
08 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Self-Learning Strategy for Task Offloading in UAV Networks / Sacco, Alessio; Esposito, Flavio; Marchetto, Guido;
Montuschi, Paolo. - In: IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. - ISSN 1939-9359. - ELETTRONICO. -
71:4(2022), pp. 4301-4311. [10.1109/TVT.2022.3144654]

Original

A Self-Learning Strategy for Task Offloading in UAV Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TVT.2022.3144654

Terms of use:

Publisher copyright

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2955120 since: 2022-05-08T02:48:25Z

IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

A Self-Learning Strategy for Task Offloading in
UAV Networks

Alessio Sacco, Student Member, IEEE, Flavio Esposito, Member, IEEE, Guido Marchetto, Senior Member, IEEE,
and Paolo Montuschi, Fellow, IEEE

Abstract—The edge computing paradigm has opened new
opportunities for IoT devices, which can be used in novel appli-
cations involving heavy processing of data. Typical and common
examples of IoT devices are the Unmanned Aerial Vehicles
(UAVs), which are deployed for surveillance and environmental
monitoring and are attracting increasing attention because of
their ease deployment. However, their limited capacity, e.g.,
battery, forces the design of an edge-assisted solution, where
heavy tasks are offloaded to the edge cloud. To solve the problem
of task offloading from UAV to the closest edge computation,
many proposals have appeared, mainly based on a Reinforcement
Learning (RL) formulation. While these solutions successfully
learn how to reduce task completion time in the UAV context,
some limitations appear when these models are applied in real
scenarios, given the memory-hungry nature of RL. To this end,
we propose a simple yet effective formalization that still enables
a learning process, but reduces the required information and
the training time. Our evaluation results confirm our hypothesis,
showing a marked improvement when compared to other RL-
based strategies and deep learning-based solutions.

Index Terms—UAV, task offloading, machine learning, time
series

I. INTRODUCTION

The past decade has witnessed an explosive growth
in mobile internet applications consuming a significant
amount of computational resources, e.g., face recognition,
virtual/augmented reality, realtime media streaming, mainly
favored by the development of the Internet of Things (IoT).
A specific area of interest entails vehicles and, in particular,
Unmanned Aerial Vehicle (UAV) systems, that have expe-
rienced a constantly increasing popularity in the last years,
mainly thanks to their maneuverability, flexibility, and limited
deployment costs. UAVs have been primarily used for mili-
tary applications, but they are now expanding into business,
science, agriculture, and civilian fields, where successful ex-
amples include supports of first responders, surveillance, aerial
photography to cite a few [1]. Their constrained resources,
however, open the problem of offloading part of their tasks
to the close multi-access edge computing (MEC) in order to
speed up the computation.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work has been partially supported by NSF Awards CNS-1836906 and
CNS-1647084.

Alessio Sacco, Guido Marchetto and Paolo Montuschi are with DAUIN,
Politecnico di Torino, 10129 Turin, Italy (e-mail: alessio sacco@polito.it,
guido.marchetto@polito.it, paolo.montuschi@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

The problem of task offloading has been extensively studied
in the literature [2]–[6], where recent solutions attempt to
significantly reduce the processing time of mobile vehicle
applications while greatly reducing data processing delays
and energy consumption. With the advent of machine learn-
ing (ML) and, specifically, reinforcement learning (RL), this
learning approach became dominant in solving the offloading
decisions in vehicular scenarios. Compared to traditional ap-
proaches based on heuristics, these solutions have shown the
ability to learn the best strategies adapting to the challenging
and highly varying environments [7]–[10]. Despite the good
results of newly computation offloading techniques, however,
RL-based methods have a severe impact on the memory
and processing usage of the mobile nodes. Moreover, it still
remains challenging to develop a reliable system that can
anticipate future demands and take advisable computation
offloading decisions.

In this paper, we present a self-learning strategy that sup-
ports the UAV during the decision of offloading incoming
tasks. This decision is taken on the basis of the predicted
behavior of the agent, suggesting whether edge cloud is ben-
eficial or not to the incoming tasks. Two alternative methods
are designed to perform a prediction about future device load:
a model belonging to time-series class, i.e., Vector Autoregres-
sive Moving-Average (VARMA), and a model belonging to the
class of ML regressors, i.e., Random Forest Regression (RFR).
In such a way, not only the agent learns how to forecast future
values, but it can also learn online what type of model is more
accurate, following a paradigm known as Follow the Perturbed
Leader (FPL). Having chosen two different ways in treating
the input metrics, this approach also provides flexibility and
adaptability, resulting in a learning agent that can select which
predictor best fits a particular environment.

While other RL-based models can be computationally ex-
pensive to run on board of constrained resources devices, our
formulation simplifies the decision process. The results illus-
trate clear advantages in the implementation of our approach,
which can shorten the time required to accomplish a task.
Besides, our solution can reduce the energy consumed and
the resource usage, i.e., memory and CPU, compared to other
benchmark algorithms. These benefits are originated by our
predictor, which outperforms alternatives, leading to a small
error and a very accurate decision.

The remainder of this article is organized as follows. In
Section II we discuss the existing literature on the task
offloading problem. Section III presents the model of the
system and formulates the specific problem we need to solve.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

In Section IV we describe the methods used to predict future
behavior and in Section V we explicit how they are used in
our algorithm. Results are presented in Section VI. Finally, we
conclude our paper in Section VII.

II. RELATED WORK

In the last years, edge computing has been proved to be an
effective method in shortening task completion time for some
latency-critical applications [11]–[13]. This paradigm can be
particularly beneficial for unmanned aerial systems (UASs),
e.g., self-driving vehicles and UAV swarms, to conduct a
computation offloading scheme with edge computing. UASs
are often used for collecting data and sending them to the
close edge for data-intensive visual and acoustic computing.
At network edges, indeed, there may be present more re-
sources that are not available over the UAS, and that can thus
speed up the processing. For example, seamless processing of
imagery/video at the network edge is particularly critical in
natural or human-made disaster scenarios, where bandwidth
is limited and network conditions are highly variable. In such
a case, the more powerful resources at the edge cloud are em-
ployed for elaborating imagery to recognize body temperatures
or identify bodies under ruins or massive avalanches.

In general, the goal of performance-based offloading
policies is to enhance the performance of mobile devices
in terms of execution/completion time and throughput by
utilizing cloud resources. Therefore, the resource-intensive
computations are offloaded to the cloud or close edge.
In [14], the authors propose a novel technique based on
compiler code analysis that optimizes the overall execution
time by dynamically offloading part of Android code running
on a smartphone to the cloud. Similarly, [15] presents a
framework providing run-time support for the dynamic
computation partitioning and execution of the application.
Such a framework not only allows the dynamic partitioning
for a single user, but also supports the sharing of computation
instances among multiple users in the cloud for an efficient
utilization of the underlying cloud resources.

