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Abstract

Models with dominant advection always posed a difficult challenge for projection-
based reduced order modelling. Many methodologies that have recently been
proposed are based on the pre-processing of the full-order solutions to acceler-
ate the Kolmogorov N−width decay thereby obtaining smaller linear subspaces
with improved accuracy. These methods however must rely on the knowledge of
the characteristic speeds in phase space of the solution, limiting their range of
applicability to problems with explicit functional form for the advection field. In
this work we approach the problem of automatically detecting the correct pre-
processing transformation in a statistical learning framework by implementing
a deep-learning architecture. The purely data-driven method allowed us to gen-
eralise the existing approaches of linear subspace manipulation to non-linear
hyperbolic problems with unknown advection fields. The proposed algorithm
has been validated against simple test cases to benchmark its performances and
later successfully applied to a multiphase simulation.

Keywords: Deep Neural Networks (DNNs), shifted-POD (sPOD), Non-linear
hyperbolic equations, Reduced Order Modelling (ROM), Multiphase
simulation.

1. Introduction

Reduced Order Modelling (ROM) is a well-established set of different numer-
ical techniques whose objective is that of retrieving a low-rank representation
of parametric differential models, s.a. Ordinary Differential Equations (ODEs)
and Partial Differential Equations (PDEs), describing a relevant majority of
models in physics and engineering [1, 2]. Lowering the computational cost of
numerical simulations is a fundamental aspect of both industrial and academic
research activities and therefore ROM techniques have always been, since their
introduction, an important part of the modelling process. In its most general for-
mulation, ROM deals with Initial Boundary Value Problems (IBVPs) in which
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a PDE is parametrised by a finite set of P ∈ N parameters. One such example
is the following scalar, linear, first-order in space IBVP with non-parametric,
steady Dirichlet’s Boundary Conditions (BCs) and Initial Condition (IC)

∂tu(x, t,µ) + L(u,µ) = 0 , x ∈ Ω ⊂ Rd , t ∈ [0, T > 0] , µ ∈ P ,
u(x, t,µ) = g(x) , ∀x ∈ ∂Ω ,

u(x, t = 0,µ) = u0(x) , ∀x ∈ Ω ,

(1)

where d = 1, 2, 3 represents the number of spatial dimensions of the model,
T > 0 is a final instant that identifies the interval in which the time evolution
of the model is evaluated and P ⊂ RP is the parameter domain of the PDE s.t.
dim(P) = P . Following a domain discretisation of Ω using e.g. Finite Volumes,
Finite Elements or Finite Differences, one obtains a numerical approximation
uh(t,µ) ∈ Vh for the (discrete) time evolution of u(x, t,µ) as evaluated at
timesteps tk , k = 0, 1, . . . , and where Nh := dim(Vh) represents the Degrees
of Freedom (DOFs) of the problem. By defining the discrete solution manifold
Mh :=

{
uh(tk,µ) ∈ Vh , k ∈ N0 , s.t. µ ∈ P

}
one immediately recognises that a

high-dimensional approximation space Vh leads to an expensive computational
cost whenever one wants to evaluate the time evolution of uh(t,µ) for multi-
ple instances of µ in the parameter space P. Formally stated, ROM aims at
reducing the computational cost of a (numerical) parametric simulation by con-
structing the best low-rank approximation R of manifoldM s.t. it encodes the
parameters variation of the Full Order Model (FOM) but with a reduced number
of DOFs. One such example is that of evaluating the pressure field solution in
response to several geometrical configurations of an airfoil parametrised by e.g.
different angle of attack, chord line and mean thickness. Many different classes of
ROM techniques have been developed for the low-rank reduction of several phe-
nomena [3, 4, 5] and in particular projection based ROM have found widespread
application in reducing different parametric differential problems modelling sev-
eral phenomena in fluid dynamics. This class is based on the identification of
a reduced set of basis functions, or modes,

{
φj
}
j=1,...,R

s.t. their superposi-

tion spans the best possible low-rank approximation of the solution manifold
i.e. span(φ1, . . . ,φR) = R ≈ Mh. The Proper Orthogonal Decomposition
(POD), on which this work is based upon, is one of those techniques in which
the basis extraction is performed using Singular Value Decompostion (SVD) of
a so-called snapshot matrix X in which the FOM solutions uh(t,µ) are stored
as column vectors. When paired with a projection technique ΠRuh(t,µ) ∈ R
s.a. the Galerkin projection the resulting POD-Galerkin method allows for fast
computation of several simulations with different instances of µ in the domain
P. The efficiency of any ROM technique, including POD-Galerkin methods,
stems directly from the number of basis functions needed to encode the para-
metric essential dynamics of a model at reduced order. The reduction accuracy
of a model has been traditionally quantified by the Kolmogorov N−width of
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the problem which is defined, in L2−norm, as

distR(Mh) := inf
R∈RR

√∑
uh∈Mh

||uh −ΠRuh||2∑
uh∈Mh

||uh||2
. (2)

Problems that are characterised by a fast Kolmogorov N−width decay (here
we used N ≡ R to be in line with the notation commonly found in the lit-
erature) are easily restricted by a low-rank linear subspace approximation; on
the other hand a slow decay indicates that a linear approximation assump-
tion might be inappropriate and inaccurate for that problem. For this reason,
despite the popularity that POD-Galerkin methods gained in various areas of
computational science and engineering [6, 7, 8, 9], they have been severely lim-
ited by the fact that the low-rank approximation of Mh they build is sought
within a sequence

{
RR
}
R=1,...,∞ of R−dimensional linear subspaces. The as-

sumption that a FOM can be accurately approximated by restricting its dy-
namics on a low-rank linear subspace proved in fact to be suitable for elliptic
and parabolic problems (where the Kolmogorov N−width decays exponentially
with R [10]) while it is not trivially extendable to problems with dominant
advection such as (s.a.) those modelled by hyperbolic PDEs (for which the Kol-
mogorov N−width decay is much less steep [11]). It results that the reduction of
advection-dominated PDEs with POD-Galerkin methods requires a large num-
ber R of basis functions to be accurately depicted as they struggle to restrict
the FOM to a linear subspace approximation of Mh, essentially nullifying the
reduction in computational cost. Since models with dominant advection are
particularly recurrent in fluid dynamics, being associated to the conservation
laws describing a large multitude of phenomena (most notably Euler’s equa-
tions and Riemann’s problems, shallow water equations, multiphase models), a
growing number of endeavours in recent years have proposed alternative mod-
ifications for the improvement in performances for the approximation of such
manifolds [12, 13, 14]. The work that has been done is very heterogeneous
in terms of the methodologies adopted, with many efforts that brought in the
latest data-driven trends in machine learning and features extraction. Never-
theless the state-of-the-art in improving the accuracy of ROM of hyperbolic
equations can be distinct into two major approaches: those based on ad-hoc
transformations of the linear subspace as a support for better mode extraction
of projection-based ROM [15, 16, 17, 18, 19] and those based on a construction
of non-linear manifolds [20, 21, 22, 23]. The former class has been the first to
be approached while the latter strategy is only most recently being explored to
overcome the limitations of the earlier approaches. Among the various reasons
there is the fact that the underlying methodology of pre-processing the linear
subspace has been that of embedding the dominant advection of the solution
at offline stage using a deterministic transformation. This requires some sort
of problem-specific prior knowledge of the physical or mathematical properties
of the FOM e.g. the characteristic speeds in phase space of a conservation law
[24, 25]. This obviously limits the range of applicability of pre-processing based
model reduction to deal with hyperbolic PDEs that feature simple advection
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fields. To overcome such shortcomings the second class of methods based on
deriving non-linear manifold reduction directly has been recently favoured with
important results being obtained with the adoption of convolutional autoen-
coders [26] and Arbitrary Lagrangian-Eulerian (ALEs) frameworks [27, 28]. In
this work we introduce a novel statistical learning framework for the generalisa-
tion of the earliest pre-processing techniques to those hyperbolic problems that
feature non-linear and unknown advection fields. The resulted Neural Network
shifted-Proper Orthogonal Decomposition (NNsPOD) algorithm is a fully non-
intrusive, purely data-driven machine learning offline method that seeks for an
optimal mapping of the various snapshots in the low-rank linear subspace to
a reference configuration via an automatic detection that does not depend on
the physical properties of the model. By construction our algorithm does not
belong exclusively to either of the aforementioned classes of manifold reduction.
While NNsPOD starts with the goal of building a pre-processing transforma-
tion that accelerates the Kolmogorov R−width decay for advection-dominated
problems, it also achieves a virtually unlimited range of applicability to non-
linear manifold reduction since it requires no prior knowledge on the properties
nor complexity of the FOM. In this work we propose NNsPOD as an efficient,
pre-processing method that can be deployed for the offline of a projection-based
ROM; a full ROM NNsPOD-Galerkin method will be discussed in future works
where we address the practical advantages and computational issues associated
to project the governing non-linear hyperbolic equations onto a low-rank man-
ifold constructed independently from the physics of the problem. During the
development of our algorithm we became aware of a project being proposed in
[29] which achieves the similar result of non-linear manifold reconstruction of
transport-dominated problems via deep-learning models. Despite being both
projection-based and physics-independent, our methodology substantially dif-
fers from the one proposed in [29]. The approach undertook in [29] is based on
deriving a low-rank manifold generated via adaptive reduced basis; as remarked
by the authors, those basis have the unique feature of carrying the parametric
and time dependence of the PDE, which NNsPOD does not. The introduction
of the two deep learning models is used to output two separate low-rank vec-
tors whose inner product represents the non-linear approximation of the FOM
uh(x,µ, t) ≈ uNN (x,µ, t;θ) = α(µ, t;θ) ·ϕ(x,µ, t;θ). The training of the two
networks will optimise the parameters θ in such a way that the retrieved set of
adaptive reduced basis generators spans a low-rank manifold characterised by
a faster Kolmogorov R−width decay than that of a traditional POD-Galerkin
method. Our methodology is instead focused in automating a well-established
technique of backward shifting the FOM solutions to a reference configuration by
means of two independent networks that, although trained separately, are never-
theless joined together in the construction of a non-linear pre-processing opera-
tor. We argue that the methodology that we propose generalises better to those
advection-dominated problems that feature unknown non-linear transports, s.a.
the case for multiphase models. The underlying reason for our statement is that
NNsPOD does not explicitly embed any parametric dependence on the reduced
basis generators, which are therefore unaware of the paths taken to be mapped
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onto the reference configuration. This non-intrusive approach entails a stronger
validity on the fundamental ansatz of ROMs uh(x,µ, t) ≈∑R

