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Abstract

Modeling fluid flow in three-dimensional (3D) Discrete Fracture Networks
(DFNs) is of relevance in many engineering applications, such as oil/gas
production, geothermal energy extraction, nuclear waste disposal and CO2

sequestration. A new Boundary Element Method (BEM) technique with
discontinuous quadratic elements, in conjunction with a parallel Domain De-
composition Method (DDM), is presented for the simulation of the steady-
state fluid flow in DFNs, consisting of stochastically generated 3D planar
fractures, arbitrarily oriented, and having differing hydraulic properties. Nu-
merical examples characterized by DFNs of increasing complexity are pro-
posed to show the accuracy and the efficiency of the presented technique,
that provides good approximations of the fluid flow around domain interfaces,
where the solution usually displays sharp gradients, like around intersections
between traces (the segments originated by the intersection between two frac-
tures), intersections between traces and fracture boundaries, or intersections
between fractures and wellbores. The conjunction with a DDM approach is a
promising strategy to speed up the computations, by also exploiting the ad-
vantages of parallel computing techniques. The technique is implemented in
the code PyDFN3D, available at https://github.com/BinWang0213/PyDFN3D.

Keywords: Discrete Fracture Network (DFN), Fractured rock hydrology,
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Boundary Element Method (BEM), Domain Decomposition Method
(DDM), Subsurface fluid flow

1. Introduction

Modeling fluid flow in fractured rocks has been for a long of relevance in
many engineering applications, such as oil/gas production, geothermal energy
extraction, nuclear waste disposal and CO2 sequestration [1, 2, 3, 4, 5, 6, 7].
Two predictive models are generally used: the Equivalent Porous Medium
(EPM) and the Discrete Fracture Network (DFN). EPM is considered when
fractures are highly connected and the fracture network can be condensed into
a porous medium with an associated permeability tensor [8, 9]. The DFN
model is an alternative to EPM models for multi-scale fracture networks,
where all the fractures are explicitly represented [2, 10].

In the last decades, significant efforts have been made to simulate the
fluid flow in three-dimensional (3D) DFNs and a variety of numerical ap-
proaches are now available. They can be categorized into: 1) mesh-based
approaches, 2) Equivalent Pipe Networks (EPNs) and 3) Boundary Element
Method (BEM) approaches.

In the mesh-based approaches, a computational mesh is generated over
the entire fracture system and the flow field is then obtained by resorting to
the Finite Element Method (FEM) or the Finite Volume Methods (FVM).
Both methods offer considerable precision but, given the geometrical com-
plexity of DFNs of practical interest, as, e.g. the one depicted in Fig.1a, for
the use of high computational power and memory capacity may be required
[11], especially for high-quality meshes and when a local grid refinement is
applied to accurately resolve the sharp pressure gradients around fracture in-
tersections (traces) or in the near-field of a well [10]. Even when the number
of fractures in a DFN is relatively small, the number of mesh elements may be
still considerable for conformity and quality constraints. A suitable mesh for
FEM-based approaches is shown in Fig. 1b, for a DFN consisting of 932 frac-
tures of various sizes and orientations. The mesh counts nearly 1.61 million
nodes and 3.84 million triangular elements. To avoid the difficulties related
to the mesh generation, non-conforming meshes, independently built on each
fracture, are used, and the minimization of a cost functional is applied to
enforce the coupling of a Domain Decomposition Method (DDM), resort-
ing to error estimators to control the accuracy of the solution [12, 13, 14].
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(a) A DFN with 932 fractures and
several wellbores

(b) FEM/FVM Mesh with 12.54
million 2D elements and 5.45 mil-
lion nodes

(c) BEM Mesh with 0.13 mil-
lion 1D elements and 0.11 million
nodes

Figure 1: A DFN example; comparison between FEM/FVM mesh and BEM mesh

Polygonal meshes are also suggested as an alternative to ease the generation
of conforming meshes of complex DFNs, like in [15, 16, 17, 18], where the
Virtual Element Method is used, in [19], where Mimetic Finite Differences
(MFDs) and mixed finite elements are combined, and in [20], where Hybrid
High Order (HHO) methods are applied.

In the EPN approach, a DFN is morphed into a network of one-dimensional
conductors (pipes), endowed with an appropriate conductance value, and
connecting the mid-points of the traces in a fracture [21, 22, 23, 24]. EPNs
feature great advantages in terms of computational efficiency and simplicity
and as such are suitable to model large fracture networks. However, unique
pipe-connection patterns are difficult to generate and the equivalence gives
rise to unavoidable errors. A graph-based method has been recently proposed
to reduce the error of EPNs [25, 26, 27].
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For the application of BEM approaches, a one-dimensional discretization
of fracture edges and traces is required [28]; BEM reveals being very accurate
to resolve sharp pressure gradients near traces and wellbores even when few
one-dimensional elements are used. Semi-analytic basis functions are intro-
duced for the representation of the variables [29, 30]. A suitable BEM mesh
is shown in Fig. 1c for the same 932-fractures DFN, characterized by several
boundary elements about two orders of magnitude less than the number of
elements of the corresponding FEM mesh.

The literature related to the use of BEM for the prediction of the fluid
flow in three-dimensional DFNs is still quite limited. Shapiro and Andersson
[31, 28, 32] were the first to apply this method, by resorting to constant
boundary elements for fracture edges and traces. Later, Lenti and Fidelibus
[33] proposed an advanced BEM technique in which quadratic elements are
used for fracture edges and constant elements for internal traces. The choice
of constant elements is derived from the need to handle flux discontinuities
at the intersections between two traces and between a trace and an edge in a
fracture. An optimization procedure is also applied to reduce memory usage
when solving the global matrix. The authors pointed out that the use of low-
order constant elements may lead to up to 22% flux mismatch errors. Yang
et al [34] and Chen et al [35, 36, 37, 38] recently proposed a BEM method
to model transient shale gas flow problems in a 2D infinite domain where
BEM with constant elements is used to solve matrix flow, whereas finite
differences are used to solve 1D fracture flow, and the Laplace transform is
used to resolve the transient flow.

