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On SIR epidemic models with feedback-controlled interactions and
network effects

Martina Alutto, Giacomo Como, Member, IEEE, and Fabio Fagnani

Abstract— We study extensions of the classical SIR model of
epidemic spread. First, we consider a single population modified
SIR epidemics model in which the contact rate is allowed to be
an arbitrary function of the fraction of susceptible and infected
individuals. This allows one to model either the reaction of
individuals to the information about the spread of the disease or
the result of government restriction measures, imposed to limit
social interactions and contain contagion. We study the effect
of both smooth dependancies and discontinuities of the contact
rate. In the first case, we prove the existence of a threshold
phenomenon that generalizes the well-known dichotomy asso-
ciated to the reproduction rate parameter in the classical SIR
model. Then, we analyze discontinuous feedback terms using
tools from sliding mode control. Finally, we consider network
SIR models involving different subpopulations that interact on
a contact graph and present some preliminary simulations of
modified versions of the classic SIR network.

I. INTRODUCTION

As a result of the COVID-19 pandemic, there has been
a renewed interest in the mathematical modeling, analysis,
and control of epidemic spreadings. See, e.g., [1]–[6]. Of the
two best known mathematical models of epidemics —the so-
called susceptible-infective-succeptive (SIS) and susceptible-
infective-recovered (SIR) models— it is the latter that better
approximates the spread of diseases like COVID-19 over
a time horizon during which individuals tend not to get
infected more than once, either because they have deceased
or since they have recovered achieving some degree of
immunity. The deterministic SIR epidemic model, as first
presented in the pioneering work [7], is a compartmental
model consisting of a nonlinear system of three coupled
differential equations describing the evolution of the fractions
of susceptible, infected, and removed individuals in a fully
mixed closed population.

The main feature of the deterministic SIR model is the
existence of a phase transition described in terms of a scalar
parameter, known as the reproduction number, whose value
can determine two fundamentally different behaviors of the
epidemics. Specifically, if the reproduction number does not
exceed a unitary value, then the fraction of the infected
individuals is bound to remain monotonically decreasing in
time, and in fact asymptotically vanishing as time grows
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large, thus preventing an epidemic outbreak. In contrast, if
the reproduction number exceeds the unitary threshold, then
the fraction of infected individuals is initially increasing until
reaching a peak, after which it starts to decrease monotoni-
cally as in the previous case and vanishes asymptotically in
the large time limit. Thus, reproduction number values above
one are equivalent to the occurrence of an epidemic outbreak.
This phase transition is a crucial aspect of the epidemics
and motivates the recent focus on a correct estimation of the
reproduction number, as well the attempts to design control
policies capable to stir the reproduction number below the
unitary threshold level.

The original deterministic SIR model relies on the assump-
tion that the rate at which individuals get infected is propor-
tional to the product between the fraction of the susceptible
individuals and the fraction of infected individuals. This is
an appropriate model if we envision a fully mixed population
with constant contact and transmission rates. There are many
reasons for considering different interaction terms, as the
result of either endogenous or exogenous interactions, e.g.:

• self-isolation policies or precautionary measures such
as mask wearing put into place by the individuals who
have become aware of the danger of the epidemic
spreading;

• feedback policies enforcing contact rate reduction by a
central controller;

• heterogeneities in the population and network effects.

In this paper, we consider epidemic models that address
the points listed above. Specifically, we study two extensions
of the classical SIR model. First, we introduce a modified
deterministic SIR model with a general interaction term
describing the contact frequency rate as an arbitrary function
of the fractions of susceptible and infected individuals in
the population. Such function is typically decreasing in the
fraction of infected individuals and can be interpreted as
an endogenous reaction to the spread of epidemics (people
tend to self-isolate), or rather an exogenous feedback control
term modeling the action of a central planner actuating
some partial social distancing measure. Then, we consider
deterministic network SIR models where nodes represent
subpopulations, derived by a split by either biological at-
tributes (age, gender, risk) or geographical ones.