j=1 uj(µ, t)ϕj(x)
in which the low-rank manifold generators ϕ(x) only carry spatial dependence.
The generalisation at online stage provided by NNsPOD will therefore fully
encode the information regarding the parametric dependence of the transport
field, with the coefficients uj(µ, t) being determined by the Galerkin projection
of the governing equations onto the low-rank manifold. We also emphasize that
all the benchmarks that follow in the present work are 2−dimensional problems
as opposed to the 1−dimensional problems presented in [29]. The present work
is structured as follows: in Section 2 we contextualise the state-of-the-art of lin-
ear subspaces transformations while also showing the limitations of traditional
POD-Galerkin reduction for a canonical problem with dominant advection; in
Section 3 we present the methodologies adopted by NNsPOD as a generalisation
of such techniques to unknown and non-linear transport fields; in Section 4 we
demonstrate the performances of NNsPOD as a result of its application to a
reduction of a multiphase model; in Section 5 we conclude by highlighting the
outstanding challenges of our approach while also providing some insights on
practical limitations we encountered during the development and test stage of
our algorithm.

2. Pre-processing transformation of POD linear subspaces

In order to introduce the new methodology proposed in this work we shall
contextualise the common approach shared by all the previous works that have
been done in linear subspace pre-processing of advection-dominated models.
To that end we start by formally introducing the standard procedure of a tra-
ditional POD-Galerkin technique and highlight its under-performance with a
simple hyperbolic equation.

2.1. Full-order scalar advection equation

Let us consider a simple test case of the IBVP in (1) for which L = ∇·F i.e.
∂tu(x, t) +∇ · F = 0 , x ∈ [0, 1]× [0, 1] ≡ Ω , t ∈ [0, T = 1] ,

u(x, t) = 0 , ∀x ∈ ∂Ω ,

u(x, 0) = exp(− 1
2 xTx) , ∀x ∈ Γ ⊂ Ω ,

(3)

which is a linear first-order advection equation in a scalar unknown u(x, t) that
is null everywhere over a unitary square domain except for a bounded region Γ in
which varies as a multivariate Gaussian pulse. For the sake of simplicity we set
(3) to have only one parameter which is the time variable itself; this entails that
P = dim(Mh) = 1 which in turn means that we expect to retrieve a sufficiently
accurate linear subspace approximation of the FOM with only R = 1 reduced
basis vector.
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Figure 1: Different snapshots of the FOM simulation in (3) sorted left to right from the IC to
increasing timesteps.

We know however that this is not the case since (3) is an hyperbolic PDE. To
test the inability of traditional projection-based ROM at restricting the FOM
to a linear subspace let us set a computational grid of 50 × 50 points in Ω
while we discretise the time interval into 100 uniform steps to comply with the
Courant –Friedrichs–Lewy (CFL) condition. We also set the vector field F = f u
to be a linear flux function that is uniform in space and constant in time with
the advection field being f = (1,−1). We obtain a FOM numerical solution
uh(t) ∈ Vh , Nh = 2500 using a Finite Volume (FV) spatial discretisation
scheme, while the time evolution over the discrete timesteps is obtained via an
unconditionally stable, first-order accurate, implicit Euler method. For the sake
of simplicity we will not discuss the theoretical background of both numerical
methods as it is out of the scope of the present work; the reader may refer to
[30, 31, 32] for a comprehensive reading on standard algorithms in introductory
and advanced numerical analysis. In order to present a particularly challenging
advection model to our POD-Galerkin reduction method, we reduce as much
as possible the numerical diffusion given by low-order cell face interpolation; as
such a third-order accurate QUICK scheme [33] is adopted with the numerical
stability being assured by the combined implicit Euler time advancing method
and CFL-complying timesteps. Different FOM snapshots of this simulation are
depicted in Figure 1.

2.2. The POD method for reduced basis extraction

The standard procedure of POD reduction is hereby outlined. The Ns = 100
snapshots, sampled in the 1−dimensional FOM manifold during the simulation,
are sorted by timestep in increasing order and stored as column vectors of a
2500 × 100 snapshot matrix. We can find the best low-rank approximation of
X via SVD as per the Eckart–Young theorem [34]

X =
(
uh(t1 = 0), . . . ,uh(t100 = T )

)
≈ LΣR , L ∈ RNh×R , R = 1, . . . , Ns. (4)

The left singular vectors in L are those that are associated with any subspace
approximation RR ofMh; in Figure 2 we depict the first 8 of those. As specified
in 2.1, a linear combination of R = P = 1 of those vectors should, theoretically,
retrieve a reduced order model with high accuracy.
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Figure 2: First 8 modes extracted via POD reduction from the FOM in (3) sorted in ascending
order from top to bottom and from left to right.

However if we set such threshold to be e.g. 10−3 we immediately realise
that such degree of accuracy is obtained with a reduced basis of 14 left singular
vectors. This model clearly cannot be constrained easily in a linear subspace as
produced by a traditional POD method.

2.3. Linear subspace shift-based transformation

In order to improve the approximation ofMh via linear subspaces, different
methods have been proposed in the most recent years; the majority of the them
started to focus in deriving an ad-hoc transformation of the linear subspace in
a frame of reference that facilitates the decay of the Kolmogorov width. This
shift-based pre-processing is in fact consistent with the hyperbolic character of
models with dominant advection which are solved at full-order, both analytically
and numerically, by exploiting the characteristics curves in phase space of the
solution. Therefore, as long as the characteristic speeds of an hyperbolic PDE
are known, one can pre-process the snapshots of the FOM in X by e.g. mapping
them to the IC following backward those curves in phase space. This approach
therefore aims at finding a better frame of reference for the SVD of the POD by
transporting the FOM snapshots by means of: backward-shift transformation
[24, 25] and successive interpolation; displacement interpolation technique [15]
or shock-fitting methods [17]; locally adapted bases [35]. In the following we
will focus on the first of those linear subspace pre-processing methods. As
explained in [24] one builds a discrete shift operator Tb that acts on a space-
time dependent function u(x, t) transporting its frame of reference by an amount
that is proportional to the transport field b. The k−th FOM snapshot in (4)
is an Nh−dimensional vector; each of its component store the field value of
the numerical solution associated to the x and y coordinates of a centroid x
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on the computational grid following the FV discretisation. Applying the shift
operator to such snapshot amounts to deriving a new spatial distribution of
those centroids for the same field values i.e.