Fast solutions for the flow regime are crucial for the industrial application
of DFNs. In this respect, none of the three approaches mentioned above
prevails in offering such solutions. However, the scientific community may
benefit from any contribution to improving one of the methods. In this note,
a new BEM technique is proposed for the prediction of the steady-state
single-phase fluid flow in 3D DFNs. The novelty of the technique lies in the
use of discontinuous quadratic basis functions for the boundary elements, in
combination with a domain decomposition approach. Uniform permeability
and aperture values are ascribed to each fracture. The fluid flow is governed
by a two-dimensional Laplace equation, with sinks/sources located at the
traces and at the intersections with wellbores (assumed linear). With the
proposed technique, accurate predictions can be provided, also where large
gradients are expected. Furthermore, with DDM, the way to the development
of the technique for parallel solvers is paved, thus allowing the reduction of
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the computational times.
The note is organized as follows: In Section 2, a detailed description

of the adopted formulation and of the typical discretization associated with
the proposed BEM technique is reported; in Section 3, the DDM algorithm
is briefly introduced and commented; in Section 4, the technique is tested
on three verification examples and one synthetic field application example;
finally, the possible extensions of the technique are discussed and concluding
remarks are drawn accordingly.

The technique is implemented in the computer code PyDFN3D.

2. BEM formulation

In this section, the BEM formulation adopted for the steady-state fluid
flow in 3D DFNs is described. The derivation of the integral equations and
of the final algebraic system is reported, given the special basis functions of
the discontinuous elements.

The following assumptions are considered: 1) fluid dynamic properties
are constant and independent of the pressure; 2) the rock matrix is imper-
vious, such that the fluid flow occurs only inside fractures, through fracture
intersections and in wellbores; 3) fracture aperture and permeability are uni-
forms within each fracture but different values are allowed among different
fractures; 4) the gravity effects are ignored, implicitly assuming that the
thickness of the fractured reservoir is small compared with the horizontal ex-
tension [39, 40]; however, the formulation can be easily extended to include
such effects; 5) pressure drops caused by friction in wellbores are neglected,
thus pressure inside is uniform.

2.1. Boundary integral equations

With reference to a coordinate system X={X1, X2, X3}, arbitrarily ori-
ented in the 3D space, a plane π is considered. The unit vector normal to π
is nπ. A local reference system x = {x1, x2} is chosen on π. A domain Ω ⊂ π
is introduced; the boundary of Ω is denoted by Γ and n is the unit normal
vector to Γ, outward-pointing from Ω. A 3D fracture Ω? is defined such
that Ω∗={X:X=γ+bftπ, γ ∈ π}, being bf(x) the fracture aperture, a number
much smaller than each dimension of Ω in π. For the above-mentioned hy-
potheses, fracture aperture bf(x)=bf is uniform in π and the top and bottom
walls of the fracture are planes parallel to π. The fluid velocity vectors inside
the fracture are all parallel to π.
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Given the fracture intrinsic permeability k (unit m2) uniform in Ω?, the
fluid dynamic viscosity µ (unit kg m−1s−1) independent of the pressure p,
and by neglecting, as mentioned, the gravity effects, the governing equation
for the steady-state fluid flow in Ω? with a generic volumetric source term
Q(X) (unit s−1) can be expressed as follows [41]:

−k
µ
∇2p(X) = Q(X) (1)

where p(X) is the fluid pressure (unit kg m−1s−2). The 3D problem can be
reduced into a 2D problem by averaging Eq.(1) along nπ. By splitting the
operator ∇ in an in-plane component ∇π and a normal component ∇nπ , one
has:

−k
µ
∇2
π

∫ (bf/2)

(−bf/2)

p(X)dnπ =

∫ (bf/2)

(−bf/2)

Q(X)dnπ −
kbf

µ
∇2
πp̃(x) = q(x) (2)

in which p̃(x)= 1
bf

∫ (bf/2)

(−bf/2)
p(X)dnπ is the averaged pressure along nπ, tech

q(x)= 1
bf

∫ (bf/2)

(−bf/2)
Q(X)dnπ is a distributed areal source. In what follows, the

fracture is dimensionally reduced to the planar domain coinciding with Ω, ∇
is used for ∇π and p is assimilated to p̃.

The fractures of a DFN can mutually intercept, therefore, for the reduc-
tion to planes, the intersections are segments (traces). Also wellbores can
cross the fractures, and the intersections are point intersections (wellbore
intersections).

As the rock matrix is impervious, there is no leakage from the blocks
bounded by the fractures, and therefore there are no areal sources; rather
the source term q(x) is given by linear sources and point sources [41] from the
traces and the wellbore intersections, respectively. Traces in Ω are labeled
by t, whereas T is the set of all the traces in the same domain; wellbore
intersections are denoted by s, and S denotes the set of all the wellbore
intersections in Ω, therefore, the source term q(x) can be written as:

q(x) =
∑
t∈T

δt,qt +
∑
s∈S

qsδs (3)

being δt,qt the Dirac Delta function defined, for any sufficiently regular func-
tion ϕ(x), as 〈δt,qt , ϕ〉=

∫
t
qt(γ)ϕ(γ)dγ, where qt(γ) (unit m2s−1) is the con-

centrated volumetric source per unit trace length on t, whereas δs, for a
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wellbore s ∈ S, is the Dirac Delta function located at the intersection point
xs between the well and the mean fracture plane, defined by 〈δs, ϕ〉=ϕ(xs),
and qs (unit m3s−1) is the volumetric point source at wellbore s.

By substituting Eq. (3) into Eq. (2), the governing equation for the fluid
flow in a fracture is obtained as [42]:

−kbf

µ
∇2p =

∑
t∈T

δt,qt +
∑
s∈S

qsδs (4)

After adding Dirichlet and Neumann boundary conditions, a Boundary
Integral Equation (BIE) corresponding to Eq. (4) is obtained in each collo-
cation point xi ∈ Ω̄:

−kbf

µ

[
c(xi)p(xi) +

∫
Γ

p(x)
∂w(xi,x)

∂n
dΓ

]
=

−kbf

µ

∫
Γ

∂p

∂n
(x)w(xi,x)dΓ

−
∑
t∈T

∫
t

qt(x)w(xi,x)dt−
∑
s∈S

qsw(xi,xs)

(5)

where ∂p/∂n is the directional derivative of p along the normal, and w,
∂w/∂n are a weighing function and its normal derivative, respectively. The
quantity c(xi) is a number depending on the location of xi; namely, if it is
in the interior or on the boundary of the domain. The definition of weighing
functions is given in the following.