Our contribution is three-fold. First, for the extended scalar
SIR model described above, we prove in Section II that
as long as the contact rate is a smooth function of the
state that is nondecreasing in the fraction of susceptible
individuals, we retrieve the same threshold behavior of the



SIR model: either the infection dies out monotonically,
or it first increases, reaches a peak, and then decreases
monotonically until vanishing asymptotically. Notice that in
both cases the fraction of infected individuals remains a
unimodal function of time, i.e., it adimts an unique local
maximum that occurs at t = 0 when the the reproduction
number does not exceed the unitary value and at t > 0 if
the reproduction number value is larger than 1. Second, in
Section III, we consider the generalized scalar SIR model
where the contact rate is a discontinuous feedback term. For
the especially important case of piecewise constant feedback
controls, we show conditions under which a new sliding
motion phenomenon can arise. In fact, we prove that in
such models the fraction of infected individuals can remain
constant at its maximum level, for a trivial interval of time
before starting its monotone convergence to 0. Finally, in
Section IV we study the deterministic network SIR model
and show the effect of introducing two different types of
control within the classical model. The former is a limitation
of interactions between different nodes, while the latter is a
general reduction of any kind of interaction.

II. A SIR MODEL WITH GENERAL INTERACTION TERM

We consider the following system of ODE’s
ẋ(t) = −x(t)y(t)f(x(t), y(t))

ẏ(t) = x(t)y(t)f(x(t), y(t))− γy(t)

ż(t) = γy(t) ,

(1)

where f : R2 7→ R+ is a state-dependent contact rate and
γ > 0 is a constant recovery rate. Notice how, in the special
case f(x, y) = β > 0, i.e., when the contact rate is a positive
constant, (1) reduces to the classical deterministic SIR model

ẋ(t) = −βx(t)y(t)

ẏ(t) = βx(t)y(t)− γy(t)

ż(t) = γy(t) ,

(2)

first introduced and studied in [7].
For now we assume f to be a C1 function. As it happens

for the SIR model, the three equations are dependent, yield-
ing that x(t)+y(t)+z(t) is constant. Throughout the paper,
we assume this constant to be one, so to interpret x(t), y(t),
and z(t) as fractions. The same considerations than in the
SIR model, moreover, lead to the fact that solutions of (1)
are globally defined (and unique) and that they keep invariant
the simplex

S =
{

(x, y, z) ∈ R3
+ |x+ y + z = 1

}
.

From now on we assume to always pick an initial condition
that lays in S. Considering that x(t) and z(t) are monotone
functions of time, the former decreasing and the latter
increasing, we obtain that they always converge to a limit
as t grows large. Invariance of the simplex S implies that
the all solution vectors converges asymptotically and that in
the limit y(t) → 0. Now, extending the contribution in [8],
we prove that, under mild assumptions on the function f ,
the threshold behavior of the SIR is retrieved in this model.

To this aim, define, for every solution (x(t), y(t), (t)) of
(1), the function

R(t) = x(t)f(x(t), y(t))/γ (3)

We now show that R(t) plays the same role than the usual
reproduction number for the SIR model (to which it reduces
when f is constant). The following invariant result holds.

Proposition 1: Assume that f is of class C1 and is such
that ∂f/∂x ≥ 0 in every point of S. For every solution of
the ODE (1), if R(0) < 1, then R(t) < 1 for all t ≥ 0.

Proof: We first notice that if x(0) = 0, then x(t) = 0
at all time and consequently R(t) = 0 at all time. We now
consider the case when x(0) > 0 that yields (by uniqueness
of the solution) x(t) > 0 at all time. In this case, we prove
the result by contradiction. If not, by continuity, there exists
t∗ > 0 such that R(t∗) = 1 and R(t) < 1 for all t < t∗. We
now compute the time derivative of R(t):

γṘ = ẋf + x
∂f

∂x
ẋ+ x

∂f

∂y
ẏ (4)

We study the sign of Ṙ(t∗). Because of the sign of ẋ, the
standing fact that x > 0 at all time and the assumption on
the function f , we have that the first two addends in the
righthand side of (4) are always negative. Finally, the third
term is 0 at t∗ since ẏ(t∗) = 0. We conclude that Ṙ(t∗) < 0.
By continuity, we can state that Ṙ(t) < 0 in an interval
[t∗ − ε, t∗] for some ε > 0. Since R(t) is decreasing in
[t∗ − ε, t∗] and stays strictly below 1 for all t < t∗ for the
assumption made, it follows that also R(t∗) < 1 contrarily
to what we had assumed. This yields the result.