Tb uh(tk) = ũh =
(
uh(xj − btk, 0)

)
j=1,...,Nh

, ∀k = 1, . . . , Ns . (5)

Furthermore an interpolation of ũh is necessary in order to reconstructs the
FOM field solution starting from the shifted points distribution on the mani-
fold; the transformed snapshot matrix is thus decomposed in the new frame of
reference by SVD. As depicted in Figure 3 in fact, a shift transformation on the
snapshots allows for a better approximation with just 4 modes needed to span
a linear subspace that is within the same 10−3 accuracy threshold set in 2.2 for
Mh.
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Figure 3: Comparative accuracy of traditional POD and shift-based pre-processing POD for
the same advection model in (3).

2.4. Limitations in deducing the shift operator

The stated claim in [24] is to build a data-driven, shift-based, pre-processing
transformation that identifies the dominant structures of a hyperbolic model re-
gardless of the characteristic velocities, with the goal of extending the method-
ology to non-linear advection fields. The authors also add that in order to
identify those ansatz modes, whenever the phase-space velocities are unknown
explicitly, two different approaches might be considered. One approach is based
on the tracking of the peaks in the field values of the numerical solution across
different snapshots; this method is however unfeasible for hyperbolic models
that do not preserve the time or parameter dependent shape of the IC across
their time evolution (e.g. multiphase simulations as we address in Section 4).
The other suggested methodology, that is actually discussed in [24], is to per-
form multiple SVDs with sampled values of the shift velocities; in a data-driven
fashion one should thus be able to detect the correct backward shift transfor-
mation by examining the singular values spectrum and isolate those for which
the decay is maximised. This approach is indeed feasible to deal with hyper-
bolic PDEs that feature unknown transport velocities. However we identify two
major limitations:
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• The examination of the singular value spectrum as a function of trial
shift operators entails an unnecessary increase in computational complex-
ity during the offline stage that scales polynomial with d = 1, 2, 3. This
is due to the fact that multiple snapshot matrices, and subsequent SVD,
are required in order to detect the appropriate spatial transformation that
maximise the Kolmogorov width decay since, in order to achieve a truly
data-driven degree of flexibility, no prior information on the physical be-
haviour shall be used to sample the velocities for the trial shift operators.

• The various guesses for candidate shift operators are all, as stated by the
authors in [24], limited to uniform and constant advection fields, although
the shift itself can easily be computed pointwise in the grid and at different
timesteps. This introduces a further degree of approximation and loss in
accuracy for the case of non-linear hyperbolic PDEs; in fact guessing lin-
ear, constant and uniform shift velocities essentially amounts in linearising
those characteristic curves in phase-space that may present non-trivially
integrable irregularities.

Our aim is that of generalising the shift-based pre-processing linear subspace
approximation by overcoming these aforementioned limitations in performance,
computational scalability and models of advection. In our approach we in fact
retrieve a non-linear transformation that achieves the same results in [24] but
with an automatic detection that is both consistent with the method of charac-
teristics and also robust to be applied to hyperbolic PDEs with unknown and
non-linear advection.

3. Automatic detection of bijective mapping in non-linear manifolds

The traditional fields of application for statistical learning models, since their
renewed development, have been data-analysis and data-mining, signal process-
ing and computer vision. In the last years however they found widespread im-
plementation in different subsets of scientific computing as well [36]. Industrial-
driven requirements in improving the computational cost of numerical simu-
lations in engineering, natural and life sciences resulted in an ever increasing
integration of machine-learning algorithms within the more ”traditional” nu-
merical methods. The introduction of Artificial Neural Networks (ANNs), and
specifically Deep Neural Networks (DNNs), further encouraged this coupling by
providing purely data-driven non-linear mappings. ROM has been no exception
to this merge of disciplines and the similarities between POD and Principal
Component Analysis (PCA) is one example that justifies the natural blending
of one set of techniques into the other. Given the extensive presence of complex
non-linear PDEs, s.a. those modelling turbulent regimes [37], Computational
Fluid Dynamics (CFD) represented the quintessential field of experimentation
for ANNs integration in scientific computing with the first endeavours [38] be-
ing introduced as early as 2003. The DNN-based algorithm we hereby propose
has been developed along those directions outlined above, that is by integrat-
ing, in an efficient but mathematically consistent process, a statistical learning
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paradigm into a traditional ROM technique s.a. POD. The main limitation in
detecting the appropriate backward transformation for shift-based POD reduc-
tion of models like (3) is that prior knowledge of the characteristic velocities is
necessary in order to quantify the pre-processing map. A data-driven approach
based on singular values spectrum analysis does not automate the process as,
in order to be efficient, a proper sampling of the velocity space has to be per-
formed. Furthermore if there is a parametric dependence of such transport field,
i.e. b = b(µ, t), then the Galerkin projection will not generalise well during the
online phase since the pre-processed manifold does not contain the information
for the evolution of the numerical solution along different characteristic curves
in phase-space. The approach taken in previous works s.a. [24, 16] can thus be
modelled as follows

Tb :Mh 7→ M̃h ,M̃h :=
{
uh
(
xj−b(tk,µp

)
, tk) ,∀k = 1, . . . , Ns, p = 1, . . . , Np

}
,

i.e. finding a backward map Tb in which the Np parametric instances of the
transport field at offline stage is embedded. This method changes the frame of
reference of the solution manifold making difficult its generalisation at online
stage. A deep-learning framework on the other hand can indeed derive a bijec-
tive transformation between the shifted manifold (of which the linear subspace
approximation is build) and the original one by ignoring such parametric depen-
dence for the advection field b. This motivates the needs for the adoption of a
non-intrusive technique for the computation of the backward map based on au-
tomatic shift-detection i.e. a machine learning algorithm that does not quantify
the shift operator neither based on the pointwise value of the transport field nor
a linear approximation of it. Here the bijectivity property of the transformation
detected by NNsPOD refers to the fact that each FOM snapshot u(x, t) ∈Mh

is associated to a unique shifted approximation of the reference configuration
uref ∈ M̃h. Our methodology in fact derives a transformation T that is there-
fore more general w.r.t. Tb constructed in [24] which instead maps every FOM
solution in the snapshot matrix to the IC. The data-driven algorithm that will
be introduced in the following section can be thought of a transport-field inde-
pendent transformation mapping the arbitrary points in the solution manifold
to a significantly smaller region of the output shifted manifold consisting of an
arbitrary small neighborough centered in uref. The optimised, automatically
detected, non-intrusive transformation is therefore a bijective map

C1 3 T :Mh 7→ M̃h ,

which does not linearise the characteristic velocities in phase-space. In the
development of NNsPOD we focused in assuming that no prior information
regarding the functional dependence of b is known as we seek to derive a bijec-
tion that traces any snapshot in X to an arbitrary small neighborough of the
reference configuration uref ∈ M̃h. It might seem trivial to choose the IC as
reference configuration; however, as we will explain further on in the section,
given the general framework in which NNsPOD was conceived, we will con-
sider also other snapshots as reference configuration for improving the bijective
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map. NNsPOD being a data-driven, pre-processed ROM it should also provide
a consistently fast online phase for parametric formulation of time-dependent
hyperbolic PDEs. We postpone the results of such models, as well as the in-
tegration of NNsPOD with a Galerkin projection, to our future works; in the
present work we only highlight the generalisation of the effectiveness of shift-
based linear approximations in POD reduction methods for particularly difficult
advection-dominated models with unknown and non-linear transport fields (as
presented in Section 4).

3.1. Statistical learning formulation and reference configuration

Our framework is naturally implemented as a statistical learning technique
in which the objective is to detect automatically an optimal transformation of
the solution manifoldMh that increases the Kolmogorov width decay associated
to its model. If a DNN is deployed to build such bijective map while it merely
relies on the snapshots collected from FOM data, then the desired requirements
are:

• It must preserve the hyperbolic nature of the PDE consistently with the
dominant advection model: NNsPOD has to be flexible enough to out-
put transformations that have to be, in principle, rigid transports of any
collected snapshot to a reference configuration of choice without adding
numerical diffusion while, at the same time, being able to also change the
shape of those snapshots if it is required (e.g. multiphase simulation we
will discuss in Section 4).

