is verified with initial conditions
belonging to LV (�). As a consequence, the level set contrac-
tiveness is also guaranteed, providing RE = LV (�), meaning
that the set S includes the contractive set RE = LV . As a
consequence, the Lemma 3.1 is valid for any trajectory of the
closed-loop system starting LV remains in S.

Remark 1. The numerical complexity of Theorem 4.1
is associated with the number of scalar decision vari-
ables NV , and the number of LMI rows NR, that can
be formulated as NV = N

[

n(n+1)+2nu(2n+1)
2

]

, NR =
N

[

nu(n + 1) +N2(n + nu + nw + ny)
]

, where N is the num-
ber of vertices of the system.

When w = 0 in (1) and (8), Theorem 4.1 can be adapted to
deal with the stabilization problem.

Corollary 4.2. Consider a continuous-time system described
by (1)-(4). If there exist symmetric positive-definite matrices
Pi ∈ ℝn×n, matrices Ui ∈ ℝnu×n, Zi ∈ ℝnu×n, diagonal
positive-definite matrices Si ∈ ℝnu×nu , with i = 1,… , N , and
a given positive scalar �, such that (16) and
[

He
(

AjPi + BjZi
)

− 1
�
(Pj − Pk) −BjSi + U⊤

i

⋆ −Si − S⊤i

]

< 0,

hold, for all i, j, k = 1,… , N , r = 1, ..., nu, then the
time-varying controller given by (18) ensures that the closed-
loop system is asymptotically stable for all initial conditions
belonging to RE = LV (�).
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Note that if there is no information concerning the time-
varying parameter is available, one may use Si = S, Zi = Z,
and Pi = P , leading to a robust controller design.

Remark 2. In case no information on the time-varying param-
eter and its derivative is available, the quadratic approach can
be recovered from Theorem 4.1 by imposing Pi = P , Zi =
Z, Si = S, Ui = U , i = 1,… , N , leading to quadratic
input-to-state stabilizing control law u = Kx, withK = ZP −1.

Remark 3. Formulations presented in Theorem 4.1 and
Corollary 4.2 heritages some conservatism from the structure
chosen for the Lyapunov candidate function. Less conservative
formulations may be obtained with homogeneous polynomial
functions [23] or even with polynomial dependency on the
state [27, 29]. However, the computational burden increases
due to the Sum of Squares (SOS) requirements. Also, slack
variables could be used following the approach in [5], lead-
ing to a controller design that does not depend directly on the
Lyapunov matrix. Also, despite inequality (16) may have some
conservatism due to the generalized sector condition, it is a
key feature to handle control input saturation allowance, which
leads to better results than saturation avoidance methods.

4.1 Optimization design procedures
The conditions proposed in Section 4 work with different
scalar variables, �, �, 
 , and �, that can be optimized to specific
performances of the closed-loop system. For instance, it is pos-
sible designing controllers that maximize RE or the maximal
tolerable energy disturbance, �−1. Another design objective
may be the minimization of the L2 gain,

√


 , or the minimal
saturating bound of the control signal that ensures the regional
stability or a desired L2. Such objectives can be pursued with
the aid of the convex optimization procedures.
Maximization of RE : The design of the parameter-

dependent control gain can be optimized to achieve a larger set
of allowed initial conditions. Thus, the goal is to maximize the
estimated region of attraction considering w = 0.
For maximizing the region of attraction, we consider the

optimization problem given by maximizing an ellipsoid given
by E (H,�), H ∈ ℝn×n, such that E (H,�) ⊂ LV (�), which
can ensured by

T1 ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
Pi,Ui,Zi

trace(H)

subject to: Theorem 4.1 or Corollary 4.2 and
[

Pi I
⋆ H

]

> 0.

(19)
Optimization procedure T1 explores an indirectly way to

maximize the estimate of the region of attraction by mini-
mizing the trace(H): from Schur complement in the last

constraint of (19), we have H > P −1i that, with the objective
function, shrinks Pi enlarging the region of attraction. The
other optimization procedures can be proposed in the form of

T2 ∶

{

min f
subject to: Theorem 4.1 or Corollary 4.2,

(20)
where the objective function f can be adequately chosen with
the intents of the designer. For instance, consider the following
three criteria:

1. Choose f = � to search for the smallest amount of con-
trol signal necessary to stabilize the system and reject
the disturbance.