By neglecting the gravity, the fluid velocity u (unit ms−1) is equal to
-(k/µ)∇p; the corresponding BIE for the components uj(xi) is:

c(xi)uj(xi)bf −
kbf

µ

∫
Γ

p(x)
∂

∂xj

[
∂w(xi,x)

∂n

]
dΓ

= −kbf

µ

∫
Γ

∂p

∂n
(x)

∂w(xi,x)

∂xj
dΓ

−
∑
t∈T

∫
t

qt (x)
∂w(xi,x)

∂xj
dt−

∑
s∈S

qs
∂w(xi,xs)

∂xj

(6)

Details on derivation and notation for the above BIEs are given in Ap-
pendix A. The weighting function w corresponds to the fundamental solution

7



of the steady-state fluid flow equation for a source point xi. The function w
and the derivative ∂w/∂n with respect to the normal n are [43]:

w(xi,x) =
1

2π
ln

1

r(xi,x)

∂w(xi,x)

∂n
=

1

2π

(xi − x) · n
r2(xi,x)

(7)

where r(xi,x) is the distance between xi and x.

2.2. Discretization with discontinuous quadratic elements

Lenti and Fidelibus [33] proposed a BEM technique for DFNs in which
constant basis functions for the traces were used to deal with the flux dis-
continuities at trace-trace and trace-boundary intersections. However, due
to the low accuracy of the constant element approximation, the application
of the technique implies errors increasing with the geometrical complexity of
the DFN. In this note, an advancement is proposed by resorting to quadratic
basis functions and discontinuous Boundary Elements (BEs), intrinsically
including flux discontinuities at the nodes. As shown in Fig. 2, the dis-

T

S

xi

xj

Ω

Γ

boundary e. 

Trace Elements

Wellbore Elements

trace e.
wellbore e.

Figure 2: BEM discretization for a fracture domain; xi is a collocation node, xj an
integration node; blue, green and red dots represent the nodes for the boundary elements,
the trace elements and the wellbore elements, respectively

cretization of each fracture is obtained by subdividing the boundary Γ and
the traces t ∈ T in straight BEs. Collocation nodes are then placed on
each element. Three collocation nodes are placed on each BE, to uniquely
identify a quadratic polynomial on each element; three quadratic basis func-
tions Ni(x), i=1, . . . , 3 are consequently defined on each BE by the condition
Ni(xj)=δij, for i, j=1, . . . , 3, being δij the Kronecker delta. The basis func-
tions related to each BE are then extended to zero outside the element.
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Additional nodes are also placed at wellbore intersections s ∈ S. It is worth
noting that collocation nodes never coincide with trace-trace intersections
and trace-boundary intersections, where the flux of p is discontinuous. This
is achieved by ensuring that trace intersection points and trace-boundary in-
tersection points coincide with BE endpoints, whereas collocation nodes are
placed in the interior of each element, as shown in Fig. 2, where collocation
points are shown in blue, green or red spots.

Figure 3: Discontinuous quadratic element used for boundary and trace elements, with
−1 6 ξ 6 1, ξ1 = −α, ξ2 = 0,ξ3 = α.

The set of elemental basis functions is denoted by N={Ni}i=1,...,3 and the
approximation of the pressure p and of its normal derivative are:

p(ξ) =
3∑
i=1

piNi(ξ),
∂p

∂n
(ξ) =

3∑
i=1

(
∂p

∂n
)iNi(ξ), −1 6 ξ 6 1 (8)

where ξ is a local normalized coordinate, and pi, (∂p/∂n)i are nodal values.
Functions in N are defined as follows:

N1 =
1

2

ξ

α

(
ξ

α
− 1

)
, N2 =

(
1− ξ

α

)(
1 +

ξ

α

)
, N3 =

1

2

ξ

α

(
ξ

α
+ 1

)
(9)

with 0 < α ≤ 1, and α is a collocation factor. Choosing 0 < α <1, the
first and the third node on each element are shifted inside it by a normalized
quantity equal to α. A value α=0.67 is used here, as suggested in [44].
Boundaries and traces are approximated by using the same functions in N,
using x=

∑3
i=1 xiNi(ξ)|α=1, i.e. the shape functions of Eq. (9) with α=1.

A global numbering can be introduced for the collocation nodes and for
the basis functions on all the BEs, and Jtot is defined as the set of the
indexes of all the nodes in the discretization. The following subsets of Jtot
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are also introduced: JΓ, containing the indexes of the nodes belonging to
the boundary Γ; Jt, containing the indexes of the nodes belonging to trace
t ∈ T ; Js, containing the index of the node matching xs, and JT =

⋃
t∈T Jt,

JS =
⋃
s∈S Js. Without loss of generality, the indexes of these sets are

numbered consecutively, starting from JΓ, continuing with JT and ending
with JS.

In what follows

pΓ(x) =
∑
j∈JΓ

pΓ
jNj(x), pT (x) =

∑
j∈JT

pTj Nj(x), pS(x) =
∑
j∈JS

pSjNj(x)

denote the discrete solution on Γ, on the traces and on the wellbore inter-
sections, respectively. Similarly, the discrete counterpart of ∂p/∂n on Γ is
defined by (

∂p

∂n

)Γ

(x) =
∑
j∈JΓ

(
∂p

∂n

)Γ

j

Nj(x),

whereas the source on trace t ∈ T is denoted by qtt(x)=
∑

j∈Jt q
t
jNj(x). Fi-

nally, p?, ? ∈ {Γ, T, S} is the array collecting column-wise the unknowns
p?j , j ∈ J?, (∂p/∂n)Γ the array collecting the unknowns (∂p/∂n)Γ

j , j ∈ JΓ,
whereas qT collects the coefficients qtj, for j ∈ Jt and t ∈ T , and qS collects
the coefficients qs, s ∈ S.