• The data-flow for the two phases of shift-detection and field-reconstruction
(interpolation), as outlined in [24] has to be continuous: in order for the
backward map to be generalised for the Galerkin projection the non-linear
transformation provided by NNsPOD has to be invertible for any input
in the training set and as such a continuity constraint in the architecture
of the DNN is imposed. Furthermore, we want the activation function of
the output layer of the DNN to be itself bijective to be able to uniquely
associate any FOM solution to a ROM in the low-rank manifold.

In order to encode the automatic shift-detection in the backward map itself
we must convert the variational form of singular values spectrum analysis and
velocity sampling into a statistical learning theoretical framework. First and
foremost we interpret the FOM snapshots as data-points of the training set for
the network

M :=
(
uh(µj)

)
j=1,...,P

, X := X T ∈ RNs×Nh . (6)

We observe that the training set is itself a subspace of the full-order solution
manifold; in statistical learning theory we will thus have a Nh−dimensional
features space of cardinality Ns. Secondly we assign a semi-supervised learning
paradigm to our model by choosing arbitrarily, among the samples in M, a
reference configuration uref for the field values that acts as unique label for the
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training of the network on the rest of the collected data-points. It is important to
clarify this aspect as it is one of the features of NNsPOD that can be exploited in
order to build more refined and efficient machine learning algorithms in ROM of
hyperbolic equations. For the sake of simplicity let us consider a 1−dimensional
formulation of the IBVP in (3) in which the advection-dominated model features
a regular, constant and uniform transport field b = 1. Given a stable full-order
numerical simulation (i.e. with very low numerical diffusivity) it is intuitive that
the reference configuration and any given data-point in M only differ for the
centroids x at which a certain value of field solution is associated. For instance,
the peak of the Gaussian pulse will be located, e.g. at x = 0 for a reference
configuration uh(x, t0) and we can easily predict that, after ∆t = 1, it will be
located at x = 1 i.e. uh(x, t1 = t0 + 1). It is trivial to see that, in this instance,
choosing the IC as reference configuration is no different then choosing any other
snapshots in M when building a backward map either by direct calculation or
automatic detection. This arbitrariness is itself an advantageous property of
the hyperbolicity of the equation that is easily exploited whenever there are
simple transport fields as stated above. However, if one is dealing with the
more concrete case of irregular transport fields, then the IC itself does not
have to be necessarily the one that fully reconstructs the shifted manifold since
the stationary frame of reference can be associated to any of the snapshots
collected at FOM. To take full advantage of faster Kolmogorov width decay,
NNsPOD does not restrict itself in sampling backward transformations to the IC
but to any reference configuration that optimises the reduction; the non-linear
projection operator associated to the automatically detected map will thus be
able to generalise from any frame of reference thanks to the bijective constraint
discussed above. For this reason in the following we will refer to the unique label,
chosen for the training of the neural network part of NNsPOD, in more general
terms as the reference configuration uref ∈ M which, we reiterate, does not
necessarily have to coincide with the IC of the IBVP. The setting is completed
by choosing one particular metric for computing the loss function between the
output associated to any data-point in M and the reference configuration. While
there is substantial space for testing and experimenting with this choice, in the
development of the present work we restrict the development to the L2−norm
which is consistent with the Kolmogorov width decay of the finite-dimensional
functional space Vh for the FOM snapshots

J(xref, Ns) :=
1

Ns

Ns−1∑
j=1

||ũh(µj)− uref||2 , ũh := uh(x,µ) ◦ T (7)

Future works might be able to derive a rigorous mathematical structure for the
selection of appropriate metrics for the training of shift-detecting networks in
projection-based ROM pre-processing.
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3.2. Architectures for continuous data-flow: the shift-detection and field- recon-
struction split

Aside from the shift detection itself, one important procedure for a pre-
processing transformation of the FOM manifold is the ability of reconstructing
the field values of the solution following the backward map to the reference
configuration. This can be achieved via e.g. interpolation [24] of the field val-
ues from the shifted points to the nearest centroids on the grid. In developing
an automatic shift-detection algorithm we therefore must include such field-
reconstruction part within the algorithm itself. Being purely data-driven, it is
also desirable that the interpolation is also based on the FOM snapshots and
does not rely on the prior physical knowledge of the problem (e.g. upwind inter-
polation methods). One of the major advantages of NNsPOD is that the choice
of the reference configuration for the training of the network is arbitrary. We
exploit such potential by splitting the workload between two separate networks:

• ShiftNet is the neural network that has the duty of quantifying the optimal
shift for pre-processing transformation of the full-order manifold and that
maximises the Kolmogorov width decay.

• InterpNet is the neural network that must “learn” the reference configu-
ration in the best possible way w.r.t. its grid point distribution s.t. it will
be able to reconstruct its “shape” for every shifted centroid distribution.

The introduction of a neural network with the specific task of interpolating the
field values on the nearest centroids of the grid following the shift means that,
once fully trained, NNsPOD is not only capable of reconstructing the values of
the solution field continuously across the computational domain but, depending
on how the training is performed, it will also allow for the bijective mapping to be
performed for virtually unlimited non-linear advection models and in particular
with those that feature high degree of variability in the “shape” of the snapshots
collected, at full-order, in M. Attention must be paid in constructing such split
architecture since the objective is that NNsPOD’s output T is a sufficiently reg-
ular bijective map between the manifold and its shifted counterpart. As such,
continuity in the data pipeline must be preserved from ShiftNet and InterpNet
and viceversa. At the same time it is not desirable that the hyperparametric
optimisation of the loss function of those networks has an effect on each other;
a lack of separation of weights and biases updates lacks in fact the possibility of
generalising NNsPOD transformation during online stage for those advection-
dominated models that have parametric dependence in the transport field itself.
As such we devised the DNN-based algorithm, reported in Algorithm 1 to
achieve such counteracting properties. It is important to stress the adoption of
two independent neural networks in order to derive a real physics-independent
non-linear transformation of the manifold in a pure data-driven fashion. In our
framework the shifted field interpolation has to be embedded in the derived shift
operator, however, at the same time, it is desirable that once the reference config-
uration has been learned one could somehow retain the neural configuration as-
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sociated to it while training separately for the derivation of the actual shift map.

Algorithm 1: The NNsPOD algorithm

Result: Optimal shift-detected transformation T
Construction of snapshot matrix X ;

Computing the feature matrix X = X T ;
Setting the accuracy thresholds εSVD, εshift, εinterp;
while ε > εSVD do

Selection of reference configuration uref;

while ε
′
> εinterp do

InterpNet.forward;

compute ε
′
;

InterpNet.backward;

end
Tinterp = InterpNet.forward;

while ε
′′
> εshift do

x̃ = ShiftNet.forward;
ũh = Tinterp ◦ x̃;

compute ε
′′
;

ShiftNet.backward;

end
T = ShiftNet.forward;
for uh ∈ X do

ũh = uh ◦ T ;
end

Perform the SVD on X̃;
Compute εSVD;

end

It is therefore clear how the adoption of two independent deep learning archi-
tectures, glued continuously to assure bijectivity in the derived transformation,
complies with the aforementioned requirement. The training stages of ShiftNet
and InterpNet are thus separated with the latter being trained first. Once the
network has learned the best possible reconstruction of the solution field of the
reference configuration, its forward map will be used for the training of Shift-
Net as well, in a cascaded fashion. For this reason we must optimise the loss of
InterpNet (whose training set is composed by the field values of uref) consider-
ably more than ShiftNet’s. A schematic of the structure of NNsPOD, as well
as its input and output relation for the 1−dimensional example discussed in 3.1
is depicted in Figure 4. We highlight the simple scalability of NNsPOD archi-
tecture and algorithm to hyperbolic equations with higher dimensional space
domain. As a matter of fact ShiftNet’s training set consists on the data-point’s
spatial distribution meaning that its input layer will have d+ P neurons while
the output layer, feeding information to InterpNet, has d neurons.
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Figure 4: Deep learning architecture of NNsPOD for a 1−dimensional model showing the
continuous pipeline of information passed from ShiftNet to InterpNet.

InterpNet on the other hand will have d neurons in the input layer while the
output layer will always feature a single neuron, for any spatial dimension, if
the numerical solution is scalar or 3 neurons if the solution is a vector field. We
finally emphasise that a discussion about the fine-tuning of the networks is out
of the scope of the present work. We will nonetheless specify the full details of
the architecture deployed for the shift-detection of the numerical models that
follow.