2. Choose f = 
 to minimize the L2-gain between the dis-
turbance w and the output y. Note that, if null initial
conditions are employed, i.e., x(0) = 0, then �−1 = �−1.

3. Choose f = � to maximize the energy bound of the dis-
turbance, �−1, for initial conditions x(0) ∈ R0. Note that
if x(0) = 0, �−1 = �−1.

Corollary 4.2 cannot be used in cases 2 and 3 because it is
assumed there is no external disturbance, in such a case.

Remark 4. If the optimization procedures are not used, one
can choose the parameters according to the following: � is the
maximum control signal amplitude available to the system, so
it should be chosen such that � ≤ sat

(

ur
)

; choose
√


 as
a desirable bound for the L2-gain between the disturbance w
and the output y; select � according to the energy bound of the
disturbance applied on the system, �−1, and the initial condi-
tions x(0), as (17). Concerning the filtering parameter � > 0,
any small enough value is sufficient to handle discontinuities
in the time-varying parameter since its time-derivative (7) will
be finite. Such a � can also be chosen as a filtering tax, so one
may tune it to mitigate undesired frequencies and oscillations
of the time-varying parameter signal. The greater the � value,
the smoother the � time-behavior. See also Example 2 where
the effect of parameters �, 
 , and � on control performance is
discussed.

5 NUMERICAL EXPERIMENTS

This section illustrates the results for the design of stabilizing
controllers for LPV continuous-time systems with saturating
actuators. The effects of the filtered time-varying parameter �
in the control design and some optimization design procedures
will be explored. The routines were implemented in MATLAB,
version 8.5.0.197613 (R2015a), Windows 10 (Intel Celeron
N2940, 1.83 GHz, x64), using Yalmip and SeDuMi.
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Example 1. In this example, it is discussed the influence of
the filtering tax � on both time-varying parameter and state-
feedback gains. It is shown that even when the time-varying
parameter derivative is unbounded, LPV controllers can be cal-
culated. Besides, the smoothest behavior of the state-feedback
gains is obtained for higher values of �.
Consider the inverted pendulum system investigated in [8]

where the pendulum varies between −30◦ and +30◦ and the
control signal is constrained by the voltage applied to the arma-
ture motor which cover a range from −13V up to +13V. Such
a system is described by (1), where the polytope vertices are
given by matrices:

A1 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 2.2643 −15.148 −0.0073
0 27.8203 −36.6044 −0.0896

⎤

⎥

⎥

⎥

⎥

⎦

, B =

⎡

⎢

⎢

⎢

⎢

⎣

0
0

2.2772
5.2470

⎤

⎥

⎥

⎥

⎥

⎦

,

A2 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
0 2.2643 −16.664 −0.0073
0 27.8203 −36.6044 −0.0896

⎤

⎥

⎥

⎥

⎥

⎦

, C =
⎡

⎢

⎢

⎣

1 0 0 0
0 1 0 0
1 1 0 0

⎤

⎥

⎥

⎦

,

B1 = B2 = B, Bw1 =
[

0 0 −1.2497 −2
]⊤, Bw2 =

[

0 0 −1.3748 −2
]⊤,Dw = 0. The system input, which is the

force applied by a DC servomotor, saturates at |�| = 13.
Our goal in this experiment is to design state-feedback gains

for different values of the filtering tax �, and illustrate its
impact on both filtering parameter and control law. With the
obtained designs, we simulated the system with the same noise
affecting the measured parameter �. Figure 1 shows the influ-
ence of � on the time-varying parameter �1, where the great
values of � clearly lead to smooth behavior of parameter � used
in the control law. The green bands indicate instants where
the parameter � is discontinuous. Therefore, it is clear that
the approach in [25] can not handle this case because of the
Lipschitz assumption. Additionally the parameter dependent
Lyapunov function proposed in [21] cannot be computed due
to the discontinuities in �.

Time(s)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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9
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0.8

1

1.2
,

- = 0:05

- = 0:1

- = 0:2

FIGURE 1 Measured parameter � and its filtered version, �,
for different values of �.