The use of above definitions into the BIE Eq. (5) yields:

CΓpΓ + HΓΓpΓ = GΓΓ

(
∂p

∂n

)Γ

+ GΓTqT + GΓSqS

CTpT + HTΓpΓ = GTΓ

(
∂p

∂n

)Γ

+ GTTqT + GTSqS

CSpS + HSΓpΓ = GSΓ

(
∂p

∂n

)Γ

+ GSTqT + GSSqS

(10)

where C?, ? ∈ {Γ, T, S}, are matrices with diagonal entries C?
ii equal to

(kbf)/µ when xi is in the interior of the domain Ω, and equal to (kbf)/(2µ)
when xi is on the boundary; the G-type and H-type matrices are defined as
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follows:

GΓΓ
ij =

kbf

µ

∫
Γ

w(xi,x)Nj(x)dΓ, i, j ∈ JΓ;

GΓT
ij =

∫
t

w(xi,x)Nj(x)dt, i ∈ JΓ, j ∈ Jt, t ∈ T ;

GΓS
ij = w(xi,x)Nj(x), i ∈ JΓ, j ∈ JS;

GTΓ
ij =

kbf

µ

∫
Γ

w(xi,x)Nj(x)dΓ, i ∈ Jt, j ∈ JΓ, t ∈ T

GTT
ij =

∫
t

w(xi,x)Nj(x)dt, i, j ∈ Jt, t ∈ T ;

GTS
ij = w(xi,x)Nj(x), i ∈ JT , j ∈ JS;

GSΓ
ij =

kbf

µ

∫
Γ

w(xi,x)Nj(x)dΓ, i ∈ JS, j ∈ JΓ;

GST
ij =

∫
t

w(xi,x)Nj(x)dt, i ∈ JS, j ∈ JT ;

GSS
ii =

1

2π
ln ri, i ∈ JS;

GSS
ij = w(xi,x), i 6= j ∈ JS;

HΓΓ
ij =

kbf

µ

∫
Γ

∂w

∂n
(xi,x)Nj(x)dΓ, i, j ∈ JΓ;

HSΓ
ij =

kbf

µ

∫
Γ

∂w

∂n
(xi,x)Nj(x)dΓ, i ∈ JS, j ∈ JΓ;

HTΓ
ij =

kbf

µ

∫
Γ

∂w

∂n
(xi,x)Nj(x)dΓ, i ∈ Jt, j ∈ JΓ, t ∈ T

(11)

Note that in general GTΓ 6=
(
GΓT

)ᵀ
, GST 6=

(
GTS

)ᵀ
, GSΓ 6=

(
GΓS

)ᵀ
. The di-

agonal entries of GSS go to infinity as the distance r(xi,x) approaches zero.
To handle the singularity and apply the constant pressure boundary con-
dition at a wellbore, nodes of unknown pressure pS(x) are placed on the
boundaries, at distance rs from the wellbore center, where the node is lo-
cated. This handling of the wellbores was used and validated in a previous
work [30].

Eq. (10) can be expressed in compact form as follows:CΓ + HΓΓ 0 0
HTΓ CT 0
HSΓ 0 CS


pΓ

pT

pS

 =

GΓΓ GΓT GΓS

GTΓ GTT GTS

GSΓ GST GSS


(
∂p
∂n

)Γ

qT

qS

 (12)
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On each node of the boundary, either pressure p or flux ∂p/∂n can be
specified, corresponding to a Dirichlet or a Neumann condition, respectively.
Thus, the columns of the matrices in Eq. (12) can be re-ordered to have the
coefficients of all the unknowns on the left-hand side and the coefficients of all
the known terms on the right-hand side. However, the prevailing condition
is the insulation condition, i.e. ∂p/∂n=0. Once the solution of Eq. (12) is
obtained, pressure and velocity at any point xi can be calculated by applying
Eqs. (5)-(6).

In this work, a simple wellbore model is considered that assumes a well-
bore has a low production/injection rate, large pipe diameter and short seg-
ment length in the gravitational direction. Thus, the pressure along the
wellbore is assumed to be constant.[45] For a wellbore with a flow rate qw
intersecting multiple fracture planes in s1, s2, . . . , sn intersection points, each
one on a different fracture, one additional condition need to be added to
the system (12). Given qsi , the flow rate at intersection si, the equation∑n

i=1 qsi=qw is added, which together with the assumption of constant pres-
sure in the well is sufficient to close the problem.

2.3. Fast analytical BIE integration

After the BEM discretization is performed, given the singularity of the
fundamental solution w, there is the need to perform singular integrations,
nearly-singular integrations and non-singular integrations. The singular and
nearly-singular integrations require special techniques to avoid the loss of ac-
curacy related to standard numerical integration [29]. Element subdivision,
analytical and semi-analytical integration, adaptive Gaussian quadrature, co-
ordinate transformation and BIE modification [46, 47, 48] can be adopted.
Exact analytical integration formulations are also available [44, 49, 50]. In
this note, an exact integration formulation for discontinuous quadratic el-
ements is derived based on the method proposed in [49]. The expressions
for the integrals of G-type and H-type matrices for a boundary or a trace
integration element in Eq. (11) are reported in what follows (the quantities
Al, Dl, El, Fl, Il, Sl, Tl (l = 0, . . . , 2) and a, e are defined in Appendix B):∫

?

w(xi,x)Nj(x)d? = [G1, G2, G3]T∫
?

∂w(xi,x)

∂n
Nj(x)d? = [H1, H2, H3]T

? ∈ {Γ, T} (13)
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When a collocation node does not pertain to the integration element, the
analytical integration formulations are:

G1 =
J

8π

(
A2

α2
− A1

α

)
, G2 =

J

4π

(
A0 −

A2

α2

)
, G3 =

J

8π

(
A2

α2
+
A1

α

)
H1 =

e

4π

(
F2

α2
− F1

α

)
, H2 =

e

2π

(
F0 −

F2

α2

)
, H3 =

e

4π

(
F2

α2
+
F1

α

) (14)

where J is the Jacobian of the map from physical to reference element given
by Eq. (B.1). When a collocation node is instead on the integration element,
the formulations are:

G1 =
J

4π

(
S2

α2
− S1

α

)
, G2 =

J

2π

(
S0 −

S2

α2

)
, G3 =

J

4π

(
S2

α2
+
S1

α

)
H1 = H2 = H3 = 0

(15)

For the discretized form of Eq. (6), the derivatives with respect to xk
(k = 1, 2) of the terms of the G-type and H-type matrices are required and
are as follows:

∫
?