Other approaches can be found in [16]–[18]. In [16] the
focus is on the mobile-edge computation offloading (MECO)
problem, proposing a two-tier game-theoretical greedy ap-
proximation offloading scheme. Considering an ultradense IoT
network, the authors formulate the optimal MECO problem as
a constrained optimization problem, which aims to minimize
the overall computation overhead while satisfying the given
wireless channel constraints. An online algorithm is instead
presented in [18], where task offloading decisions are modeled
as a well-known sub-problem called rent/buy problem [19].
Similarly, [20] introduces a joint optimization scheme for the
offloading decision and energy consumption, that is based on a
greedy heuristic algorithm. After having modeled the problem
aiming to minimize the energy, the proposed algorithm is
based on the Reformulation-Linearization-Technique based
Branch-and-Bound method (RLTBB). Via a greedy heuristic,
the system can allocate the radio resource and computational
resource among smart mobile devices of the searching set.

This offloading process can be further optimized via the
application of ML/AI methods, as explained in recent stud-

ies [21]–[23]. One of the most profitable recent trends is the
utilization of RL for a task offloading solution, given its ability
to adapt to highly dynamic environments [22], [24]. For exam-
ple, in [7], the authors proposed a deep reinforcement learning-
based online offloading framework (DROO) to decide whether
to offload tasks to the edge cloud and proportionally allocate
wireless resources. Focusing on the industrial scenario, [25]
jointly takes both the network traffic and computation work-
load of industrial traffic into consideration, and finds a trade-
off between energy consumption and service delay. To solve
this offloading decision problem, they propose a dynamic RL
scheduling algorithm combined with a deep dynamic schedul-
ing. Similarly, [26] deployed a task offloading framework
using the multi-armed bandit (MAB) theory, which enables
vehicles to learn the potential task offloading performance of
neighboring vehicles. Redesigning the utility function of the
classic MAB algorithm, it can adapt to the volatile environ-
ment and minimize the average offloading delay.

Besides, although these solutions are sound, there is now
an attempt to distribute the decision logic, in order to improve
the performance while reducing the burden for a single UAV.
To this end, DDLO [27] and a hotbooting Q-learning based
schema [28], are valuable examples of distributed approaches
in task offloading decisions, that use multiple parallel deep
neural networks. In a similar way, but for collaborative
offloading decisions, [10] presents a solution for multiple
heterogeneous agents with potentially distinct policies and
rewards, and further improvements on protocol decisions.

As an alternative or in conjunction with an RL problem,
there is an increment of solutions attempting to predict future
resources utilization in order to take better offloading decisions
and allocate proper network and computation resources [6],
[29], [30]. For example, [6] showed how time-series regressors
can be used in predicting future agent’s loads to efficiently
balance the load over a UAV system. We share with these
approaches the idea of proactively acting to mitigate possi-
ble performance degradation before its occurrence. However,
although all these solutions are effective, they are also com-
putationally and memory intensive, especially the approaches
based on the use of RL and deep learning. Our proposed self-
learning-based methodology can reduce the overall resource
consumption and thus be more suitable for UAV execution.

III. SYSTEM MODEL
The considered system consists of a UAV swarm including

a set of agents Nt = {A1, . . . , AN}, each of which has a task
to be completed. We consider that the set Nt can change over
time since the agents may suffer failures or running out of
power. However, for simplicity, we often refer to this set as
N in the following. The overall system is then composed of
M tasks, denoted by a set of tasks M = {T1, . . . , TM}. We
consider that tasks are independent among them. Each task is
assigned to a node, which can decide either to compute the
task locally or to offload the computation to the edge cloud.

To capture real-world scenarios, we consider a limited
capacity of nodes. We model this constraint in resources as
a finite queue where to store waiting tasks. Thus, we denote
the amount of tasks of the i-th node as si within [0, smaxi],

TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

Edge CloudUAV Fleet

Wireless Base
Station

SDN switch

Data
Processing Edge

Computing

Fig. 1: System Overview. The mobile devices, e.g., UAVs,
interacts with the edge cloud asking help for the processing
of the collected data.

smaxi ∈ IR+. We also assume that the agent can execute
only one task at a time, and, to avoid burdening the notation,
task deadlines have not been considered.

For each new task arriving to a node, it has to decide where
to perform the computation of such a task. We denote the
computation offloading decision of task m of mobile device i
by oi,m. Specifically, oi,m = 1 means that the node offloads
the task to the close cloud, while oi,m = 0 means that the
node executes the task locally.

TABLE I: Symbols and notations.

Symbol Description

Nt Set of agents at time t
M Set of tasks
T l
i,m Task completion time for local computation
T e
i,m Task completion time for offloading computation
smax
i Maximum amount of possible enqueued tasks in node i
si Number of enqueued tasks in node i
xt Observation at timestamp t
yt Prediction for timestamp t
oi,m Offloading decision of node i
T l,exec
i,m Local execution time of task m on node i
Ci,m Computing workload of task m on node i
Twt
i,m Local waiting time of task m on node i
T e,tra
i,m (A) Transmission time of task m
T e,exec
m Execution time of task m in the edge cloud
T e,rec
i,m (A) Reception time of task m
Wup Wireless uplink channel bandwidth
W down Wireless downlink channel bandwidth
re,upi,m (A) Wireless uplink data rate for offloading of task m
re,down
i,m (A) Wireless downlink data rate for offloading of task m
σup Background noise power in the uplink channel
σdown Background noise power in the downlink channel
Gup

i,m Channel gain from node i to the access point
Gdown

i,m Channel gain from the access point to the node i
pupi,m Transmission power of node i to the edge cloud
pdown
i,m Transmission power of the edge cloud to the node i
di,s Distance between node i and access point s

We summarize the main components of the system in Fig. 1.
The UAV fleet relies on the close edge cloud for shortening
the task completion time via task offloading. In such a case,
the task is sent to the edge, where the appropriate network
and computational infrastructure resides. The sent data is thus
used for extrapolating helpful information by means of AI/ML
algorithms.

A. Local Execution

When the task is locally executed, the completion time for
a local execution of task m on node i is the sum of the local
computation execution time and the waiting time aboard the
agent,

T li,m = T l,execi,m + Twti,m, (1)

where T l,execi,m and Twti,m are the execution time and the waiting
time, respectively. Formally, the waiting time of a task is
defined as the time that task m spends on board of i before
its execution, and mainly depends on the enqueued tasks.

On the other hand, given Ci,m the computing workload, i.e.,
the total number of CPU cycles needed to accomplish task m
of node i, the local execution time of task m on node i is
hence given by:

T l,execi,m =
Ci,m
fi,m

, (2)

where fi,m is the computation capability, i.e., the clock
frequency of the CPU chip, of node i, on task m. Our model
allows different mobile devices to have different computational
capacities with different clock frequencies per task.