Therefore, the designer can tune � accordingly with the
noise level in the measured parameter, mitigating unnecessary
oscillations in the control signal and reducing maintenance
costs. Such an aspect can be noted by the gains variation as
shown in Figure 2. The design is performed by Theorem 4.1
with 
 = 1, x(0) = 0 and � = � = 1. It is clear from
Figure 2 that the more the parameter is filtered, the more the
state-feedback gains have a smooth behavior.
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FIGURE 2 Parameter-dependent state-feedback gains behav-
ior for different filtering values �.

Example 2. This example discusses the relation among the
saturation level �, the L2 gain 
 , and the disturbance energy
bound �−1.
Consider the following system, adapted from [20], that rep-

resents a helicopter in a vertical flight subject to airspeed
changes, given by

A =

⎡

⎢

⎢

⎢

⎢

⎣

−0.0366 0.0271 0.188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 a32(t) −0.7070 a34(t)
0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

B =

⎡

⎢

⎢

⎢

⎢

⎣

0.4422 0.1761
b12(t) −7.5922
−5.5200 4.9900

0 0

⎤

⎥

⎥

⎥

⎥

⎦

, C =
[

0.1 0 0 0
0 0 0.1 0

]

,

with Bw = I4, Dw = 0, and −0.1134 ≤ a32(t) ≤ 0.6844,
−0.8667 ≤ a34(t) ≤ 3.5125 and −0.7178 ≤ b12(t) ≤
6.8072. The system has three time-varying parameters, hence
a polytope ofN = 8 vertices will be used to describe it.
Because we have three interconnected variables, 
 , �, and

�, the optimization procedure T2 can be exploited in differ-
ent ways. In the sequel, we present two sets of tests illustrating
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possible uses of it. In all cases, the optimized values are inves-
tigated as a function of the actuator’s saturation level, and the
initial condition is supposed null (x(0) = 0). Such an approach
allows, for instance, the correct specification of an actuator to
obtain the desired performance. In the first set, we use T2 with
f = 
 and a given disturbance energy, �−1, to seek for the
minimal L2-gain,

√


 . In the second set of tests, we use T2
with f = � and a given L2-gain,

√


 , to maximize the toler-
able energy disturbance, �−1. The achieved results are shown
in Figure 3, where the left-hand side ordinate axis refers to
the minimal L2-gain achieved (green lines) and the right-hand
ordinate axis refers to the maximal tolerable energy allowed
(blue lines). The solid lines correspond to better achievements.
Concerning the L2-gain, green lines in Figure 3, it is clear

that smaller values of 
 are obtained when � increases, thanks
to more control signal available to reject the input disturbance
(see the left-hand side ordinate axis). Moreover, the L2-gain
increases as the disturbance energy augments: the values of the
solid green line, �−1 = 0.2, are more significant than those of
the dashed green line, �−1 = 0.1, by 5% to 10%, approximately.
On the other hand, the maximization of the tolerable energy

for a given L2-gain, right-hand ordinate axis, and blue lines
shows that the greater the control signal, the bigger the toler-
able energy is. Furthermore, more significant L2-gain allows
more disturbance energy, as we can compare the dashed blue
line (
 = 5) achieves smaller values of tolerable energy than
those from the solid blue line (
 = 6). With the results

;
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/!1 = 0.1

. = 5

FIGURE 3 Behavior of the L2-gain and maximum tolerable
energy �−1 as a function of the saturation limit.

presented, one can see that:

1. For a fixed disturbance energy bound (�−1), bigger val-
ues of saturation level (�) increase the closed-loop sys-
tem capability ofmitigating disturbances, that is, smaller
values of L2 gain (
) are obtained.

2. Fixing the saturation level (�), disturbances with more
energy (�−1) lead to bigger values of 
 .

3. The disturbance tolerance is higher when more control
signal is available. Besides, ifL2 gain (
) grows, so does
the disturbance energy bound (�−1) such that the system
is ISS.