∂w(xi,x)

∂xk
Nj(x)d? =

[
∂G1

∂xk
,
∂G2

∂xk
,
∂G3

∂xk

]T
∫
?

∂

∂xk

[
∂w(xi,x)

∂n

]
Nj(x)d? =

[
∂H1

∂xk
,
∂H1

∂xk
,
∂H1

∂xk

]T ? = {Γ, T} (16)

Again, when a collocation node does not pertain to the integration ele-
ment, the formulations are:

∂G1

∂xk
= − J

4π

(
Ek2

a2
− Ek1

a

)
,

∂G2

∂xk
= − J

4π

(
Ek0 −

Ek2

a2

)
∂G3

∂xk
= − J

4π

(
Ek2

a2
+
Ek1

a

)
,
∂H1

∂xk
=

1

4π

(
Ik2

a2
− Ik1

a

)
∂H2

∂xk
=

1

4π

(
Ik0 −

Ik2

a2

)
,

∂H3

∂xk
=

1

4π

(
Ik2

a2
+
Ik1

a

) (17)

Finally, when a collocation node is on the integration element, the for-
mulations are:

∂G1

∂xk
=
JDk

4πα

(
T2
α2
− T1

α

)
,
∂G2

∂xk
=
JDk

2πα

(
T0 −

T2
α2

)
,
∂G3

∂xk
=
JDk

4πα

(
T2
α2

+
T1
α

)
∂H1

∂xk
=
∂H2

∂xk
=
∂H3

∂xk
= 0

(18)
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As previously mentioned, all the formulations above are implemented and
tested in the computer code PyDFN3D.

3. Parallel domain decomposition method

For large DFN problems, in the context of BEM, the direct coupling,
i.e. the assembly of a large system of equations, including the compatibility
conditions at the interfaces among adjacent domains, may too computation-
ally demanding. In previous works, parallel DDMs were developed aimed at
iteratively solving a series of small dense linear subsystems, rather than a
coupled large unsymmetrical sparse linear system [51, 52, 53, 54]. In DDM,
conditions at interfaces are updated at each iteration, until a solution that
fits the specified compatibility condition at each interface is obtained. Here
the main idea behind a DDM strategy suitable for the proposed approach is
recalled, referring to [54] and to references therein for a deeper analysis on
such methods.

Figure 4: A DFN with 3 fracture planes (Ω1,Ω2,Ω3) and six intersection traces
(t1, t2, t3, t4, t5, t6).

A network of NF fractures Ωk and NT traces is considered, like the one in
Fig. 4, being the set of all traces on fracture Ωk denoted by Tk, k=1, . . . , NF ,
and the set of all the traces in the network denoted by T . Each trace t ∈ T
is shared by exactly two fractures ΩI and ΩJ , I 6= J ∈ [1, . . . , NF ], such that
a map τ between each trace and the corresponding pair of fracture indexes
can be introduced: τ(t) = {I, J}, being t = Ω̄I ∩ Ω̄J .

Compatibility conditions at the traces are the continuity of pressure and

14



the balance of normal fluxes, which can be expressed as follows:

qI,t + qJ,t = 0
pI,t = pI,t

on t, {I, J} = τ(t) (19)

where qI,t, pI,t are the restriction of quantities qI and pI , respectively, to
trace t on fracture ΩI , for t ∈ TI . Then, the parallel domain decomposition
algorithm here used for the resolution of large DFN problems is depicted in
Table 1, in which the superscript is used to indicate the iteration counter.

Table 1: Parallel domain decomposition algorithm

1. set k=0 and initial guess p0
I,t on each fracture ΩI , I = 1, . . . , NF at each

intersection trace, t ∈ TI
2. compute q0

I by solving Eq. (10) on each fracture domain ΩI , I = 1,...,NF

while ε =
∑NF

I=1

∑
t∈TI ‖p

k+1
I,t − pkI,t‖/‖pkI,t‖ < TOL do

3. update pk+1
I,t = pkI,t−βk

(
qkI,t + qkJ,t

)
, at each intersection trace t ∈ T ,

{I, J} = τ(t)
4. compute qk+1

I,t by solving Eq. (10) at each sub-domain ΩI , I =
1,...,NF , t ∈ TI
5. k=k+1

end while

It is to remark that, according to the solution strategy, the compatibility
conditions of Eq. (19) are satisfied up to a given tolerance TOL, this quantity
being directly associated with the mass flux balance over all intersections.
The optimal relaxation parameter βk is defined as follows [54]:

βk =

∑
t∈T ε

k
p,I,t · (εkq,I,t + εkq,J,t)∑

t∈T ‖εkq,I,t + εkq,J,t‖2
, {I, J} = τ(t) (20)

with error terms between two iterations εkp,I,t=pk+1
I,t −pkI,t, and εkq,I,t=qk+1

I,TK
−

qkI,t. Clearly, lower values of TOL yield better flux balance at the traces, at
the cost of a larger number of iterations and computational time. A TOL
value of 1× 10−6 − 1× 10−9 is used for the following computations.
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4. Numerical examples

In this section, four numerical examples (Tests 1-4) for the validation of
the proposed numerical technique are illustrated: the first example refers
to a problem with a known exact solution, the second one is a test on a
single fracture with multiple traces and one wellbore intersection, examples
3-4 are aimed at demonstrating the robustness and the reliability of the
technique when dealing with more complex DFN systems. The DFN for the
last example is stochastically generated by drawing position, orientation, size
and permeability of each fracture from given Probability Density Functions
(PDFs), as practice for DFNs, using the open-source DFN generator ADFNE
[55]. Detailed information for all the examples below is available associated
with the source code PyDFN3D.

4.1. Test 1: unit square problem

Consider a Darcy problem in a unit square domain Ω={(x, y) ∈ (0,1)×
(0,1)} with µ=1, k=1 and bf=1 (see Fig. 5). The following boundary condi-
tions are prescribed (see Fig. 5):

p (x, y) = 15 cos(4πx)
sinh (4πy)

π cosh(4π)
(21)

Error indicators are considered in what follows to evaluate and compare the
accuracy of the proposed technique, defined as:

ep =

√∑N
l=1 t(pl,exact − pl,h)2

N

eu =

√∑N
l=1 (ul,exact − ul,h) · (ul,exact − ul,h)

N

(22)

being N the number of sampling points uniformly distributed over the do-
main (1600 for Test 1) and h is the mesh parameter, equal to the maximum
diameter for FEM elements or to the maximum length for BEM elements.