We can now state and prove the following result that shows
how R(t) plays the same exact role than the reproduction
number for the SIR model.

Theorem 1: Assume that f is of class C1 and is such that
∂f/∂x ≥ 0 in every point of S. Given an initial condition
(x0, y0, z0) ∈ S and called the corresponding solution of (1)
as (x(t), y(t), z(t)), the following facts hold

(i) If R(0) < 1, then y(t) converges to 0 monotonically.
(ii) If R(0) > 1 and y(0) > 0, then there exists t∗ > 0

such that
• y(t) is monotonically increasing in [0, t∗]
• y(t) is monotonically decreasing in [t∗,+∞[ and

converges to 0
Proof: Concerning (i), it follows from Proposition 1

that R(t) < 1 for all t. This condition is equivalent to saying
that ẏ(t) < 0 at all times t and proves (i).

Concerning (ii), notice that there must exist t > 0 such
that R(t) < 1. Indeed, if not, ẏ(t) > 0 ∀t and y(t) would
not possibly tend to 0. If we now define

t∗ = inf{t > 0 |R(t) < 1}

we have that by construction the properties expressed in (ii)
hold true. The proof is now complete.

Remark 1: In the case when f(x, y) = β is constant, we
are back in the classical SIR model and Theorem 1 retrieves,
in this case, the well known result on the behavior of curve



(a) (b) (c)

Fig. 1: Simulations of the SIR model in the case of epidemic
outbreak. The first figure on the left is the classical model,
while the other two figures are the simulations of the
modified SIR model with linear and quadratic interaction
terms.

of infected in this model. More details on the solutions can
be obtained in this case. We briefly recall them below, as
they will be needed in the next section. It will be convenient
to set up the notation ρ = γ/β.

From the first and third equation in (1), we notice that the
function

Γ(x, y, z) = ρ lnx+ z = ρ lnx− x+ 1− y

is motion invariant. In particular, given the initial condition
x0 = 1− ε, y0 = ε, and z0 = 0, we obtain that the solution
will lay in the manifold

y = 1− x+ ρ lnx− ρ ln (1− ε) . (5)

When R(0) = (1 − ε)/ρ > 1, the maximum value reached
by the infection happens in correspondence of x = ρ, as for
this term ẏ = 0, and is thus given by

M(ε, ρ) = 1− ρ+ ρ ln ρ− ρ ln(1− ε) . (6)

In most cases of interest, the feedback term f is only
function of y. Indeed, it is natural to imagine that a reaction
both endogenous or exogenous be correlated to the extent of
the current level of infection in the population. We notice that
our result do not put any constraint on the way f may depend
on y. Natural feedback terms will however be decreasing in
y. In Figure 1 we compare the evolution of the classical
SIR model in an unstable case with two modified versions
having f(x, y) = h2(y) with respectively h(y) = 1− y and
h(y) = (1− y)2.

III. SIR MODEL WITH THRESHOLD TERMS

When we are modeling a control action of a central
planner, it is of interest to study the case when f(y) has
discontinuities. Indeed, it is not feasible to imagine a policy
that varies with continuity, rather it is more natural a policy
that changes when the infection reaches certain thresholds. In
this section, we study in detail the case when f(y) is piece-
wise constant. In this case, the analysis carried on in previous
section in general fails because of the discontinuities of the
right hand side of the ODE (1). Classical solutions may not
exist and, in this context, we will use the concept of solution
according to Filippov [9].

We consider the ODE (1) with an interaction term f(y)
as defined below

f(y) =

{
β if y < k
β̄ if y ≥ k (7)

(a) (b)

Fig. 2: Vector fields the ODE (1) with a piecewise constant
feedback term in the xy plane, for the case β = 2, γ = 0.4,
k = 0.35, and β̄ = 0.38 (left) and β̄ = 1 (right).

