Mathematical Modelling of Chromatography as a tool for process understanding and development acceleration Elena Lietta¹, Politecnico Antonello Barresi¹, Alessandro Pieri² di Torino

¹Department of Applied Science and Technology, Politecnico di Torino, Italy; ²GSK, Siena, Italy

Conclusions

PREDICTIVE APPROACH

ESTIMATION APPROACH

DETERMINATION

High-Throughput method needs small amount of product but requires high experimental effort

Breakthrough tests are experimentally simple but require a large amount of sample

Isotherm points obtained with two methods are on the same isotherm

Experiments

for parameter

determination

Experiments Simulations to validate the model

*****Feasible for simple systems and pure proteins

High experimental effort

Experiments in Parameter different operative **Curve fitting** estimation conditions

Good for complex systems

Licence costs and advanced knowledge required

Schmidt-Traub H., 2005, "Preparative Chromatography of Fine Chemicals", Henner Schmidt-Traub. [ISBN: 3-527-30643-9]. Chen J., Sun Y., Journal of Chromatography A, 992 (2003) 29–40. Wang G., Hann T., Hubbuch J., Journal of Chromatography A, 1465 (2016) 71-78. Mollerup J. M., Hansen T. B., Kidal S., Staby A., Journal of Chromatography A, 1177 (2008) 200-206.