The results obtained with the proposed technique are compared with the
results obtained by using the Finite Element Method (FEM) with continu-
ous quadratic basis functions implemented in COMSOL [56], and by using
constant BEM elements and linear BEM elements. The four solutions are
labeled in what follows BEM Quad, FEM Quad, BEM Const and BEM Linear,
respectively.
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Figure 5: Test 1: a) boundary conditions; b) map of the pressure values for BEM Quad

In Fig. 6 the convergence trends of the considered error indicators for the
various methods are shown. Concerning the approximation of the pressure
term, all the solutions exhibit expected optimal convergence rates, given the
regularity of the solution and the polynomial accuracy of each method. In
particular, it is observed that also the methods that use discontinuous basis
functions are capable of providing extremely good approximations, and the
approximation level of quadratic BEM is comparable to the one provided
by quadratic FEM. Concerning the approximation of the velocity term, the
proposed BEM technique has a superior convergence rate with respect to the
FEM with basis functions of the same order. Also, this result is expected,
since the derivative of p is directly computed with BEM, whereas, for the
FEM solution, it is the result of post-processing from the FEM solution,
that leads to a deterioration of the convergence results.

4.2. Test 2: unit square with 10 fractures

The second proposed example deals with a unit square fracture domain
with 10 traces and one wellbore intersection (Fig. 7). In this example, several
regions with sharp solution gradients are included, such as trace tips, intersec-
tions between traces, intersections between traces and fracture boundaries,
or intersections between fractures and wellbores.

The proposed quadratic BEM technique is here validated comparing the
BEM Quad results with the results derived by using constant BEM elements
(BEM Const), and with the solution given by FEM with quadratic basis func-
tions (FEM Quad). Since the exact solution is not known in this case, an ad-
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Figure 6: Test 1; Error indicators ep (left) and eu (right) plotted against the number of
elements for FEM Quad, BEM Const, BEM Linear, BEM Quad methods; convergence rates
in brackets

ditional solution is considered as a reference term, obtained using the FEM
on a highly-refined mesh (FEM Quad Ref). Fluid viscosity is set to 2 Pa·s
and fracture permeability is 3 m2, whereas given pressure values are imposed
on the traces and on the wellbore intersection, as detailed in Fig. 7. No flux
conditions are instead set on the whole domain boundary.

In Fig. 8, the mesh setup for the three solutions are shown: a) the
piece-wise constant BEM mesh, counting 348 elements and 348 DOFs; b) the
quadratic BEM mesh, counting 116 quadratic elements and 346 DOFs; c) the
FEM mesh, having 6887 elements and 13982 DOFs. Finally, the reference
FEM mesh counts about 0.6 million elements and 1.2 million DOFs.

The shaded map of the pressure values from the BEM Quad solution is
reported in Fig. 7b; as expected, sharp gradients at trace tips and near the
intersection with the well show. Two sampling lines, L1 and L2, in Fig. 7a
are used for the comparison: L1 crosses several traces and intercepts the
wellbore intersection, L2 is aligned along with one of the traces.

Results are presented in Figs. 9a,b, for pressure and velocity on L1 for x
between 0 and 0.8, thus including trace tips and trace intersections. It can
be observed that the proposed BEM technique with discontinuous quadratic
basis functions is in excellent agreement with the reference solution, both
for the pressures and the velocities. The BEM Const solution is instead less
accurate, near trace tips and trace intersections. In Figs. 9c,d, the pressure
and velocity solutions near the wellbore intersection, for x between 0.8 and 1,
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Figure 7: Scheme of Test 2: a) all edges of the unit square are subjected to an insu-
lation (Neumann) boundary condition, prescribed pressures apply to all the traces and
the wellbore; sampling lines for the inspection of pressures and velocities are dash-dotted;
coordinates of the extremities (0.0,0.59)-(1.0, 0.59) for L1, and (0.0,0.75)-(0.85,0.0) for L2;
b) map of the pressure values from the Quad Bem solution
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Figure 8: Meshes for Test 2: a) BEM mesh with constant elements (348 elements and 348
DOFs); b) BEM mesh with quadratic elements (116,346); c) FEM mesh with quadratic
elements (6887,13982)

are shown. As expected, the FEM Quad solution exhibits larger discrepancies
from the reference solution for the velocities. Thanks to the exact point-
source fundamental function adopted in BEM methods, instead, the two
BEM-based solutions successfully capture the sharp pressure and velocity
gradient in this region, by using only one DOF.

In Figs. 10a,b the line plots for the four solutions along L2 are reported.
Also in this case the superior performance of the proposed BEM technique is
apparent, displaying an excellent agreement with the reference solution. Both
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Figure 9: Test 2; Pressures and velocities at the points of sampling line L1; a-b: solutions
for 0.0≤ x ≤0.8,y=0.59; c-d: solutions for 0.8≤ x ≤1.0,y=0.59

the FEM solution and the piece-wise constant BEM solution, instead, provide
poorer approximations of the velocity solution near trace intersections and
trace-edge intersections.

As far as the computational cost is concerned, the proposed BEM tech-
nique with quadratic element also shows advantages over the conventional
FEM and BEM solutions for a given level of accuracy. It only uses 116 el-
ements and 346 DOFs to obtain an excellent match with the highly refined
reference solution.

4.3. Test 3: 4-fractures DFN

With reference to Fig. 11, the steady-state fluid flow in a small DFN
consisting of four rectangular fractures is solved. The results of the proposed
technique are compared with the results of a FEM model with quadratic ele-
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Figure 10: Test 2; Pressures (a) and velocities (b) at the points of sampling line L2

ments and a refined mesh (again solution FEM Quad Ref). Three horizontal
fractures Ω2−4 intersect a vertical fracture Ω1. The injection well sInj crosses
Ω3 and the production well sPro crosses two fractures, Ω2,4. Fixed pressure
values for the injection well and production well are 2 MPa (pInj) and 1 MPa
(pPro), respectively. The aperture values of the four fractures are 0.01 m.
Wellbore radius is 0.001 m. The fluid viscosity and fracture permeability are
0.001 Pa · s and 3× 10−10m2, respectively.