B. Edge Cloud Offloading

In case the mobile node offloads the task to the edge
cloud, the latter executes the computation task and returns
the results to the device. This process entails three phases:
(i) the transmission phase, (ii) the edge computation phase,
(iii) the outcome receiving phase. Before defining the resulting
completion time, it must be noted that this time is affected by
the joint action space of all agents, A, also referred to as global
action profile. Therefore, given the global action profile A, the
completion time for the edge offloading is the sum of these
three phases, as such:

T ei,m = T e,trai,m (A) + T e,execm + T e,reci,m (A), (3)

where T e,trai,m (A) refers to the transmission of task m to
the edge e; T e,execm is the execution time in the edge, and
T e,reci,m (A) is the reception time.

Analyzing these parts in order, we start defining the trans-
mission time for task offloading as:

T e,trai,m (A) =
Din
i,m

re,upi,m (A)
, (4)

where Din
i,m denotes the size of computation data sent over

the channel (e.g., the recorded audio in UAVs swarm) related
to computation task m of node i, and re,upi,m (A) is the uplink
data rate.

Then, we consider the data rate affected by both the
background noise power and the channel gain, as in other
studies [10], [16]. Thus, given the global action profile A for
any node i and task m, we can obtain the wireless uplink data
rate for computation offloading of task m of mobile device i
as:

re,upi,m (A) =Wup · log2
(
1 +

pupi,mG
up
i,m

σup +
∑

j 6=i,k 6=m,oj,k=1

pcj,kG
up
j,k

)
,

(5)

TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

where pupi,m is the transmission power of node i offloading task
m to the edge cloud; Gupi,m denotes the channel gain from node
i to the access point when transmitting task m, mainly affected
by the path loss and shadowing attenuation; σup indicates
the background noise power, and Wup is the wireless uplink
channel bandwidth. Clearly, we can observe from the formula
that when many mobile devices offload their tasks to the edge
simultaneously, the nodes can experience severe interference
and low data rates.

Subsequently, the task arrives to the edge that proceeds with
the execution. Although the offloaded task needs likely to wait
before it is assigned to the proper resource in the cloud for
the execution, in the following we omit this waiting time for
simplicity, as it is negligible with respect to the other quantities
involved. Thus, we can derive the computation execution time
for task m in the edge cloud as:

T e,execm =
Ci,m
fe

, (6)

where fe denotes the clock frequency of the edge cloud,
assuming that the frequency does not change during the
computation and is constant over time.

Finally, the results of the computation is sent back to the
mobile device, incurring in a reception time defined as:

T e,reci,m (A) =
Dout
i,m

re,downi,m (A)
, (7)

where Dout
i,m denotes the size of obtained output data sent over

the channel and re,downi,m (A) is the downlink data rate. Such a
wireless downlink data rate is given by:

re,downi,m (A) =W down·

· log2
(
1 +

pdowni,m Gdowni,m

σdown +
∑

j 6=i,k 6=m,oj,k=1

pcj,kG
down
j,k

)
, (8)

where pdowni,m is the transmission power of the edge cloud
communicating the results of offloaded task m to the node
i; Gdowni,m refers to the channel gain from the access point to
the node i when transmitting data of task m; σdown denotes
the background noise power, and W down indicates the wireless
downlink channel bandwidth.

C. Problem Formulation

We formulate the optimization problem that aims to min-
imize the total delay in finishing all devices’ tasks, by opti-
mizing each node offloading decisions oi,m:

min
oi,m

∑
i∈N

∑
m∈M

(1− oi,m)T li,m + oi,mT
e
i,m (9)

s.t.
N∑
i=1

oi,m ≤ 1 ∀m ∈M, (10)

M∑
m=1

oi,m ≤ smaxi ∀i ∈ N , (11)

where the constraints (10) and (11) force the solution to (i)
mutually choose if offloading task computation or executing
the task locally, and (ii) not to exceed the resources of the
mobile device, respectively.

The given optimization problem (9) - (11) can be solved
to find results of offloading decision variables oi,m. However,
since the decision variables are binary, the formulated problem
is not convex. Moreover, we would like to consider realistic
scenarios where the interaction between devices, the communi-
cation channel conditions, and the nodes computation abilities
are all dynamically changing. Given these considerations, in
the following we propose a online learning method to solve
this problem.

IV. REGRESSION PREDICTION METHODS

With the aim of improving offloading decisions, each device
predicts future conditions in order to verify is beneficial
circumstances hold or not. The node can listen to the advice
coming from two different class of predictors and obtain
the best from both of them. In particular, we select two
algorithms belonging to the class of time-series and to ML
supervised regressors. In the following, we describe how these
two methods behave, explaining why and where they differ.

A. Time-Series Analysis with VARMA

To model the evolution of data over time, we employ
a Vector Autoregressive Moving-Average (VARMA) model.
VARMA models are the multivariate generalization of univari-
ate autoregressive-moving average (ARIMA) models. How-
ever, while ARIMA is used to represent stationary time
series in almost all domains where a variable is measured at
equidistant times, VARMA can contemplate multiple parallel
time series, for a multivariate evolution. This class of models
well fit problems in econometrics and financial markets, but
boasts a wide exploration even in other fields since the
1970’s [31]. Our solution, then, uses a VARMA model for
“real time” model predictions (hindcasts) that are made within
the independent dataset, using only data up to that date were
used. The general form of VARMA(r, q) is given by the
following equation:

yt = A1yt−1 + . . .+Aryt−r +B0εt + . . .+Bqεt−q, (12)

where yt denotes an n× 1 vector of observed variables, εt is
an n×1 vector of unobserved disturbances ∼ IID(On×1, In),
where In denotes the n × n identity matrix, r and q denote
any assumed nonnegative integers, such that at least one of r
or q is positive.

In our solution, we predict the future values of the series
by means of a forecasting method named minimization of
the Mean Squared Forecast Error (MSFE), which denote
the goodness of the prediction using the cumulative error
encountered so far. The current information from the dataset,
which constitutes the current knowledge, contains the current
and past values of the series. In detail, we are focused on the
one-step-ahead prediction, which just considers the prediction
at the next time step, i.e., yt+1 given the last observation at
time t.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

B. ML Regression with RFR

The Random Forest Regression (RFR) is a type of additive
model that predicts by combining decisions from a sequence
of base models. More formally, this class of algorithms can
be written as:

g(x) = f0(x) + f1(x) + f2(x) + . . . , (13)

where the final model g is the sum of simple base models
fi. Although each base model fi can be any ML algorithm,
the most common version of RFR considers as fi a simple
decision tree. In this paper, we also consider this setting. This
broad technique of using multiple models to obtain better
predictive performance is also known as model ensembling.
Moreover, in RFR, all the tree base models are constructed
and trained independently using a different subset of data.