3.3. Reduction of non-uniform, non-constant linear advection equation

In order to benchmark the capability of NNsPOD automatic shift-detection
the reduction of the same advection equation in (3) is hereby derived using
its workflow. A non-uniform and non-constant advection field will be used to
validate the performance of the proposed algorithm; such model cannot be pre-
processed by traditional shift-based methods if prior knowledge of the equation is
used. As outlined in 2.4 in fact, a singular values spectrum analysis on sampled
constant and uniform velocities will lead to an excessive computational time
during the offline phase and it will also introduce a linear approximation of the
characteristic curves of the hyperbolic equation. We therefore refer to the same
2−dimensional, single parameter setting in (3) but with b = ( 1

2 y
2t,−2x t2)

instead; the Ns = 100 collected snapshots are then pre-processed according to
Algorithm 1. A substantial variance in shape of the snapshots is recorded, as
depicted in Figure 5. This model reduction has the aim of:

• Showcasing the accurate shift-based pre-processing of linear subspace ap-
proximation for the manifold of a relatively complex advection field through
automatic detection i.e. using no prior knowledge of the FOM.

• Testing the ability of reconstructing highly “diffusive” snapshots collected
from an hyperbolic FOM to be later applied to the more complex multi-
phase model in Section 4.

The latter is a desirable quality for our data-driven algorithm to feature; highly
diffusive snapshots may arise in fact not only in models with non-uniform and
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non-constant advection but also whenever the discretisation scheme of the con-
vective term is of lower order of accuracy. The settings of NNsPOD’s neural
networks for the shift-detection are the following

NNsPOD settings
InterpNet ShiftNet

Hidden layers×neurons 2× 40 3× 20
Activation function Sigmoid PReLU

Learning rate 10−3 10−4

Accuracy threshold 10−7 10−1

We observed that values greater than those prescribed above for the learning
rates of the two neural networks will feature either a non-convergent loss function
or a resulting shift transformation that does not center around the reference con-
figuration. The training of NNsPOD’s ShiftNet neural network lasted 6 hours on
a i7− 7700 quad processor with 16 GB of RAM; this constituted approximately
85% of the computational time of the overall offline stage (FOM snapshot col-
lection, shift pre-processing and SVD of the shifted snapshot matrix). As for
any machine learning model, and especially when treating deep learning, it is
difficult to contextualise, let alone justify, the computational cost associated to
the training phase. The lack of interpretability and full understanding of the
networks behaviour is somewhat limiting any rigorous mathematical estimate
to a more empirical assessment. In this case for instance, we observed that the
training of InterpNet is significantly cheaper than the 6 hours took by ShiftNet,
as a matter of fact by lasting merely 10 minutes. We argue that the difference
on the datasets’ cardinality (InterpNet trains on only one snapshot field values,
that of uref, while ShiftNet optimises over Ns samples) and the cascaded struc-
ture of NNsPOD (ShiftNet has to optimise its parameters to minimise a loss
that is in part a result of InterpNet’s behaviour, which ShiftNet cannot change
directly) are the main actors for this unbalance in computational cost. The
different stages of the training phase of InterpNet and ShiftNet are reported in
Figure 6. We tested NNsPOD performance by selecting the 80−th snapshot
as reference configuration (uref := uh(t80) ∈ M) to highlight the possibility of
choosing appropriate frames of reference for the shift-based pre-processing of
Mh, aside for the IC’s one. The optimal transformation for the snapshots in X
is thus retrieved, via automatic shift-detection, for such reference configuration.
During the training stage we observed that many snapshots, being different in
shape among each other and specifically w.r.t. the reference configuration, were
stretched differently along different directions in the spatial domain by ShiftNet
in order to overlap InterpNet’s transformation.
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Figure 5: Different snapshots of the FOM solution (upper row) of a 2−dimensional advection
equation with non-uniform and non-constant linear transport field (bottom row).

Figure 6: Output of NNsPOD’s split neural networks at different epochs during their separate
training stages: in the upper row IntepNet’s output (black contour lines) convergence to
the reference configuration (green contour lines) is shown; in the bottom row the output of
ShiftNet’s detected coordinates (red) for a so-called test snapshot in X (blu) is depicted to
converge to the reference configuration (green).

Nevertheless a pre-processing bijective map is derived by NNsPOD that uses
no prior information regarding the mathematical model in (3) and its physical
properties (i.e. characteristic velocities).
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Figure 7: Accuracy comparison between traditional POD and NNsPOD for a non-uniform,
non-constant, linear advection field in (3). The decay pattern follows that of an exact shift op-
erator computed piecewise for every FOM snapshot proving the arbitrary accuracy achievable
by the automatic shift-detecting bijection sought by NNsPOD.

Furthermore the non-uniform and non-constant advection field has not been
linearised in its parametric dependence (in this instance only w.r.t. to the
time variable t) in order to sample the velocity space. The SVD of the re-
constructed snapshots, following NNsPOD automatically detected shift-based
mapping, demonstrates a faster Kolmogorov width decay (Figure 7) compared
to a traditional POD algorithm; its accuracy does indeed follow the one that it
would be obtained by constructing manually an exact piecewise shift operator
for each of the datapoints in M. To that regard NNsPOD can be interpreted
as the statistical learning algorithm that constructs the best possible approx-
imation of a shift operator via automatic, data-driven detection; as a result
its precision is arbitrarily set by choosing the loss threshold for it to generate
the bijective mapping and therefore M̃h. In Figure 8 the loss optimisation of
InterpNet and ShiftNet are depicted for the IBVP in (3); from it we can appre-
ciate how fundamentally different the hyper-dimensional loss functions for the
two neural networks are. During testing and validation of the algorithm, we
observed that the optimisation of ShiftNet during training frequently featured
a steep descent followed by a slow asymptotic decay, as opposed to the more
noisy but consistent minimisation of InterpNet. We believe that the reason
for ShiftNet’s loss behaviour is due to the fact that in d > 1, infinitely many
non-linear shifts can be traced from any given FOM snapshot to the reference
configuration; once one of them is found the loss experience a steep optimisation
which then quickly levels since the now shifted snapshots are centered around
uref but not quite overlapping its field values.
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Figure 8: Loss optimisation w.r.t. the training of NNsPOD’s split neural networks for the
IBVP (3) with advection field b = ( 1

2
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4. Reduction of a multiphase model with manifold transformation

We now present a numerical experiment to validate the fundamental prop-
erty of NNsPOD being applicable to non-linear advection fields. The transport
of a passive scalar field in a multiphase flows of two fluids with uniform den-
sities ρ1, ρ2 ∈ R , ρ1 6= ρ2 is chosen as FOM to generalise the reduction of a
2−dimensional linear hyperbolic equation as addressed in Section 3. The rea-
son motivating this choice lies within the mathematical model describing the
multiphase flow itself being the coupling between the (incompressible) Navier-
Stokes momentum balance equation and an advection equation. The coupling
stems from the velocity field, which is unknown and derived numerically as a
solution of the Navier-Stokes equation; the divergence of such field ultimately
becomes the transport operator for a scalar field α(x, t,µ) that models the
pointwise fraction of volume of the two fluids within the cells of the discretised
computational domain. Furthermore, being Navier-Stokes a non-linear PDE,
the no-prior knowledge quality of NNsPOD is thereby assessed as its ability of
deducing the proper pre-processed linear manifold approximation with a gener-
alisation to non-linear advection fields.

4.1. The Volume-of-Fluid method for Eulerian interface tracking

A multiphase flow is modelled by two fluids occupying a certain fraction
of the volume domain. The time evolution of each fluid is governed by the
unsteady Navier-Stokes equations{

∂t ρ+∇ · (ρU) = 0 ,

∂t(ρU) +∇ · (ρU⊗U) = −∇p+∇ · τ + F ,
(8)

in which the first equation describes the mass conservation principle (continuity
equation) whereas the second models Netwon’s second law for the conservation
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of (linear) momentum. Assuming incompressible regime and absence of external
forces (F = 0) acting of the fluids (8) reduces to{

∇ ·U = 0 ,

∂tU + (U · ∇)U = − 1
ρ∇ p+ ν∆ U .