Figure 11: Test 3; the DFN is enclosed in a box 1×1×1×m3, the wellbore radius is 0.001
m, the fracture apertures are constant and equal to 0.01m, injection SInj and production
SPro wellbores are at pressures 2 MPa and 1 MPa, respectively

In Fig. 12, the pressure and velocity solutions of the presented BEM
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technique are compared with the reference FEM solutions. For the BEM
solution, only 87 boundary elements resulted sufficient to reach a perfect
match with the FEM solution. The proposed BEM solution of this test case
is obtained using the DDM algorithm 1, which allows solving, iteratively,
small dense local linear systems instead of a large coupled unsymmetrical
global system. The stopping tolerance TOL is set to 1× 10−9 and the DDM
algorithm converges in 112 iterations, providing a solution with maximum
flux mismatch over all traces and wells equal to 4.2×10−9. This error can be
further minimized by reducing the stopping tolerance, with, however a minor
impact on the global flux balance. The computed flux at the injection well is
13.03 m3/day, in good agreement with the one provided by the reference FEM
solution with 0.2 million elements (13.05 m3/day, 0.2% difference). Also, the
plots reported in Figs 12c,d along a line passing close to the injection well
(the red line in Fig. 12a) are in very good agreement.

4.4. Test 4: 97-fractures DFN

The last example refers to a 97-fractures DFN (4 faults and 93 fractures)
where there are 2 vertical wells, drilled through four faults (Fig. 13a). The
93 fractures are randomly generated by the open-source DFN modeling tool
ADFNE [55]. Constant pressure values of 15 MPa and 10 MPa are fixed
at the injection well and production well, respectively. No flow boundary
conditions are prescribed on all fractures. Uniform aperture and permeability
are assigned to all the fractures. Fracture aperture follows a log-normal
distribution [21]. (Fig. 13b), with a mean value of -2.1 and a standard
deviation value of 0.27 [57]). The cubic-law k = bf

2/12 is then applied to
calculate the corresponding values of fracture permeability [58]. The faults
have an aperture of 3×10−4m and a permeability of 7.5×10−9m2.

As a whole, 2146 discontinuous quadratic elements (23 elements per frac-
ture plane) are used for this test. In Fig. 14a the BEM mesh for one of the
faults of the DFN is shown; in Fig. 14b the steady-state pressure solution
is reported. It is obtained with the DDM algorithm; 2132 iterations were
required to reach a maximum flux balance error over all intersections and
wells of 2.6× 10−6 m3/s. The performance of the parallel DDM algorithm in
PyDFN3D could be easily accelerated through a parallel implementation in
High Performance Computing (HPC) systems.
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a, compared with the results obtained with FEM Quad Ref (x1, x2 local coordinates of the
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5. Conclusions

A novel numerical technique based on the Boundary Element Method
(BEM) with discontinuous quadratic elements is presented and used in con-
junction with a parallel domain decomposition method for the solution of
steady-state fluid flow problems in 3D Discrete Fracture Networks (DFNs).
Fast analytical integration formulations were derived to account for singular,
nearly-singular and non-singular BEM integrals. Several examples were in-
vestigated to verify the accuracy and the applicability of the technique. The
following conclusions can be drawn:
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� In the context of DFNs, with the proposed technique the limitations
of previous BEM-based approaches with low order basis functions are
overcome; in particular, better approximations near trace intersections
and trace-boundary intersections are provided.

� Optimal convergence rates are achieved by the second-order discontin-
uous quadratic basis functions employed for the approximation of both
pressure and velocity on fracture boundaries and traces;

� In the numerical examples an excellent agreement between the proposed
method and a highly-refined reference FEM solution is gained;
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� The use of the point source function results highly effective for the
simulation of the sharp pressure gradients in the near-field of a wellbore;

� The technique can be effectively used in conjunction with DDM ap-
proaches, thus allowing for a possible parallel implementation pursuing
computations speedup.

In future works, the convergence of the DDM algorithm could be im-
proved, namely reducing the iteration count to reach a given tolerance. Also,
the fracture-wise heterogeneities could be supported by adopting some ad-
vanced BEM methods, such as Dual Reciprocity BEM. This is useful for
applications where the flow field is governed by few fractures with local het-
erogeneities.
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Appendix A. Derivation of the BIE

The governing equation for the fluid flow in a fracture is obtained in Eq.
(4):

−kbf

µ
∇2p =

∑
t∈T

δt,qt +
∑
s∈S

qsδs (A-1)

A weighted residual statement for Eq. (4) is as follows:

−kbf

µ

(∫
Ω

∇ · (∇pw)dΩ−
∫

Ω

∇p · ∇wdΩ

)
=
∑
t∈T

∫
t

qt(γ)w(γ)dγ +
∑
s∈S

qsw (xs)
(A-2)
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where w is a weighting function. It can be re-written as follows:∫
Ω

∇ · (w∇p)dΩ−
∫

Ω

∇ · (p∇w)dΩ +

∫
Ω

∇ · (∇w) pdΩ

= − µ

kbf

(∑
t∈T

∫
t

qt (x)wdt+
∑
s∈S

qsw (xs)

) (A-3)

By formally using twice the divergence theorem, once for
∫

Ω
∇ · (∇pw)dΩ =∫

Γ
w∇p · ndΓ, and then

∫
Ω
∇ · (p∇w)dΩ =

∫
Γ
p∇w · ndΓ one obtains:∫

Γ

w∇p · ndΓ−
∫

Γ

p∇w · ndΓ +

∫
Ω

∇ · (∇w) pdΩ

= − µ

kbf

(∑
t∈T

∫
t

qt (x)wdt+
∑
s∈S

qsw (xs)

) (A-4)

which can be compactly rewritten as:

−kbf

µ

(∫
Γ

w
∂p

∂n
dΓ−

∫
Γ

p
∂w

∂n
dΓ +

∫
Ω

∇ · (∇w) pdΩ

)
=
∑
t∈T

∫
t

qt(x)wdt+
∑
s∈S

qsw(xs)
(A-5)