Predictions are, then, made by averaging the predictions
of each decision tree. In other words, to extend the anal-
ogy—much like a forest is a collection of trees, the random
forest model is also a collection of decision tree models.
This makes random forests a strong modeling technique that
is much more powerful than a single decision tree. RFR is
suitable for regression problems given its features: (i) it can
capture non-linear or complex relationships between inputs
and outputs, (ii) compared to a single decision tree, RFR is
more robust, with a limited dependence to the noise in the
training set, as it uses a set of uncorrelated decision trees,
(iii) it is able to limit both the variance and the bias, better
addressing the problem of overfitting.

C. State Variables in Our Solution

In our system, the current knowledge Y is modeled as a
matrix of features, with a shape N ×M , where the column j
represents the list of metrics gathered for task i, given i the
index of the row. Such a list of features for task i are three:
(i) the number of enqueued tasks when task i arrived to the
node, (ii) time to complete task i, in seconds, (iii) a boolean
stating if task i has been offloaded to the edge cloud.

Features selection is a key topic when dealing with big data,
demanding for a trade-off between having a vast knowledge
and time and resource constraints. This imposes to limit the
complexity, with little or none effect on the performance.
In fact, a smaller M yields simpler models, but it may be
inadequate to represent the space of possible behaviors. On
the other hand, a large M leads to a more complex model
with more parameters, but may, in turn, lead to overfitting
issues. While in time-series this choice for observed variables
is much easier, as it usually entails the interested variable, in
ML features selection is much more important. Our choice
of M = 3 and metrics that are extremely easy to collect,
moves towards this direction. Each node can train its model
without the need to communicate with others, attaining null
communication overhead and modest memory occupation.
Results support this choice, achieving higher accuracy while
reducing noise (Section VI).

However, given the differences in the two models, they
also treat the input data differently. Regarding the VARMA
model, its input yt, yt−1, . . . , y1, is modeled with a vector

of metrics at timestamp t. This means that the input of the
VARMA model consists of all the values in the matrix. When
the number of rows of Y exceeds a threshold (Z = 1000),
the considered temporal window is limited to a sub-matrix
consisting of the last Z rows. Alternatively, regarding the RFR,
since it is agnostic of the time order, it only considers the last
line of the matrix Y , i.e., the input of the model is composed
by all the columns for the last row of the matrix.

V. AGENT’S DECISION PROCESS

In the following, we first overview the procedure as in the
Follow the Perturbed Leader (FPL) method. Then, we describe
how the IoT agent implements our version of FPL in our
system.

A. Follow the Perturbed Leader

Learning from a constant flow of data is considered one
of the central challenges of machine learning. Online learning
entails sequentially decide on actions given the changes in
the environments. In past years, a variety of online learning
algorithms have been devised [32], [33]. Among them, in our
work we investigate Follow the Perturbed Leader algorithm,
whose advantage is its simplicity and computational efficiency.

Such a prediction with expert advice proceeds as follows.
At each time step t the system performs sequential predictions
yt ∈ Y . At times t = 1, 2, ..., we have access to the predictions
(yit)1≤i≤n of n experts E = e1, ..., en. After having made a
prediction, we receive observation xt ∈ X , and the system
computes our suffered loss l(xt, yt) and each expert’s loss
l(xt, y

i
t). As our observations entail continuous values, i.e., lie

in a regression problem, the loss is calculated as: l(xt, yt) =
(yt − xt)2.

Our goal can be summarized in achieving a total loss “not
much worse” than the best expert, after T time steps. More
formally, we denote the cumulative loss of expert i by LTi =∑T
t=1 l(xt, y

i
t) and the cumulative loss of our system by LT =∑T

t=1 l(xt, yt). Thus, the goal of the system is to minimize the
regret, defined as the difference between the cumulative loss
of the learner and the cumulative loss of the best prediction
in hindsight. The regret over T rounds is defined as:

RT =

T∑
t=1

l(xt, yt)− min
i∈1..n

T∑
t=1

l(xt, y
i
t) = LT −minLTi .

(14)
The term minLTi , is often defined as the loss of the best expert
in hindsight (BEH). Moreover, when this regret is sublinear,
namely Rs ≤ o(T), the learning algorithm is said to be
Hannan-consistent.

One algorithm for achieving Hannan-consistency is Follow
the Perturbed Leader (FPL), as demonstrated by Hannan [34]
and Kalai and Vempala [35]. Let γ be some n-dimensional
random variable and ηi > 0. FPL involves picking the expert
exp that minimizes the perturbed cumulative loss:

exp = argmin
i
(Li + ηγi) (15)

Intuitively, if η is small, then we expect exp to be “close”
to a minimizer of the (non-perturbed) cumulative loss. On the

TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

other hand, when η is large, we expect E to be “close” to
the uniform distribution. Namely, η controls how similar the
algorithm is to Follow the Leader, the version of the algorithm
that always picks the expert who has minimized the cumula-
tive loss. However, this version, and any other deterministic
learning algorithm, is not Hannan-consistent [36].

We summarize our version of FPL in Algorithm 1. As
demonstrated by theorems in [36], [37], for all possible
sequences of losses where the loss is bounded and the noise
is spread out, i.e. the noise has a sufficiently high variance,
FPL achieves an expected regret that is bounded by:

E[Rt] ∈ O(
√
T). (16)

Consequently, this result is also valid for our Algorithm 1,
where we consider the random value γ sampled from a
Gaussian distribution N (0, I).

Algorithm 1 Follow the perturbed leader
fpl(m: task, s:state, t: time)

1: η > 0, Li ← 0
2: for every expert i do
3: Compute loss l of last prediction given evidence s
4: Accumulate the loss Lti ← Lt−1i + l
5: Sample γi ∼ N (0, I)

6: exp← argmini(L
t
i + ηγi)

7: Predict yt asking to the expert exp given state s and task
m

8: return yt

Furthermore, it can be noted that this problem is similar to
the Multi-Armed Bandit (MAB), in the class of RL methods.
FPL follows the “arm” that is assumed to have the best
performance so far, adding exponential noise to it to provide
exploration. However, while the MAB algorithm offers more
strict bounds to the regret, FPL can drastically simplify the
entire learning process making it suitable for constrained
agents as the UAVs. For example, differently from MAB that
may take a long time to converge, FPL requires a shorter time,
and mostly, is not eager of computation and memory resources
as is the MAB.

B. Our Algorithm

We can now present our algorithm, built upon the Follow
the Perturbed Leader (FPL) formulation, which dictates the
offloading decision process. The overall algorithm running on
each device is defined in Algorithm 2. Each learning agent
is able to monitor and gather statistics required to perform
the prediction, as mentioned in Section IV. Once a new task
arrives at the node, it asks for help from the experts, as in FPL.
The experts that our FPL algorithm can employ are the two
regressor algorithms. This method, however, returns only one
value, p, i.e., the expert’s prediction for the next time step, and
this predicted value is then used to determine whether offload-
ing the incoming task as follows. If this value exceeds a deter-
mined threshold specific for the agent i, Ti, this implies a long
local task execution, and the task is consequently offloaded.
Otherwise, it is kept local and enqueued for future execution.