Example 3. In this example, it is discussed the relation
between the estimation of the region of attraction and the sat-
uration level �. We intend to show that, when more control
signal is available, the region of attraction gets bigger.
Consider the following system, borrowed from [17], with

two time-varying parameters described by

A(�) =
[

0 1
−(1 + �1) −(1 + �2)

]

, B(�) =
[

0
−1 + �2

]

,

where −0.04 ≤ �1 ≤ 5, and −5 ≤ �2 ≤ 0.04. In this scenario,
there is no disturbance (w = 0) and our goal is, by using opti-
mization procedure T1, design state-feedback controllers that
maximizes the estimations of the region of attraction for differ-
ent values of control signal saturation �. Consider that � = 0.1,
� = 1 and 
 = 0.5. In Figure 4, it is possible to see that the
regions of attraction get bigger when more control energy is
available. Response to initial conditions are shown and it is
important to notice that the closed-loop system is asymptoti-
cally stable when the initial conditions belong to the region of
attraction. For the case � = 5, it is also possible to see trajecto-
ries beginning outside the estimation of the region of attraction
that make the closed-loop system unstable. This fact highlights
that the obtained estimation of the region of attraction could
be improved, however, it also provides a good measurement of
the real region of attraction of the system.
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; = 5
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FIGURE 4 Estimated regions of attraction for different val-
ues of saturation � and closed-loop system response to initial
conditions.
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Example 4. In this example, it is shown an extension of the
proposed conditions for the case of reference tracking. Hence,
the designed controller is capable of following piecewise con-
stant references and rejecting exogenous disturbances.
Consider the nonlinear plant borrowed from [18], where a

discrete-time version of this model is addressed. The system
consists of two tanks coupled, where one of them has a non-
linear solid inside. The input of the system is the pump power
0% ≤ u ≤ 100%, which affects qin and the output is the level
(meters) in TQ-01, shown in Figure 5.
For 0.28m ≤ ℎ1 ≤ 0.48m, the system can be written as a

polytope, whose vertices are

A1 =
[

−0.0111 0.0111
0.0155 −0.0193

]

, A2 =
[

−0.0111 0.0111
0.0238 −0.0282

]

,

Bu1 = Bu2 =
[

0.5432 × 10−4 0
]⊤ , C1 = C2 =

[

0 1
]

, D1 = D2 = 0, and matrices of disturbance are
Bw1 =

[

0.5432 × 10−3 0
]⊤, Bw2 =

[

0.7432 × 10−3 0
]⊤.

qin

q12qout

ℎ1
ℎ2

TQ-01 TQ-02

FIGURE 5 Diagram of the nonlinear coupled tanks system.

Similarly to [18], we use an augmented version of the con-
trolled systems to include both the state feedback control action
and an integrator over the tracking error, to ensure perfect
tracking under piecewise constant references. The augmented
system, due to the added integrator, is described by

ẋ = A (�)x +B(�)sat (u) +Bw(�)w
y = C (�)x +Dw(�)w

(21)

where A (�) =
[

A(�) 0
−C(�) 0

]

, B(�) =
[ B(�)

0

]

, Bw(�) =
[ Bw(�)

0

]

,
C (�) = [ C(�) 0 ], and the control law is given by u(�) = K(�)x̃,
where K(�) =

[

Kp(�) Kl(�)
]

and x̃ =
[

x⊤ e
]⊤.

Our goal is designing, by using Theorem 4.1, state-feedback
gains for system (21) when the L2-gain between the distur-
bance w and the output y is 
 = 5. Consider that � = 0.1,
� = 0.1, and x(0) = 0 for � = 40 and � = 60.

Figure 6 shows the closed-loop system step response for two
different levels of control signal saturation. The input refer-
ence is changed 0.28m and 0.30m when time t = 100s and
t = 1800s, respectively. As one may see, when more control
signal is available (�= 60), the system output reaches the input
reference with a smaller setting time. It is important to empha-
size that, because of the integrator, there is no steady-state error
in both cases. Morover, the closed-loop system disturbance
rejection is shown in this figure: from t = 3200s to t = 3450s,
a disturbance of amplitude w = 0.2, leading to �−1 = 10, is
applied on the system. Both controllers reject the disturbance
and drive the system to the input reference with an L2 gain

 ≤ 5, as proposed.
To simulate the real plant, it is considered an accuracy of

0.5cm on both states measurement. Hence, an aleatory value
� ∈ [−0.5, 0.5] is added to each x1 and x2. Such a measure-
ment noise may represent an instantaneous variation on the
parameter compromising the assumptions in [25, 21].