If the weighting function w is assumed equal to the fundamental solution
of Laplacian operator in 2D, say w(x,y), such that

∫
Ω
∇x · (∇xw(x,y)) dx =

δy, then Eq (A-5) becomes:

−kbf

µ

(∫
Γ

w
∂p

∂n
dΓ−

∫
Γ

p
∂w

∂n
dΓ− p

)
=
∑
t∈T

∫
t

qt(x)wdt

+
∑
s∈S

qsw(xs)
(A-6)

The BIE is finally derived from Eq. (A-6) using the concept of half circle
or half spherical problem [43] as:

−kbf

µ

(
c (xi) p (xi) +

∫
Γ

p (x)
∂w (xi,x)

∂n
dΓ

)
= −kbf

µ

∫
Γ

∂p

∂n
(x)w (xi,x) dΓ−

∑
t∈T

∫
t

qt (x)w (xi,x) dt

−
∑
s∈S

qsw (xi,xs)

(A-7)
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where xi denotes the source point, and c(xi) = 1 if xi is located inside the
domain or c(xi) = 1

2
if xi is located on the boundary, if the boundary is

smooth [43].

Appendix B. Analytical integrations

By assuming that a quadratic BEM element is a straight line, as shown
in Figs. [2-3], the integrals in Eq. (13) can be analytically calculated and the
results of the integration subsequently reported in subsection 2.3 by using
the integral quantities are reported in what follows.

The integrals depend on the locations of the two extreme nodes (x1(1), x2(1))
and (x1(3), x2(3)) of the integration element and of the collocation node
(x1i, x2i). According to the method proposed by [49, 50], the following geo-
metrical quantities are defined first:

D1 =
x1(3)− x1(1)

2
, D2 =

x2(3)− x2(1)

2

C1 =
x1(3) + x1(1)

2
− x1i, C2 =

x2(3) + x2(1)

2
− x2i

a = D2
1 +D2

2, b = 2 (D1C1 +D2C2)

c = C2
1 + C2

2 , e = C1D2 − C2D1

J = L/2

(B-1)

where J is the Jacobian of the map from physical to reference space for a
straight BE element having length L.

Using the constants defined above, the following integrals are solved:

Fn =

∫ 1

−1

ξn

aξ2 + bξ + c
dξ

An =

∫ 1

−1

ξn ln
(
aξ2 + bξ + c

)
dξ,

Sn =

∫ 1

−1

ξn ln
L

2
|ξ − ξi| dξ

(B-2)

With the help of the symbolic mathematics tool SymPy [59], the values
of the above integrals can be found:

� Integrals Fn:
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For
√

4ac− b2 > 0:

F0 =
2√

4ac− b2

(
arc tan 2a+b√

4ac−b2
−arc tan −2a+b√

4ac−b2

)
(B-3)

For
√

4ac− b2 = 0:

F0 =
2

b− 2a
− 2

b+ 2a
(B-4)

F1 = 1
2a

ln a+b+c
a−b+c −

b
2a
F0, (B-5)

F2 = 2
a
− c

a
F0 − b

a
F1 (B-6)

F3 = − c
a
F1 − b

a
F2, (B-7)

F4 = 2
3a
− c

a
F2 − b

a
F3, (B-8)

F5 = − c
a
F3 − b

a
F4 (B-9)

� Integrals An:

A0 = ln
[
(a+ c)2 − b2

]
− 2aF2 − bF1,

A1 =
1

2
ln
a+ b+ c

a− b+ c
− aF3 −

1

2
F2,

A2 =
1

3
ln
[
(a+ c)2 − b2

]
− 2

3
aF4 −

1

3
bF3

(B-10)

� Integrals Sn:

S0 = ln
L

2
(1 + ξi) + ln

L

2
(1− ξi)− ξi ln

1 + ξi
1− ξi

− 2

S1 =
1

2

(
1− ξ2

i

)
ln

1 + ξi
1− ξi

− ξi

S2 = (1 + ξi)
3

[
1

3
ln
L

2
(1 + ξi)−

1

9

]
+ (1− ξi)3

[
1

3
ln
L

2
(1− ξi)−

1

9

]
+ 2ξiS1 − ξ2

i S0

(B-11)

where ξi is the local coordinate of the collocation node when it lies on
the integration element.
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The following integrals are also computed:

Gn =

∫ 1

−1

ξn

(aξ2 + bξ + c)2 dξ, Tn =

∫ 1

−1

ξn

|ξ − ξi|
dξ (B-12)

In formula:

� Integrals Gn:

For
√

4ac− b2 > 0:

G1 =
−2c+ b√

4ac− b2 (a+ b+ c)
− 2c− b√

4ac− b2 (a− b+ c)

− b√
4ac− b2

F0

(B-13)

For
√

4ac− b2 = 0:

G1 = −
[

8a

3 (b− 2a)3 +
8a

3 (b+ 2a)3

]
−2

3

[
1

(2a+ b)2 −
1

(−2a+ b)2

] (B-14)

G2 = − 1
a(a−b+c) −

1
a(a+b+c)

+ c
a
G0 (B-15)

G3 =
ln a+b+c
a−b+c−3abG2−(2ac+b2)G1−bcG0

2a2 (B-16)

where the quantity G0 is as follows:

For
√

4ac− b2 > 0:

G0 =
2a+ b√

4ac− b2 (a+ b+ c)
− −2a+ b√

4ac− b2 (a− b+ c)

+
2a√

4ac− b2
F0

(B-17)

For
√

4ac− b2 = 0:

G0 =
8a

3 (b− 2a)3 −
8a

3 (b+ 2a)3 (B-18)
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� Integrals Tn:

T0 = ln
1 + ξi
1− ξi

, T1 = ξi ln
1 + ξi
1− ξi

+ 2,

T2 = ξ2
i ln

1 + ξi
1− ξi

+ 2ξi

(B-19)

Finally, the quantities E1n, E2n and I1n, I2n (n = 0,1,2) are defined as
follows:

E1n = C1Fn +D1Fn+1, (B-20)

E2n = C2Fn +D2Fn+1, (B-21)

I1n = 2e (C1Gn +D1Gi+1)−D2Fi, (B-22)

I2n = 2e (C2Gi +D2Gi+1) +D1Fi (B-23)
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