Algorithm 2 Overall algorithm

1: Initialize threshold Ti for all nodes
2: for all i ∈ N do
3: Wait new task m
4: Monitor the queue and node state
5: p← fpl(m, s, t)
6: if p > Ti then
7: Offload task m to the edge cloud
8: else
9: Enqueue task m locally

10: Store states for the future
11: End Wait

From the described algorithm, it appears as the value of the
threshold Ti is a crucial parameter. Clearly, its setting depends
on the environment and the nature of tasks, but, in general,
it should be defined in order to balance the two actions, i.e.,
offloading and local execution. Offloading means diminishing
the waiting time but increasing the transmission time. Keeping
the task locally implies facing the waiting time but avoiding
wireless transmission. Thus, offloading should be selected only
when the expected waiting time is considered “too high”. The
threshold is a numerical definition of the “too high” concept.

In light of this self-learning procedure, not only can our
agents progressively enhance the single predictors, but they
can learn the more advisable algorithm to follow given the
considered environment. Ideally, the expected behavior of
this framework is that the VARMA is selected in the first
place, given its ability to require a short amount of data (see
Section VI). Then, when more metrics become available, the
RFR can outperform the statistical model and, consequently,
becoming the preferred choice of FPL.

It is known, indeed, that Random Forests produce better
results on large datasets and are able to work with missing
data by using estimations of them [38]. However, they pose
a major challenge as they cannot extrapolate outside unseen
data. On the other hand, VARMA has the ability to work well
with unseen data, interpolating the given data to obtain the
prediction. In conclusion – and as confirmed by our results –
we can enumerate the differences as follows: classical models
are simpler and more interpretable, while ML methods are
more complex but more flexible. The choice of VARMA to
represent classical models and RFR for ML is then motivated
by the accuracy obtained in our experimental campaign (see
Section VI).

VI. RESULTS

In this section, we report the results of experiments per-
formed to assess the effectiveness of the proposed approach.
First, we analyze the accuracy of the proposed prediction
methods. Then, we consider the performance of our approach
comparing it to state-of-the-art solutions.

A. Experimental Setup

To evaluate the performance of the proposed task offloading
strategy, we developed a Python event-driven simulator, where

TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

FPL ARIMA SES SVR GBR
Algorithms

4

6

M
A

PE

(a)

FPL ARIMA SES SVR GBR
Algorithms

0

20

40

60

M
A

D

(b)

0 5000 10000 15000 20000
Training set size

0

250

500

750

1000

Tr
ai

ni
ng

tim
e

(s
)

VARMA
RFR
Arima
DQN

(c)

0 10 20 30 40
Steps

0

2

4

6

8

L
os

s

FPL
online-RFR
offline-RFR

(d)

Fig. 2: (a) MAPE error and (b) mean absolute deviation (MAD) for different algorithms. (c) Training time of the two class of
regressors at varying the training set sizes. Markers denote the amount of samples required for convergence. (d) Convergence
time comparison, i.e., loss evolution, for FPL and RFR methods.

a networked fleet of drones has to complete incoming tasks.
The edge cloud is replicated by means of a further process
emulating the execution of offloaded tasks. To adopt realistic
parameters for our experimental campaign, we base the choice
of their default values on recent studies addressing the con-
sidered scenario, e.g., [9], [17]. In particular, new tasks are
generated according to a Poisson process with an arrival rate
of 0.2 Hz if not otherwise specified. In terms of computing
resources, we assume the CPU capability of each server in the
edge cloud and each UAV to be fe = 20 GHz and fi,m = 1
GHz, respectively. The computing workload is set as default
to Ci,m = 1 × 109. The channel bandwidth is set to be
W down = Wup = 5 Mbps, the transmitted data Dout

i,m = 7
MB, while Din

i,m = 1 MB. The background noise power is set
equal for the two technologies, as σdown = σup = 50 dBm.
For the channel gain we have Gdowni,m = Gupi,m = dνi,s, where
di,s is the distance between mobile agent i and access point s,
and ν = 4 denotes the path loss factor. By default, the distance
di,s is set to 10m. Finally, we simply set the default value of
the weights defined in Algorithm 1 as η = 1.

The results reported are obtained after 35 trials. This value
is in line with the common practice adopted in studies deal-
ing with simulations of distributed systems based on similar
machine learning algorithms — e.g., [29], [39], where even
less runs are performed. This leads us to claim how 35 trials
represents a good trade-off between simulation times and
proper statistical accuracy. The resulting graph’s bars refer
to a confidence interval of 90%. We summarize in Table II
the configuration parameters utilized during the following
evaluation, where the default values are reported in bold.

TABLE II: Parameters setting.

Parameter Values

Number of nodes 2, 3, 5, 7, 10, 20, 50
Task arrival rate (Hz) 0.1, 0.2, 0.3, 0.9
Nodes’ Average Distance [m] 1, 2, 3, 5, 10, 20, 30, 40
Computing workload, 109 0.5, 1, 10, 25, 50, 100
Channel bandwidth (Mbps) 5
Noise power (dBm) 50
Number of trials 35
Confidence interval [%] 90

B. Evaluation Metrics

Throughout this section, we make use of metrics and
quantities defined in Section III, such as the task completion

time. Besides them, in order to study the efficacy of predictors,
we use the Mean Absolute Percentage Error (MAPE), which
is a simple regression error metric. For every data point, the
residual is computed by taking only its absolute value so
that negative and positive residuals do not cancel out. The
error is then converted into a percentage, providing a clear
interpretation that makes the results easily understandable. The
formal equation of MAPE is given by:

MAPE =
1

n

n∑
t=1

100×
∣∣∣∣xt − ytxt

∣∣∣∣ , (17)

where xt and yt are the real and the predicted observations,
respectively. One key advantage of MAPE is its robustness to
the effects of outliers thanks to the use of the absolute value.
In summary, such a value describes how far the model’s pre-
dictions are off from their corresponding outputs on average.

Similarly, we compute the Mean Absolute Deviation (MAD)
for the predicted values as follows:

MAD =
1

n

n∑
t=1

∣∣yt −X∣∣ , (18)

where X denotes the mean of the observed values. The MAD
value, as explained in [40], is another key metric during the
evaluation of regressors.