We interpret β as a sort of intrinsic interaction/contagion
term that, in the absence of control measures, describes the
rate at which infection propagates. When the infection gets
above the threshold k, a (partial) lockdown policy takes place
and brings this term to a smaller value β̄ < β. In accord to
Remark 1 we use the notation ρ = γ/β and ρ̄ = γ/β̄.

To analyze this model, it is convenient to focus on the first
two equations of (1). The right hand side is a discontinuous
vector field that present a so called sliding manifold:

Ω = {(x, y) | ρ ≤ x ≤ min {ρ̄, 1} , y = k}

Indeed, in a sufficiently small neighborhood of Ω the vector
field of the ODE points in the direction of the manifold.

This is illustrated in Figure 2. Trajectories in that region
will eventually hit the manifold Ω and then they will remain
on it sliding in the direction of decreasing x till the point
(ρ, ȳ). From that point, the trajectory will remain in the
region below (uncontrolled) and it will coincide with the
trajectory of the uncontrolled SIR with interaction rate term
equal to β.

In the following result we gather more detailed infor-
mation on the nature of the sliding phenomenon and the
conditions on the parameters for it to happen. To distinguish
the two regimes determined by the value of the interaction
term, we refer to, respectively, the β and the β̄-SIR model.

Theorem 2: Assume that f is as defined in (7) and that the
initial condition is of type (x(0), y(0), z(0)) = (1− ε, ε, 0).
Assume that (1− ε)/ρ > 1 and put

m(ε, ρ, ρ̄) =

{
1− ρ̄+ ρ ln ρ̄

1−ε if ρ < ρ̄ < 1− ε
ε if 1− ε < ρ̄

(8)
Consider the solution (x(t), y(t), z(t)) of (1) in the sense of
Filippov. Then, the following facts hold:
(a) If M(ε, ρ) < k, then y(t) < k at all times and the

solution (x(t), y(t), z(t)) coincides at all time with that
of a β-SIR model. In particular; the maximum value
reached by the infection is ymax = M(ε, ρ).

(b) If m(ε, ρ, ρ̄) < k < M(ε, ρ), then there exist time
instants 0 < t∗ < t∗∗ such that
• y(t) = k for all t ∈ [t∗, t∗∗]
• y(t) is monotonically increasing in [0, t∗], mono-

tonically decreasing in [t∗∗,+∞[ and such that
limt→0 y(t) = 0.



(c) If ε ≤ k ≤ m(ε, ρ, ρ̄), then there exists a time instant
t∗ > 0 such that
• y(t) is monotonically increasing in [0, t∗];
• y(t) is monotonically decreasing in [t∗,+∞[ and

converges to 0.
The maximum value in this third regime is given by the
expression

ymax = M(ε, ρ̄) + (ρ̄− ρ) ln
1− ε
x(k)

(9)

where x(k) is the abscissa when the solution crosses
the manifold y = k and is explicitly described by the
relation

x(k) + ρ lnx(k)− ρ ln (1− ε) + k − 1 = 0 . (10)

Proof: In the regime described in (a), the solution for
the classical β-SIR model remains always in the region y <
ȳ. Consequently, it is also a solution of the controlled SIR
model with control (7).

To study the other cases, we reduce to the xy plane and
we only consider the first two equations in (1). We denote
by (x(t), y(t)) the solution of the uncontrolled β-SIR model.
We first note that, using the relation (5), when ρ̄ < 1 − ε
the expression m(ε, ρ, ρ̄) coincides with the value y of the
solution corresponding to x = ρ̄. In other terms, there exists
t1 ≥ 0 such that x(t1) = ρ̄ and y(t1) = m(ε, ρ, ρ̄).

If we are in the regime described by (b), we notice that
for sure y(0) = ε < k so initially the solution leaves in
the (uncontrolled) region y < k. Indicate by t∗ > 0 the first
time when the solution (x(t), y(t)) hits the threshold level k.
Such an instant must exist since the maximum value reached
by y(t) is above k. When ρ̄ < 1− ε notice that necessarily
t1 < t∗ as y(t1) < k and y(t) is increasing till it reaches its
maximum value. This implies that

ρ < x(t∗) < x(t1) = ρ̄ . (11)

When instead ρ̄ > 1−ε, we have that x(t) < ρ̄ at all times
t so that (11) remains true. This says that, in any case, the
solution hits, at time t∗ the sliding manifold Ω. Considering
that the derivative of x is always negative, according to the
definition of Filippov solution, the solution of the controlled
SIR model from instant t∗1 on will be sliding on Ω till it
reaches the point (ρ, k). This is reached at some time t∗∗ >
t∗. From time t∗∗ on the solution coincides again with the
solution of the classical β-SIR model and will be decreasing
in the component y and will converge to 0.