(9)

The system above is coupled in the pressure p(x, t) and velocity U(x, t) fields
which are the unknowns of the problem at hand that has to be solved numer-
ically. We observe that (9) describes the dynamics of one single fluid with
(uniform) volumetric density ρ and kinematic viscosity ν. In the multiphase
flow however we have two fluids, separated by a sharp interface, that evolve in
a coupled fashion with each other. By assuming that the two fluids are immis-
cible we can describe the physical properties of the flow as averaged across the
domain; to that end the fraction of volume fields α1, α2 ∈ [0, 1] are introduced
which are defined through a constitutive relation α1Ω + α2Ω = Ω⇒ α1 + α2 =
1⇒ α := α1 = 1− α2 that acts as a constraint on the model. The new density
field is thus defined as α(x, t) = α(x, t)ρ1 + (1 − α(x, t))ρ2 and its time evolu-
tion is governed by an advection equation coupled with the constitutive relation
derived above {

αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t α+∇ · (Uα) = 0 ,
(10)

with U(x, t) being the (non-linear) velocity field in (9) which is thus coupled with
(10). Eulerian multiphase modelling tracks the instantaneous and pointwise
changes in the sharp interface between the two fluids; continuous-continuous
and dispersed-continuous phase interaction are the two large families of algo-
rithms used to model multiphase flow. The latter is used in simulating dispersed
particles (solid phases), droplets (liquid phases) and bubbles (gaseous phases)
within a larger continuous fluid phase; the former instead is used whenever there
is a presence of a continuous sharp interface between two fluids. The presence
of an additional transport operator in the advection equation for field α(x, t)
suggests that traditional bounded schemes for its numerical discretisation might
not suffice. The operator becomes in fact highly diffusive in proximity of the in-
terface in a processed called excessive smearing. One possibility to mitigate the
phenomena, as outlined in [39], is to introduce a numerical compression term
∇ · (α (1 − α) Ur) in the advection equation in (10) built ad-hoc s.t. it takes
null values everywhere in the domain except in proximity of the interface where
α ∈ (0, 1) (being Ur := Cα||U|| ∇α||∇α|| with Cα ∈ [0, 1] as a free parameter). The

resulting system from (10) thus is{
αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t α+∇ · (α(U + (1− α)Ur)) = 0 .
(11)

Then, a discretisation scheme is devised for the advection terms, with the com-
pressive interface capturing (CICSAM) and piecewise linear interface construc-
tion (PLIC) being the most widespread (we refer to [40] for a detailed explana-
tion and derivation).
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4.2. Full-order multiphase numerical modelling

To benchmark the performance of NNsPOD automatic shift-detection and
construction of pre-processed linear manifold approximation for the non-linear
advection of an hyperbolic equation, a simplified model of a multiphase sim-
ulation is solved numerically. While retaining the parametric dependence on
the density and viscosity for the couple of fluids, for the sake of simplicity we
restrict the parameter space, paired to the FOM, to be the exclusively the time
variable as previously derived for the linear models in Section 2 and 3. To this
end we consider the following IBVP for the time-evolution of a sharp interface
separating water (ρ1 = 103 , ν1 = 10−6) from air (ρ2 = 1 , ν2 = 1.48 · 10−5)

∇ ·U = 0 ,

∂tU + (U · ∇)U = − 1
ρ∇ p+ ν∆ U ,

U = (0, 0) , ∀x ∈ Γb , ∂n U = 0 , ∀x ∈ ∂Ω \ Γb ,

U(x, 0) = (0.25, 0) , ∀x ∈ Ω ,

αρ1 + (1− α)ρ2 = α , α ∈ [0, 1] ∀x ∈ Ω ,

∂t α+∇ · (α(U + (1− α)Ur)) = 0 , Cα = 1 ,

α = 1 , ∀x ∈ Γb , ∇α = 0 , ∀x ∈ ∂Ω \ Γb ,

α(x, 0) = 1 , ∀x ∈ Ω s.t. y < e−
x2

2 ,

(12)

where the IC for field α(x, t), which identifies the initial configuration of interface
between the two fluids, features a Gaussian profile. The BCs are set to comply
with the no-slip condition for the bottom partition of the boundary Γb whereas
a null gradient through top, the inlet and outlet partitions is allowed (see Figure
9 for reference). The setting is intended to simulate a multiphase flow through
a 2−dimensional canal with open lid at atmospheric pressure. The domain
Ω = [−2.5, 3.5] × [−0.5, 1.25] is discretised in a homogeneous set of collocated
rectangular cells with a computational grid of 250×75 centroids (Nh = 18, 750).
The time interval for the simulation is set to t ∈ [0, 5] which is in turn discretised
into 100 steps to comply with the CFL condition thereby leading to the following
manifold definition

Mh :=
{
αh(tk) ∈ Vh , k = 1, . . . , 100

}

Figure 9: Illustration of the FOM for the IBVP in (12): on the left the discrete computational
grid is shown with the indication for the bottom partition of the boundary where the no-slip
condition is applied; on the right two snapshots of the solution field αh are reported (IC on
the top, 100−th snapshot on the bottom).
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In the statistical learning configuration of NNsPOD we remark that the
offline snapshot collection generates a dataset M ∈ RNs×Nh , associated toMh,
of cardinality Ns = 100 and dimensionality (number of features) Nh = 18.75 ·
103.

4.3. Automatic shift-detection and linear manifold reconstruction

The shift-detection of the algorithm regards the correct reconstruction of the
interface separating the two phases of fluids w.r.t. a reference configuration for
the problem. As discussed in Section 3 the choice for an appropriate snapshot
for the training of InterpNet does not affect the ability of ShiftNet in construct-
ing a pre-processed manifold approximation. Nevertheless, even if for highly
diffusive transports one can always select any configuration of the numerical
field αh for the subsequent automatic shift detection, we remark that Interp-
Net optimises only on those field values. It is therefore to be expected that,
the more complex and non-linear the advection field is, the more training for
InterpNet and ShiftNet will be necessary. Here we selected the 35−th snapshot
to be the reference configuration αref := αh(t35) ∈ M. The split architecture
of NNsPOD was set with the following parameters.

NNsPOD settings
InterpNet ShiftNet

Hidden layers×neurons 4× 40 5× 25
Activation function HardSigmoid PReLU

Learning rate 10−5 10−6

Acccuracy threshold 10−4 10 2

The field αh targeted by the shift-detection, and therefore involved in the
minimisation of the loss function, has values in [0, 1]; intuitively in most of
the cells of the FOM its values is either one of the infimum (i.e. air only) or
the supremum (i.e. water only) with the exception of the interface where the
gradient has non-null values. As such, in order for NNsPOD to emulate such
behaviour, the hard sigmoid activation function for InterpNet’s neurons, which
is responsible for learning the best possible approximation for the reference
configuration, has been adopted. As expected the training of NNsPOD lasted
considerably longer than the previous linear simulation reported in Section 3
with the convergence time towards the threshold amounting to 4 times what was
previously measured (27 hours circa), on the same hardware, for the previous
case with the linear setting. Although this is partially attributed with the higher
dimensional full-order discrete space Vh we did observe a non-trivial behaviour
for the convergence of the shift-detection towards the reference configuration.
The non-linearity of the FOM in (10) forced the sampling of NNsPOD to not
be constrained to simple linear backward shifts which is indeed the goal for the
generalisation process itself.
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Figure 10: NNsPOD’s neural networks at different epochs during the training for the multi-
phase FOM in (10): the upper row displays IntepNet’s (black) convergence to αref (green)
while the bottom row shows the convergence of ShiftNet’s output (red) for test snapshot in
X (blu).

In fact, as motivated in Section 3 and later shown in Figure 6 for the non-
uniform linear case, NNsPOD’s capability is not limited to linear backward
shift for a test snapshot but rather to a non-linear stretching of the shifted
coordinates.
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Figure 11: Comparison of singular values decay for the POD prior and following NNsPOD’s
pre-processing bijective mapping. We can appreciate a substantial improvement in accuracy
retained per number of modes, in line with the shift-based treatment of the snapshot. This
result highlights the possibility of NNsPOD to replicate the results of sPOD (with arbitrary
accuracy) to those models for which the manual construction of an exact shift operator is not
possible.
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The search for alternative and non-trivial backward maps, as shown by Shift-
Net’s outputs in Figure 9 and 10 entails to our algorithm the property of gen-
erating automatically the best possible approximation of the backward shift in
the form of a bijective map for the linear manifold reconstruction for unknown
transport fields. Obviously, the non-linear transformation required by (12) re-
quires more refined DNN architectures; this can be seen by the relatively slower
singular values decay reported in Figure 11. As we explained in previous sec-
tions, we cannot derive a mathematically rigorous selection of the appropriate
networks’ configuration by merely relying on the task of increasing the decay of
the singular value; nevertheless the authors believe that more advanced archi-
tectures at the state-of-the-art may outperform the still significant gains shown
in Figure 11 obtained by much simpler DNNs.
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Figure 12: NNsPOD training loss optimisation for the multiphase IBVP (12).