Moreover, even though it is not an explicit objective of the
process, we also consider the energy consumed by agent i
during the execution of task m. Since the node can either
compute the task locally or offload its computation to the
edge cloud, we define two types of energy consumption, Eli,m
and Eei,m, for the local execution and the edge execution,
respectively. In the case of local computation, we use the
widely adopted model of the energy consumption per com-
puting cycle as E = kCf2 [41], [42], where k is the energy
coefficient depending on the chip architecture, fi,m is the CPU
frequency, and Ci,m specifies the workload, i.e., the amount
of computation to accomplish the task in terms of numbers
of cycles. According to some realistic measurements available
in [43], we set the energy coefficient k as 5×10−11. Moreover,
in the other event of task offloading, Eup =

pi,mT
tra
i,m

ξi
,∀i,m,

where ξi is the power amplifier efficiency of node i. Without
loss of generality, we assume that ξi = 1 ∀i. We also
assume the energy consumption in the edge cloud is negligible
since the cloud typically has enough energy to execute the
offloaded tasks. Then, similar to the energy spent in trans-
mission, we define the energy consumed during the reception

TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

2 3 4 5 6 7
Task Completion Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F 1-agent

3-agents
7-agents
15-agents

(a)

0.2 0.4 0.6 0.8
Task Arrival Rate (Hz)

0

2

4

6

8

A
ge

nt
qu

eu
e

le
ng

th

1-agent
3-agents
7-agents
15-agents

(b)

5 10 15 20 25 30
Number of Nodes

0

1

2

3

4

5

Ta
sk

C
om

pl
et

io
n

Ti
m

e
(s

) FPL
MAB

(c)

Fig. 3: (a) CDF of task completion time and (b) queue agents length at varying the task arrival rate. Both experiments consider
an increasing fleet size. (c) Task completion time of our FPL-based approach compared to a more complex solution as MAB.
Our FPL outperforms this alternative.

10 20 30 40 50
Number of Nodes

0

2

4

6

Ta
sk

C
om

pl
et

io
n

Ti
m

e
(s

) Our Solution
DROO
Hotbooting DQN
MARL

(a)

0 1 2 3 4 5
Agent queue length

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F Our Solution

DROO
Hotbooting DQN
MARL

(b)

5 10 15 20 25 30
Number of Nodes

0

20

40

60

E
ne

rg
y

C
on

su
m

ed
by

U
AV

(m
J)

Our Solution
DROO
Hotbooting DQN
MARL

(c)

Fig. 4: (a) Task completion time, (b) CDF of queue agents length, and (c) energy consumption for various offloading solutions.
Despite not as an objective of our algorithm, our solution can also limit the energy consumed by UAVs.

phase, Edown =
pi,mT

rec
i,m

ξi
,∀i,m. Thus, the energy spent in

offloading the task is the sum of these two communications,
Eei,m = Eup + Edown.

In conclusion, for simplicity, we refer to the energy con-
sumption as E, and is computed as follows:

E = (1− oi,m)Eli,m + oi,mE
e
i,m,

= (1− oi,m)
(
k(f li,m)2Ci,m

)
+

oi,m
(
pi,mT

tra
i,m + pi,mT

rec
i,m

)
.

(19)

C. Predictor Accuracy
For this first part focusing on the accuracy of the predictors,

we first offline train the considered models on a relatively
small dataset consisting of 5036 samples. In particular, we
apply a walk-forward validation. In such a technique, the
dataset is split into train and test sets by selecting a cut point,
and we select a point to split the dataset as 80% training set
and 20% test set. Then, even over the test set these models
are fitted for every new observation, and the training phase
continues online to improve the accuracy and to fit the specific
circumstances on the agent.

Fig. 2a shows MAPE for different predictors. Specifically,
we compare against two other time series forecasting meth-
ods, autoregressive-moving average (ARIMA) and Simple
Exponential Smoothing (SES), and two ML-based regressors,
Support Vector Regression (SVR) and Gradient Boosting
Regression (GBR). From the graph, we can observe how
results validate our approach. In particular, by leveraging
alternate techniques, our FPL model provides the lowest error
in predicting. Notably, compared to the second-best regressor,
i.e., SES algorithm, our method can halve the error.

We then compare the MAD error among the same set of
predictors, and we report the results in Fig. 2b. We can easily
conclude that not only FPL can provide a smaller error, but
the variance is reduced. This result is particularly important
since it assures that our approach leads to fewer outliers in
the prediction task. In fact, a method with high MAD suggests
that when it is wrong, the error could be too high, leading to
an inappropriate conclusion. On the other hand, our FPL is
always close to the real value, so even though the value is not
exact, the finding is likely more accurate.

We then reason about the number of samples required to the
algorithms for the convergence. In this phase, we also consider
an approach based on Reinforcement Learning (RL) [44], a
class of machine learning known for its capability of solving
sequential decision-making problems with unknown state-
transition dynamics. The sequential decision-making problem
is typically formulated as a Markov decision process (MDP).
Hence, using a Markov process, we model the action of task
offloading given the same state space we considered in our
formulation. The action, then, is obtained via the DQN setting
of RL, one of the most popular [45].

Fig. 2c shows the training time for different algorithms at
increasing the number of samples in the training set. It also
reports the number of samples required for these algorithms
to converge. This value is reported in the graph as a marker,
and is defined as the value that, when exceeded, the advantage
in the error is marginal, i.e., less than 5%. It is worth noticing
that RL models typically use the episode metric to define
the convergence time. Thus, we convert this metric into the
number of samples in order to use a uniform metric.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

10 20 30 40
Avg. distance (m)

0.0

2.5

5.0

7.5

10.0

Ta
sk

C
om

pl
et

io
n

Ti
m

e
(s

)

Our Solution
DROO
Hotbooting DQN
MARL

(a)

0 20 40 60 80 100

Computing Workload, 109 (CPU cycles)

0

20

40

Ta
sk

C
om

pl
et

io
n

Ti
m

e
(s

)

Our Solution
DROO
Hotbooting DQN
MARL

(b)

0 20 40
Time (s)

0

250

500

750

1000

R
A

M
U

sa
ge

(M
B

) Our Solution
DROO
Hotbooting DQN
MARL

(c)

0 20 40
Time (s)

20

40

60

80

100

C
PU

U
sa

ge
(%

)

Our Solution
DROO
Hotbooting DQN
MARL

(d)

Fig. 5: (a) Time spent for the task computation at varying the node-antenna distance. (b) Task completion time for increasing
average computing workload. (c) Memory resources and (d) CPU consumed during the execution of our considered algorithms.

We can detect the different behavior of the methodologies.
Time series models, i.e., VARMA and ARIMA, require a
medium amount of training time but are not data hungry, and
can converge even when not much data is present, around 500.
On the other hand, a pure ML model, as RFR, is very fast in
its training phase but requires a considerable amount of data
to converge, around 10, 000. As expected, while RL can lead
to excellent results and can model more challenging scenarios,
it takes a long time to converge and is needed for a very large
training set. These results motivate our approach based on
FPL, which can fit the application and network requirements
by leveraging alternatively a method requiring fewer samples
to converge or fast in on-online training. We can thus conclude
that our model can adapt to multiple scenarios and network
conditions/technologies, as well as can better face the dynamic
evolution of the conditions, which evolve over time.