Time(s)
0 1000 2000 3000 4000 5000

O
u
tp

u
t(

cm
)

25

26

27

28

29

30

31

32
; = 40
Reference
; = 60

2500 3000 3500 4000 4500
29

30

31

FIGURE 6 Closed-loop system input reference tracking and
disturbance rejection.

State-feedback gains for a real plant model of two coupled
tanks were designed. With the simulations presented, it is pos-
sible to certify the effectiveness of the controller, since the
closed-loop system is capable of tracking the reference, reject-
ing the disturbance and when subject to initial conditions, the
states of the closed-loop system converged to the origin.

Example 5. Consider the following system, adapted from [4,
15] described by

A(�) =
⎡

⎢

⎢

⎣

1.5 + 0.5� 3 �
−2.2 + � −1.8 + 0.5� 0.2�
0.1 0.5 −�

⎤

⎥

⎥

⎦

, B(�) =
⎡

⎢

⎢

⎣

2�
0.1 + �
0.2

⎤

⎥

⎥

⎦

,

Bw =
[

0.2 0.02 0.1
]⊤ , C =

[

1 1 0
0 0 1

]

, Dw =
[

0 0
]⊤ ,
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where � = 0.5 sin (0.2t) + 0.5 is a time-varying param-
eter, �̇(t) ≤ 0.1 and the exogenous disturbance input is
w = exp(−t) sin (0.5t) as given in [4]. Under these circum-
stances, it is possible design state-feedback controllers by
using Theorem 4.1 and Theorem 7 proposed in [4]. In both
approaches, the optimization problem was solved in order to
minimize 
 . Considering x0 = 0 and w as defined before, the
L2-gain between the exogenous input and the system outputs
are 
 = 0.0564 for Theorem 4.1 and 
 = 0.0524 for Theorem 7
(obtained from the simulations). The closed-loop response,w,
and � are shown in Figure 7.
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FIGURE 7 Disturbance rejection for the closed-loop systems
obtained by using Theorem 4.1 and Theorem 7 in [4].

However, when � presents discontinuities, the approaches
proposed in [4, 15] cannot be applied since �̇(t) ←←←←→ ∞, whereas
Theorem 4.1 overcomes this issue. The closed-loop response
for this situation, � and its filtered version, �, are presented in
Figure 8. Note that we assume � = 0 for t < 0. Therefore,
the first point in the simulation is already a discontinuity in the
parameter behavior. During the first second, � = 1, � value
is affected by null values of � from the time interval t < 0.
Despite the discontinuity of � (red line), the parameter used by
the controller evolves smoothly (blue line). Finally, it is worth
to say that our method requiresNV = 26 scalar decision vari-
ables and NR = 64 LMI rows, while the one in [4] requires
NV = 170 and NR = 71, respectively. Therefore, besides
overcoming the discontinuity of the system’s parameter, our
method is considerable less computing demanding.
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FIGURE8Response for x0 = [−0.1 −0.1 0.1]⊤, 
 = 0.04,
� = 10, � = 0.1, and � = 1.

6 CONCLUSIONS

This paper proposed new conditions to ISS stabilization for
a class of systems that depend on time-varying parameters
that may vary arbitrarily fast and present discontinuities in
its behavior. Moreover, the system is subject to actuator sat-
uration, making it nonlinear. The state-feedback controller
makes use of a smoothed approximation of the real time-
varying parameter (the filtered parameter �), reducing actuator
stress. The controller depends rationally on the parameter �. It
has been shown that higher values of � have provided larger
estimations for the region of attraction and smaller L2-gain
between the output and input disturbance. Furthermore, the
proposed method can be used to tackle LPV systems under
constraints, enhancing the robustness associated with the state-
feedback controllers. Besides, the conditions were extended to
the problem of designing LPV state-feedback controllers, such
that the closed-loop system output is able to follow input step
references. Future works include the research of more gen-
eral structures for filtered Lyapunov candidate functions and
the extension of the proposed conditions to state polynomial
systems. In such a case, the Lyapunov candidate matrix should
include a polynomial dependency on the states, leading tomore
involved conditions to ensure the local stability while enlarging
the estimate of the region of attraction.
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