As a final remark, we validate the slow asymptotic convergence of the loss
function of ShiftNet, firstly reported in 3.3 for the linear advection equation in
(3) and depicted in Figure 12 for the multiphase IBVP (12). Once again such
behaviour matches the visual observations of FOM snapshots taking a variety of
different paths to be centered around the reference configuration. The authors
reiterate the need of setting a much tighter threshold for the optimisation of
InterpNet as more complex and non-linear the advection field of the model is.

5. Conclusions

The purpose of this work was to derive a novel approach for the model order
reduction of advection dominated problems. At this aim, the development of
NNsPOD allowed us to emphasize the advantages posed by the construction
of a non-linear transformation that does not rely on prior knowledge of the
physical model. The automatisation of the shift-detection process opposes the
sampling of the phase space for the advection field to derive better linear ap-
proximations of the manifold at the current state of the art. The multiphase
test showcases that the time required for the training of NNsPOD falls within
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the current estimation for the offline phase with no pre-processing of the snap-
shots (e.g. traditional POD) while leading to more accurate low-rank subspaces.
The online phase of a pre-processing based POD, which is of paramount impor-
tance for the industrial applications of any ROM, requires for the backward
map to generalise for new instances of the parameter vector; in order to achieve
such result the map itself has to be independent on the advection field. In the
early development stage of NNsPOD, we realised that the traditional sPOD [24]
method could not generalise well during the online phase due to the fact that
the transformation that maps the FOM snapshots to the IC is linear and advec-
tion field dependent. Our methodology on the other hand is non-intrusive and
data-driven, allowing for the parameter vector to be unaccounted in the con-
struction of the low-rank manifold since it disregards the transport field; this
entails that performing the Galerkin projection of the governing equations onto
the reduced order subspace constructed by NNsPOD would result in numeri-
cal coefficients that fully and solely carry the information on the parametric
dependence embedded in the transport field. We remark once again that, in
order for NNsPOD’s automatically detected transformation to be used at on-
line stage, it must be bijective; such constraint is mathematically enforced by
assuring continuity in the pipeline of the two neural networks and by adopting
a bijective activation function for the output layer of InterpNet. Our algorithm
will therefore map every FOM snapshot to a unique shifted approximation of
the reference configuration within an arbitrary small neighborough centered in
it. Future works will focus on the validation of the capability of the proposed
framework on a more complex setting, e.g. higher-dimensional formulation for
the multiphase model in (10) with a parametric treatment of the fluid viscos-
ity. Moreover, since this work has the main purpose of presenting the NNsPOD
methodology for improving the classical POD reduction, we have postponed to
future works the development of a full NNsPOD-Galerkin ROM. In particular
the authors suggest that the objective of further investigation in the creation of
a full, NNsPOD-based ROM, should include:

• validation on the accuracy of the reduced order solution for parametric
inputs that result in advection fields that are significantly different from
those used for training the networks during the online stage. We recall that
the underlying mathematical structure of the algorithm relies on a trans-
formation mapping multiple FOM solutions uh ∈ Mh into a relatively
small neighborough of the shifted manifold, centered in uref. Therefore if
the advection field at online stage is e.g. several orders of magnitude dif-
ferent from those used for training the networks at offline stage, perhaps
larger, more refined and fine-tuned deep learning architectures will have
to be deployed by NNsPOD.

• investigate a fast and efficient algorithm to compute the Jacobian of NNs-
POD non-linear transformation. At online stage the linear superposition
of the spatial modes of the shifted low-rank manifold, although carrying
non-explicit dependence of the parametric advection field, is characterised
by a dependence on the non-linear map by the parametric coefficients
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â(µ, t) of the linear combination computed in the shifted frame of ref-
erence. When projecting the governing equation onto the reduced order
manifold, the explicit form of J(â(µ, t)) will have to be computed which
is non-trivial.

Of course, the NNsPOD effectiveness strongly depends on the problem at
hand and on the machine learning architecture used for both the networks —
Shiftnet and Interpnet —. It is impossible indeed, at the current state, to pre-
dict rigorously the optimal structure of the two networks with the choice of the
activation function being the sole setting that can be deduced by the FOM solu-
tion field as outlined in Sections 3 and 4. Future studies will better investigate
the sensitivity of the method with respect to the networks architecture, con-
sidering a set of hyper-parameters larger than the one analysed in the current
article.
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bon, Y. Kuznetsov, P. Neittaanmäki, J. Periaux, O. Pironneau (Eds.),
Contributions to Partial Differential Equations and Applications, Vol. 47,
Springer International Publishing, Cham, 2019, pp. 131–150. doi:10.

1007/978-3-319-78325-3_10.
URL http://link.springer.com/10.1007/978-3-319-78325-3_10

[18] N. J. Nair, M. Balajewicz, Transported snapshot model order reduction
approach for parametric, steady-state fluid flows containing parameter-
dependent shocks: Model order reduction for fluid flows containing shocks,
International Journal for Numerical Methods in Engineering 117 (12)
(2019) 1234–1262. doi:10.1002/nme.5998.
URL http://doi.wiley.com/10.1002/nme.5998

[19] T. Taddei, A Registration Method for Model Order Reduction: Data Com-
pression and Geometry Reduction, SIAM Journal on Scientific Computing
42 (2) (2020) A997–A1027. doi:10.1137/19M1271270.
URL https://epubs.siam.org/doi/10.1137/19M1271270

[20] K. Kashima, Nonlinear model reduction by deep autoencoder of noise re-
sponse data, 2016 IEEE 55th Conference on Decision and Control (CDC)
(2016) 5750–5755.

[21] D. Hartman, L. K. Mestha, A deep learning framework for model reduction
of dynamical systems, in: 2017 IEEE Conference on Control Technology

28

https://doi.org/10.1007/978-3-319-10705-9_41
http://arxiv.org/abs/1711.11275
http://arxiv.org/abs/1711.11275
https://doi.org/10.1137/17M1163517
http://arxiv.org/abs/1711.11275
http://arxiv.org/abs/1805.05938
http://arxiv.org/abs/1805.05938
http://arxiv.org/abs/1805.05938
https://epubs.siam.org/doi/10.1137/17M1113679
https://epubs.siam.org/doi/10.1137/17M1113679
https://doi.org/10.1137/17M1113679
https://epubs.siam.org/doi/10.1137/17M1113679
http://link.springer.com/10.1007/978-3-319-78325-3_10
http://link.springer.com/10.1007/978-3-319-78325-3_10
https://doi.org/10.1007/978-3-319-78325-3_10
https://doi.org/10.1007/978-3-319-78325-3_10
http://link.springer.com/10.1007/978-3-319-78325-3_10
http://doi.wiley.com/10.1002/nme.5998
http://doi.wiley.com/10.1002/nme.5998
http://doi.wiley.com/10.1002/nme.5998
https://doi.org/10.1002/nme.5998
http://doi.wiley.com/10.1002/nme.5998
https://epubs.siam.org/doi/10.1137/19M1271270
https://epubs.siam.org/doi/10.1137/19M1271270
https://doi.org/10.1137/19M1271270
https://epubs.siam.org/doi/10.1137/19M1271270


and Applications (CCTA), 2017, pp. 1917–1922. doi:10.1109/CCTA.2017.
8062736.

[22] R. Crisovan, D. Torlo, R. Abgrall, S. Tokareva, Model order reduction for
parametrized nonlinear hyperbolic problems as an application to uncer-
tainty quantification, Journal of Computational and Applied Mathematics
348 (2019) 466–489. doi:10.1016/j.cam.2018.09.018.

[23] C. Hoang, K. Chowdhary, K. Lee, J. Ray, Projection-based model reduc-
tion of dynamical systems using space-time subspace and machine learning
(2021). arXiv:2102.03505.