After having studied the diverse amount of samples required
for training, as well as the time elapsed, we now study the
time needed by our FPL-based algorithm to converge. To this
end, we compared the convergence time of FPL to RFR, as
it is the most accurate at regime. We consider two different
versions for the latter: an already trained version (offline-
RFR) and an RFR during its learning phase (online-RFR).
Fig. 2d displays the loss (actual value - predicted value) of
these alternatives, where the offline-RFR is constant over time
since the model parameters were already fixed during training.
We can notice how our approach outperforms the offline-RFR
after approximately 30 steps, while the online-RFR in the first
20 steps has a too excessive loss to report in the figure. Such
an online-RFR method achieves a reasonable still high loss at
30 steps, the number of steps required by our FPL to stably
converge. This observation validates our hypothesis of using
an FPL-based algorithm to online adapt the prediction and mix
online and offline parameter settings to speed up the learning.

D. Solution Performance Analysis

To study the behavior of our solution at varying environmen-
tal conditions, we consider diverse indicators for increasing
fleet sizes. In Fig. 3a we show the cumulative distribution
function (CDF) of task completion time. We can easily observe
how a more significant number of nodes leads to a reduced
mean task completion time. Not only, this also reduces the
number of outliers in the distribution, since the number of
congested nodes is reduced as well. This result confirms the
goodness of our model, which can be employed even for
multiple IoT nodes.

Similar conclusions can be taken if examining the average
queue length of the agents when increasing the task arrival
rate. In particular, we can observe how, when tasks are intro-
duced in the system at a higher rate, the growth in the queue
size is logarithmic. This result suggests that our approach can
efficiently handle the presence of many tasks in the system.
Confirmation of this behavior is presented in Section VI-E,
when our solution is compared against other methods.

We then evaluate how a more elaborated approach, as
Multi-Armed Bandit (MAB), behaves when utilized in this
scenario. In MAB algorithms, the set of possible actions is
typically referred to as “arms”. Unlike the more general class
of reinforcement learning, in bandit problems, MAB only
observes the outcome of a selected action for a given state. We
model the arms of this approach as the two leaders of our FPL:
one arm refers to the VARMA predictor, and the other arm
is the SVR regressor. As shown in Fig. 3c, our FPL-based
algorithm can consistently provide a lower task completion
time. Although FPL does not provide the same guarantees of
MAB and RL, we can observe that the performance of our
formulation resembles the results obtained using an enhanced
model as in MAB.

E. Comparison with State-of-the-art
To study the effectiveness of our solution, we compare

it against three similar solutions: the DROO framework [7],
which implements a deep neural network that learns the
binary offloading decisions; a solution based on the multi-
agent reinforcement learning framework [10], that is able to
select the best radio access technology for the offloading
process; a hotbooting Q-learning scheme for computation
offloading [28], herein referred to as hotbooting DQN, as it
uses a fast deep Q-network (DQN) model to further improve
the offloading performance.

We can first consider Fig. 4a, showing the impact of the
number of nodes on the task completion time. Our solution
is able to reduce such completion time compared to the
other benchmark algorithms. Even when the number of nodes
increase, our method outperforms the alternatives.

We then evaluate the effects of task offloading over the
queue of agents, reporting in Fig. 4b the CDF of queue length.
The queue length is considered a key metric in this scenario,
as it clearly impacts the time to complete tasks, but also the
computation rate and the energy spent by the node. It can be
easily observed that, with our solution, we can shorten the
amount of tasks waiting in the agent’s queue, while other RL-
based methods are more prone to overload the agent.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

Additionally, we investigate the energy consumption that
the solutions lead to, reporting the results in Fig. 4c. While
other benchmark algorithms consider the minimization of
energy consumption in the problem formulation, our model
is unaware of this aspect. Nevertheless, our solution is able to
achieve comparable results with MARL that has been designed
for energy efficiency purposes. Moreover, we can reduce
consumption with respect to DROO and DQN. Thus we can
conclude that, although our approach is blindfolded concerning
power saving, it can lead to an energy-efficient method. These
results confirm our hypothesis that modeling the device as a
queue of tasks is a simplistic yet effective way of exploiting
the edge while considering the application performance.

Moreover, we consider the impact of the distance among
the nodes of the system and the close edge cloud (Fig. 5a).
While the time to complete the task is clearly increasing as the
distance increases, we can also observe how this increment is
attenuated if compared to other solutions. The ability of our so-
lution to online learn the best offloading decision, as well as to
improve the prediction, makes it more suitable to handle a va-
riety of conditions, as in the case of diverse antenna locations.

Other differences may arise when tasks to be performed
require different execution times. After having conducted an
experimental analysis to investigate this behavior, we report
in Fig. 5b the task completion time for ours and the three
considered solutions while the computing workload changes. It
can be seen how our solution can adapt its prediction and sig-
nificantly reduce the task completion time for each task size.
In light of these and previous results, we can conclude that the
adaptive property ensures that our model is able to face mul-
tiple circumstances that are challenging for other approaches.

Finally, we consider the amount of RAM and CPU required
to train and execute these algorithms. As can be seen in Fig. 5c,
our implementation can drastically reduce the amount of mem-
ory consumed, leading to a significant improvement. While the
deep learning approaches are hungry for RAM, the MARL
model can optimize consumption. However, our regressors
can further shorten the demand for memory. Considering then
the CPU consumption in Fig. 5d, similar conclusions hold.
Simulating the execution of the learning processes over an In-
tel(R) Core(TM) i7-7500U CPU @ 2.70GHz, it is observable
a reduction of CPU usage. In conclusion, we can consider
our solution more lightweight than alternatives. This result is
extremely important, especially in the UAV context, where
a reduced memory footprint, along with less computation, is
fundamental.

VII. CONCLUSION

This paper presents a learning-based solution to solve the
dilemma of whether a task should be offloaded to the close
edge cloud or not. Our solution lets the devices autonomously
learn the offloading decisions on the basis of the current state.
Such a decision exploits two classes of predictors, i.e., time
series and ML regression, to predict future conditions. By
doing so, the node can determine online the accuracy of these
methods. Based on this value, then, the agent determines where
incoming tasks should be executed. The results validate our

model, evidencing how our implementation outperforms state-
of-the-art solutions. In particular, despite the simplicity of our
learning algorithm, its accuracy is comparable to other RL-
based processes.

REFERENCES

[1] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: Opportunities and challenges,” IEEE Com-
munications Magazine, vol. 54, no. 5, pp. 36–42, 2016.

[2] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading
for mobile edge computing in dense networks,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 207–215.

[3] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture
for adaptive task planning in support of iot-based machine learning
applications for disaster scenarios,” Computer Communications, vol.
160, pp. 769–778, 2020.

[4] A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, and
S. Gururajan, “Apron: an architecture for adaptive task planning of
internet of things in challenged edge networks,” in 2019 IEEE 8th
International Conference on Cloud Networking (CloudNet). IEEE,
2019, pp. 1–6.

[5] T. Koketsu Rodrigues, J. Liu, and N. Kato, “Offloading decision for
mobile multi-access edge computing in a multi-tiered 6g network,” IEEE
Transactions on Emerging Topics in Computing, 2021.