Consider now the regime (c). The only interesting case is
when ρ̄ < 1− ε. Consider again (x(t), y(t)) the solution of
the uncontrolled β-SIR model. By the considerations above,
we have that at time t1 > 0 when x(t1) = ρ̄ we have that
y(t1) > k. This implies that the solution (x(t), y(t)) has hit
the line y = k at some previous time t∗ for which x(t∗) > ρ̄.

As (x(t∗), k) is out of the sliding manifold Ω, the solution
of the controlled SIR-model will continue with a just a
jump in the first derivative and since then it will coincide
with the solution of an unstable classical β̄-SIR model. The
component y will reach a peak for x = ρ̄ and will then

(a) (b)

(c) (d)

Fig. 3: All possible trajectory behaviors. Plot (a) corresponds
to the first regime exposed in Theorem 2, plot (b) to the
second regime, and, finally, plots (c) and (d) to the two
possible situations of the third regime.

decrease and hit again the line y = k at some further time
t2 > t∗. Depending on whether x(t2) < ρ or x(t2) > ρ the
solution, in the first case, will undergo another jump in the
first derivative and converge as a solution of a β-SIR model,
while in the second case, will first slide along Ω to the point
(ρ, k) and then will converge again as a solution of a β-SIR
model.

Finally, the values for the maximum reached by the
fraction of infected are simply obtained through the formula
(6) that computes the maximum value of the infected in
classical SIR models.

Remark 2: In the regime (c) of Theorem 2, it can happen
that the solution, after reaching the peak, exhibits a sliding
motion during the decreasing phase. We have not explicitly
indicated this in the statement, as this phenomenon does
not modify the maximum value reached globally by the
component y(t) of the solution. It was however noticed in
the proof. In Figure 3 we show all possible behaviors of the
trajectory in the plane xy.

Notice, moreover, that the expression (9) for the maximum
value reached by the fraction of infected is composed of two
term. The first one is the value it would reach under the
assumption that k = ε, namely that the controlled regime is
active since the initial time. The true value ymax is obtained
from this adding a positive extra term that depends on k
and accounts for the fact that for a while the epidemics has
growth with no control. The estimation of this term can be
relevant in the decision process of policy to adopt.



IV. NETWORK EFFECTS

In this section, we analyse versions of the network SIR
model.

Let G = (V, E , A) be a weighted di-graph with finite set
of nodes V = {1, 2, . . . , n}, set of directed links E ⊆ V ×
V , and adjacency/weight matrix A in Rn×n+ . The different
nodes i in V represent different subpopulations whereas the
positive entries Aij > 0 of the weight matrix are in one-to-
one correspondence with the links (i, j) in E and measure
the contact frequency of members of subpopulation i with
members of subpopulation j. Throughout, we shall assume
that the diagonal of A is strictly positive, i.e., that Aii > 0
for all i = 1, . . . , n.

For given infection rate β > 0 and recovery rate γ > 0,
the network SIR epidemic model on a graph G = (V, E , A)
is the dynamical system

ẋi(t) = −βxi(t)
∑
j Aijyj(t)

ẏi(t) = βxi(t)
∑
j Aijyj(t)− γyi(t)

żi(t) = γyi(t)

(12)

for i = 1, . . . , n, where xi, yi, and zi represent respectively
the fractions of susceptible, infected, and recovered individu-
als in population i. Notice that (12) may be more compactly
rewritten as

ẋ = βdiag (x)Ay − γy , ẏ = βdiag (x)Ay − γy , ż = γy .
(13)

This model has been studied in [10] and [11]. In particular,
it is known that all solutions converge to an the equilibrium
point of the form (x∗, 0, z∗) in R3n

+ such that x∗ + z∗ = 1
and that the locally asymptotically stable equilibrium points
are those such that