[24] J. Reiss, P. Schulze, J. Sesterhenn, V. Mehrmann, The Shifted Proper
Orthogonal Decomposition: A Mode Decomposition for Multiple Transport
Phenomena, SIAM Journal on Scientific Computing 40 (3) (2018) A1322–
A1344. doi:10.1137/17M1140571.
URL https://epubs.siam.org/doi/10.1137/17M1140571

[25] N. Sarna, S. Grundel, Hyper-reduction for parametrized transport domi-
nated problems via online-adaptive reduced meshes, arXiv:2003.06362 [cs,
math]ArXiv: 2003.06362 (Jan. 2021).
URL http://arxiv.org/abs/2003.06362

[26] K. Lee, K. T. Carlberg, Model reduction of dynamical sys-
tems on nonlinear manifolds using deep convolutional autoen-
coders, Journal of Computational Physics 404 (2020) 108973.
doi:https://doi.org/10.1016/j.jcp.2019.108973.
URL https://www.sciencedirect.com/science/article/pii/

S0021999119306783

[27] D. Torlo, Model Reduction for Advection Dominated Hyperbolic Problems
in an ALE Framework: Offline and Online Phases, arXiv:2003.13735 [cs,
math]ArXiv: 2003.13735 (Mar. 2020).
URL http://arxiv.org/abs/2003.13735

[28] R. Mojgani, M. Balajewicz, Arbitrary Lagrangian Eulerian framework for
efficient projection-based reduction of convection dominated nonlinear flows
(2017) M1.008.
URL http://adsabs.harvard.edu/abs/2017APS..DFD.M1008M

[29] Z. Peng, M. Wang, F. Li, A learning-based projection method for model
order reduction of transport problems, arXiv:2105.14633 [cs, math]ArXiv:
2105.14633 (May 2021).
URL http://arxiv.org/abs/2105.14633

[30] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in
Computational Fluid Dynamics: An Advanced Introduction with Open-
FOAM® and Matlab, 1st Edition, no. 113 in Fluid Mechanics and Its Ap-
plications, Springer International Publishing : Imprint: Springer, Cham,
2016.

29

https://doi.org/10.1109/CCTA.2017.8062736
https://doi.org/10.1109/CCTA.2017.8062736
https://doi.org/10.1016/j.cam.2018.09.018
http://arxiv.org/abs/2102.03505
https://epubs.siam.org/doi/10.1137/17M1140571
https://epubs.siam.org/doi/10.1137/17M1140571
https://epubs.siam.org/doi/10.1137/17M1140571
https://doi.org/10.1137/17M1140571
https://epubs.siam.org/doi/10.1137/17M1140571
http://arxiv.org/abs/2003.06362
http://arxiv.org/abs/2003.06362
http://arxiv.org/abs/2003.06362
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://doi.org/https://doi.org/10.1016/j.jcp.2019.108973
https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783
http://arxiv.org/abs/2003.13735
http://arxiv.org/abs/2003.13735
http://arxiv.org/abs/2003.13735
http://adsabs.harvard.edu/abs/2017APS..DFD.M1008M
http://adsabs.harvard.edu/abs/2017APS..DFD.M1008M
http://adsabs.harvard.edu/abs/2017APS..DFD.M1008M
http://arxiv.org/abs/2105.14633
http://arxiv.org/abs/2105.14633
http://arxiv.org/abs/2105.14633


[31] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Anal-
ysis Framework, Vol. 39, 2009. doi:10.1007/978-1-4419-0458-4.

[32] A. Quarteroni, Numerical models for differential problems, no. v. 2 in MS
& A, Springer, Milan ; New York, 2009, oCLC: ocn288986457.

[33] B. Leonard, A stable and accurate convective modelling proce-
dure based on quadratic upstream interpolation, Computer Meth-
ods in Applied Mechanics and Engineering 19 (1) (1979) 59–98.
doi:https://doi.org/10.1016/0045-7825(79)90034-3.
URL https://www.sciencedirect.com/science/article/pii/

0045782579900343

[34] G. W. Stewart, On the early history of the singular value decomposition,
SIAM Review 35 (4) (1993) 551–566. arXiv:https://doi.org/10.1137/

1035134, doi:10.1137/1035134.
URL https://doi.org/10.1137/1035134

[35] B. Peherstorfer, Model reduction for transport-dominated problems via
online adaptive bases and adaptive sampling, SIAM Journal on Scien-
tific Computing 42 (5) (2020) A2803–A2836. arXiv:https://doi.org/

10.1137/19M1257275, doi:10.1137/19M1257275.
URL https://doi.org/10.1137/19M1257275

[36] M. Frank, D. Drikakis, V. Charissis, Machine-Learning Methods for Com-
putational Science and Engineering, Computation 8 (1) (2020) 15. doi:

10.3390/computation8010015.
URL https://www.mdpi.com/2079-3197/8/1/15

[37] J. N. Kutz, Deep learning in fluid dynamics, Journal of Fluid Mechanics
814 (2017) 1–4. doi:10.1017/jfm.2016.803.
URL https://www.cambridge.org/core/product/identifier/

S002211201600803X/type/journal_article

[38] F. Sarghini, G. de Felice, S. Santini, Neural networks based subgrid scale
modeling in large eddy simulations, Computers & Fluids 32 (1) (2003)
97–108. doi:10.1016/S0045-7930(01)00098-6.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0045793001000986

[39] M. Renardy, Y. Renardy, J. Li, Numerical Simulation of Moving Contact
Line Problems Using a Volume-of-Fluid Method, Journal of Computational
Physics 171 (1) (2001) 243–263. doi:10.1006/jcph.2001.6785.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0021999101967853

[40] Y. Okagaki, T. Yonomoto, M. Ishigaki, Y. Hirose, Numerical Study on an
Interface Compression Method for the Volume of Fluid Approach, Fluids
6 (2) (2021) 80. doi:10.3390/fluids6020080.
URL https://www.mdpi.com/2311-5521/6/2/80

30

https://doi.org/10.1007/978-1-4419-0458-4
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://doi.org/https://doi.org/10.1016/0045-7825(79)90034-3
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://www.sciencedirect.com/science/article/pii/0045782579900343
https://doi.org/10.1137/1035134
http://arxiv.org/abs/https://doi.org/10.1137/1035134
http://arxiv.org/abs/https://doi.org/10.1137/1035134
https://doi.org/10.1137/1035134
https://doi.org/10.1137/1035134
https://doi.org/10.1137/19M1257275
https://doi.org/10.1137/19M1257275
http://arxiv.org/abs/https://doi.org/10.1137/19M1257275
http://arxiv.org/abs/https://doi.org/10.1137/19M1257275
https://doi.org/10.1137/19M1257275
https://doi.org/10.1137/19M1257275
https://www.mdpi.com/2079-3197/8/1/15
https://www.mdpi.com/2079-3197/8/1/15
https://doi.org/10.3390/computation8010015
https://doi.org/10.3390/computation8010015
https://www.mdpi.com/2079-3197/8/1/15
https://www.cambridge.org/core/product/identifier/S002211201600803X/type/journal_article
https://doi.org/10.1017/jfm.2016.803
https://www.cambridge.org/core/product/identifier/S002211201600803X/type/journal_article
https://www.cambridge.org/core/product/identifier/S002211201600803X/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S0045793001000986
https://linkinghub.elsevier.com/retrieve/pii/S0045793001000986
https://doi.org/10.1016/S0045-7930(01)00098-6
https://linkinghub.elsevier.com/retrieve/pii/S0045793001000986
https://linkinghub.elsevier.com/retrieve/pii/S0045793001000986
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967853
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967853
https://doi.org/10.1006/jcph.2001.6785
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967853
https://linkinghub.elsevier.com/retrieve/pii/S0021999101967853
https://www.mdpi.com/2311-5521/6/2/80
https://www.mdpi.com/2311-5521/6/2/80
https://doi.org/10.3390/fluids6020080
https://www.mdpi.com/2311-5521/6/2/80

	Introduction
	Pre-processing transformation of POD linear subspaces
	Full-order scalar advection equation
	The POD method for reduced basis extraction
	Linear subspace shift-based transformation
	Limitations in deducing the shift operator

	Automatic detection of bijective mapping in non-linear manifolds
	Statistical learning formulation and reference configuration
	Architectures for continuous data-flow: the shift-detection and field- reconstruction split
	Reduction of non-uniform, non-constant linear advection equation

	Reduction of a multiphase model with manifold transformation
	The Volume-of-Fluid method for Eulerian interface tracking
	Full-order multiphase numerical modelling
	Automatic shift-detection and linear manifold reconstruction

	Conclusions