[6] A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for
sustainable and responsive task offloading in challenged edge networks,”
IEEE Transactions on Green Communications and Networking, vol. 5,
no. 3, pp. 1114–1127, 2021.

[7] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, 2019.

[8] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8050–8062, 2019.

[9] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 158–11 168, 2019.

[10] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “Sustainable
task offloading in uav networks via multi-agent reinforcement learning,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 5003–
5015, 2021.

[11] Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, “Joint computation
offloading and coin loaning for blockchain-empowered mobile-edge
computing,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9934–
9950, 2019.

[12] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online computation
offloading and traffic routing for uav swarms in edge-cloud computing,”
IEEE Transactions on Vehicular Technology, 2020.

[13] T. Koketsu Rodrigues, J. Liu, and N. Kato, “Application of cybertwin
for offloading in mobile multi-access edge computing for 6g networks,”
IEEE Internet of Things Journal, 2021.

[14] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to
minimize state transfer costs for dynamic execution offloading in mobile
cloud computing,” IEEE Transactions on Mobile Computing, vol. 13,
no. 11, pp. 2648–2660, 2014.

[15] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework
for partitioning and execution of data stream applications in mobile
cloud computing,” ACM SIGMETRICS Performance Evaluation Review,
vol. 40, no. 4, pp. 23–32, 2013.

[16] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge compu-
tation offloading for ultradense iot networks,” IEEE Internet of Things
Journal, vol. 5, no. 6, pp. 4977–4988, 2018.

[17] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.

[18] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An online
algorithm for task offloading in heterogeneous mobile clouds,” ACM
Transactions on Internet Technology (TOIT), vol. 18, no. 2, pp. 1–25,
2018.

TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

[19] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Com-
petitive randomized algorithms for nonuniform problems,” Algorithmica,
vol. 11, no. 6, pp. 542–571, 1994.

[20] P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by
jointly allocating radio and computational resources for mobile edge
computing,” IEEE Access, vol. 5, pp. 11 255–11 268, 2017.

[21] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, 2019.

[22] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 7, pp. 7916–7929, 2020.

[23] M. Gong and S. Ahn, “Computation offloading-based task scheduling
in the vehicular communication environment for computation-intensive
vehicular tasks,” in 2020 International Conference on Artificial Intelli-
gence in Information and Communication (ICAIIC). IEEE, 2020, pp.
534–537.

[24] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multi-agent
deep reinforcement learning for vehicular computation offloading in iot,”
IEEE Internet of Things Journal, 2020.

[25] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “c learning
in fog computing for industrial applications,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2018.

[26] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–7.

[27] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mobile Networks and Applications, pp. 1–8, 2018.

[28] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1930–
1941, 2019.

[29] D. Di Paola, M. Gaggero, A. Petitti, and L. Caviglione, “Optimal
control of time instants for task replanning in robotic networks,” in 2016
American Control Conference (ACC). IEEE, 2016, pp. 1993–1998.

[30] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for uav missions with heterogeneous
teams,” in 2013 European Control Conference (ECC). IEEE, 2013, pp.
3312–3319.

[31] E. Hannan, “The identification of vector mixed autoregressive-moving
average system,” Biometrika, vol. 56, no. 1, pp. 223–225, 1969.

[32] N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Information and computation, vol. 108, no. 2, pp. 212–261, 1994.

[33] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (ICML ’03), 2003, pp. 928–936.

[34] J. Hannan, “Approximation to bayes risk in repeated play,” Contributions
to the Theory of Games, vol. 3, pp. 97–139, 1957.

[35] A. Kalai and S. Vempala, “Efficient algorithms for online decision
problems,” Journal of Computer and System Sciences, vol. 71, no. 3,
pp. 291–307, 2005.

[36] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[37] A. Cohen and T. Hazan, “Following the perturbed leader for online
structured learning,” in International Conference on Machine Learning
(ICML). PMLR, 2015, pp. 1034–1042.

[38] A. Sacco, F. Esposito, and G. Marchetto, “Rope: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Transactions
on Network and Service Management, vol. 17, no. 2, pp. 986–999, 2020.

[39] S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern:
A pragmatic learning-based congestion control for the internet,” in
Proceedings of the Annual Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’20), 2020, p. 632–647.

[40] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[41] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp. 2716–2720.

[42] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[43] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing (HotCloud). USENIX Association,
2010, pp. 1–7.

[44] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[45] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

Alessio Sacco received the M.Sc. degree in Com-
puter Engineering from the Politecnico di Torino,
where he is currently pursuing the Ph.D. degree
in Computer Engineering. His research interests in-
clude architecture and protocols for network man-
agement; implementation and design of cloud com-
puting applications; algorithms and protocols for
service-based architecture, such as Software Defined
Networks (SDN), used in conjunction with Machine
Learning algorithms.

Flavio Esposito is an Assistant Professor with the
Department of Computer Science at Saint Louis
University (SLU). He also has an affiliation with the
Parks College of Engineering at SLU. He received
an M.Sc. degree in Telecommunication Engineering
from the University of Florence, Italy, and a Ph.D. in
computer science from Boston University in 2013.
Flavio worked in the industry for a few years,
and his main research interests include network
management, network virtualization, and distributed
systems. Flavio is the recipient of several awards,

including four National Science Foundation awards and two best paper awards,
one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (M’06-SM’21) received the Ph.D.
degree in computer engineering from the Politec-
nico di Torino, in 2008, where he is currently an
Associate Professor with the Department of Control
and Computer Engineering. In 2009, he visited the
Department of Computer Science at Boston Univer-
sity. His research topics cover distributed systems
and formal verification of systems and protocols. His
interests also include network protocols and network
architectures. He is Senior Member of the IEEE
and he serves as an Associate Editor of the IEEE

Transactions on Vehicular Technology.

Paolo Montuschi (M’90-SM’07-F’14) is a full pro-
fessor with the Department of Control and Computer
Engineering, Rector’s Delegate for Information Sys-
tems, and a past member of the Board of Governors
at Politecnico di Torino, Italy. His research interests
include computer arithmetic, computer graphics, and
intelligent systems. He is an IEEE Fellow, a life
member of the International Academy of Sciences
in Turin, and of HKN, the Honor Society of IEEE.
He serves as the Editor-in-Chief of the IEEE Trans-
actions on Emerging Topics in Computing, the 2020-

21 Chair of the IEEE TAB/ARC and the co-Chair of the 2021 TAB/PSPB
Ad Hoc Committee on Publications Strategy. Previously, he served in a
number of positions, including the Editor-in-Chief of the IEEE Transac-
tions on Computers (2015-18), the2017-20 IEEE Computer Society Awards
Committee Chair, a Member-at-Large of IEEE PSPB (2018-20), and as the
Chair of its Strategic Planning Committee (2019-20). More information at
http://staff.polito.it/paolo.montuschi.