λmax(diag (x∗)A) < γ/β ,

where λmax(M) stands for the dominant eigenvalue of a
nonnegative matrix, which coincides with its spectral radius
thanks to the Perron-Frobenius Theorem. In fact, under the
assumption that the graph G is strongly connected, [10,
Theorem 7] shows that the quantity

R(t) =
β

γ
λmax(diag (x(t))A)

is decreasing along solutions and it plays a role similar to
the one played by the reproduction number in the scalar SIR
model. Specifically, if R(0) ≤ 1 then the weighted average
v(0)′y(t) will monotonically decrease to 0 as t grows large;
on the other hand if R(0) > 1, then the weighted average
v(0)′y(t) will be initially increasing (epidemic outbreak)
and there exists some τ > 0 such that R(τ) ≤ 1 and the
weighted average v(τ)′y(t) will be decreasing to 0 for t in
the interval [τ,+∞). Here v(t) stands for the nonnegative
leading eigenvector of the matrix diag (x(t))A.

Notice that the results summarized above concern the
average behavior of the infection curve, with no implication
on its behavior at individual nodes.

We now study two versions of the SIR network model, in
which we introduce a social interaction mitigation function

and, as in the previous section, we assume it is dependent
only on the fraction of infected and decreasing with respect to
it. This control function can be introduced as a modification
of interactions between different nodes or any type of interac-
tion, both inter-nodal and within the same subpopulation. If
we consider nodes as geographically distinct subpopulations,
the first type of contact limitation will lead to a kind of
distancing and isolation per area with movements restriction.
The interpretation of nodes in this model as a subdivision
of the population into age groups will instead result in a
limitation of interactions between people of different ages.
This may be justified by an attempt to avoid contact between
stronger people and people in age groups more vulnerable
to disease, for example. We will then consider the following
model



ẋi(t) = −βxi(t)

(
Aiiyi(t) +

∑
j 6=i

Aijyj(t)fij(t)

)

ẏi(t) = βxi(t)

(
Aiiyi(t) +

∑
j 6=i

Aijyj(t)fij(t)

)
− γyi(t)

żi(t) = γyi(t) ,
(14)

where the term fij(t) concerns the limitation of contacts be-
tween the individuals of population i and those of population
j. Obviously this term fij(t) could depend on the infection
level of both populations. For this reason, we can start by
assuming that this term is equal to the product between the
individual lockdown terms within the populations, that is

fij = fifj ∀i, j = 1, ..., n

where the individual lockdown measures considered are the
following functions

fi(t) = 1− yi(t) ∀i = 1, ..., n

A second alternative is to consider a control over all types
of interaction within the network. In this case the studied
model will be instead

ẋi(t) = −βxi(t)

(
Aiiyi(t)f

2
i (t) +

∑
j 6=i

Aijyj(t)fij(t)

)

ẏi(t) = βxi(t)

(
Aiiyi(t)f

2
i (t)+

∑
j 6=i

Aijyj(t)fij(t)

)
− γyi(t)

żi(t) = γyi(t) ,
(15)

where individual lockdown measures fi are assumed as in
the previous case.

In Figure 4 we show simulations of the network SIR
model with n = 2 subpopulations in the case of epidemic
outbreak in both nodes and the two modified versions with
the introduction of a internodal and a total control. Regarding
the first node, these modifications of the model lead to an
attenuation of the infection peak, while for the second node
the introduction of the control causes the disappearance of
an increasing trait for the curve of the infected.



(a) (b)

(c) (d)

(e) (f)

Fig. 4: Simulations of the SIR model in the case of epidemic
outbreak. Plots (a) and (b) are the classical network model in
each node, plots (c) and (d) are the modified SIR model with
internodal control, while plots (e) and (f) are the simulations
in both node with a total control.

V. CONCLUSION

We have studied extensions of the classical Kermack
and McKendrick’s SIR epidemic model [7] that account
for feedback-dependant contact rates and network effects.
In particular, we have shown that discontinuous piecewise
constant feedback rates may give rise to sliding motions,
while for network models, simulations of possible modified
versions are shown. Future research includes extension of
these results, in particular for the network SIR model.
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