
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evidence that large vessels do affect near infrared spectroscopy / Seddone, Stefano; Ermini, Leonardo; Policastro,
Piero; Mesin, Luca; Roatta, Silvestro. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 12:1(2022).
[10.1038/s41598-022-05863-y]

Original

Evidence that large vessels do affect near infrared spectroscopy

Publisher:

Published
DOI:10.1038/s41598-022-05863-y

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2954942 since: 2022-02-09T18:45:45Z

Nature Publishing Group



1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2155  | https://doi.org/10.1038/s41598-022-05863-y

www.nature.com/scientificreports

Evidence that large vessels 
do affect near infrared 
spectroscopy
Stefano Seddone1, Leonardo Ermini1, Piero Policastro2, Luca Mesin2 & Silvestro Roatta1*

The influence of large vessels on near infrared spectroscopy (NIRS) measurement is generally 
considered negligible. Aim of this study is to test the hypothesis that changes in the vessel size, 
by varying the amount of absorbed NIR light, could profoundly affect NIRS blood volume indexes. 
Changes in haemoglobin concentration (tHb) and in tissue haemoglobin index (THI) were monitored 
over the basilic vein (BV) and over the biceps muscle belly, in 11 subjects (7 M – 4 F; age 31 ± 8 year) 
with simultaneous ultrasound monitoring of BV size. The arm was subjected to venous occlusion, 
according to two pressure profiles: slow (from 0 to 60 mmHg in 135 s) and rapid (0 to 40 mmHg 
maintained for 30 s). Both tHb and THI detected a larger blood volume increase (1.7 to 4 fold; 
p < 0.01) and exhibited a faster increase and a greater convexity on the BV than on the muscle. In 
addition, NIRS signals from BV exhibited higher correlation with changes in BV size than from muscle 
(r = 0.91 vs 0.55, p < 0.001 for THI). A collection of individual relevant recordings is also included. These 
results challenge the long-standing belief that the NIRS measurement is unaffected by large vessels 
and support the concept that large veins may be a major determinant of blood volume changes in 
multiple experimental conditions.

Abbreviations
BL  Beer–Lambert
BV  Basilic vein
HHb  Deoxy-haemoglobin
nAUC   Normalized area under the curve
NIR  Near-infrared light
NIRS  Near-infrared light spectroscopy
O2Hb  Oxy-haemoglobin
SRS  Spatially-resolved spectroscopy
tHb  Total haemoglobin
THI  Total haemoglobin index
US  Ultrasound

Near-Infrared Spectroscopy (NIRS) has been extensively applied for the assessment of changes in tissue oxy-
genation and blood volume in skeletal muscles due to its non-invasiveness, its ability to operate in real-time 
and for being little affected by movement  artefacts1–3. Briefly, the functioning of NIRS depends on the emission 
of a NIR light radiation from the emitting optode which travels through the underlying tissues and gets either 
absorbed or scattered, the backscattered fraction being collected by the receiving optode. Depending on the 
amount of returning light at different wavelengths, NIRS devices can assess changes in the concentration of Oxy-
(Haemoglobin + Myoglobin) and Deoxy-(Haemoglobin + Myoglobin)  (O2Hb/HHb) thus providing indications 
on tissue oxygenation and blood volume.

The interpretation of NIRS signals is complicated by several limitations of the methodology, among which the 
inability to discriminate between haemoglobin and myoglobin, the difficulty to discriminate between superficial 
and deep tissues, the need to estimate or assess the actual optical pathlength of NIRS light, and the uncertainty 
about the actual vessels contributing to the measurement, with regard to type (arterial/capillary/venous) and 
 size4. As for vessel size, it is generally assumed that only vessels smaller than 1-mm diameter contribute to the 
NIRS  signal4–6. This assumption appears to stem from a consideration originally expressed by Mancini et al.7 that 
the large vessels would completely absorb the incident light and preclude backscattering, due to the high heme 
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concentration. Therefore, the collected light would arise mostly from small vessels, such as  capillaries6, arteri-
oles, and  venules8,9. However, we believe that this reasoning is correct only as long as the size of the large vessels 
does not change. In fact, an increase in vessel size would increase the amount of absorbed light and decrease the 
fraction of backscattered light, as described in Fig. 1a,b. The possibility that large vessels may change their size is 
particularly relevant for the highly compliant veins, which frequently exhibits large size changes in response to 
changes in intravascular and extravascular pressure, e.g., the vein size in a limb increases when the limb is moved 
from an independent (Fig. 1a) to a dependent position (Fig. 1b), due to increased hydrostatic blood pressure or 
may decrease due to the external compressions produced by muscle contractions. However, due to the consid-
eration anticipated above, the possibility that large vessels may actually affect NIRS measurements in skeletal 
muscles is generally neglected, despite the issue has never been specifically addressed or experimentally verified. 
On the contrary, contamination of NIRS signals by superficial visible veins has been occasionally  evidenced10,11.

Aim of the present study was to test the hypothesis that large vessels may significantly affect NIRS signals. To 
this aim, NIRS monitoring was conducted in the biceps muscle, one probe being located over a vessel-free area 
and the other one over the basilic vein (BV). In order to allow for continuous monitoring of the BV cross-section 
by ultrasound imaging, that could be problematic during postural changes or exercise, repeatable changes in BV 
size were obtained in static conditions by controlled venous occlusion, proximally delivered. Evidences in sup-
port of the hypothesis were collected both from average responses to venous occlusions as well as from relevant 
observations derived from individual recordings.

Methods
Eleven healthy subjects were recruited in this study (31 ± 8 year—7 M 4F). The study was approved by the Bioeth-
ics Committee of the University of Torino, no diagnosed diseases were reported by any of the participants. All 
the experiments were performed in accordance with Declaration of Helsinki, each subject signed the informed 
consent form.

Subject setting. The subjects were seated on a comfortable and adjustable chair with the back supported, in 
a quiet room at a constant temperature of ~ 21–22° C. The left arm was elevated until reaching ~ 135° of shoulder 
flexion and passively maintained supine over a padded rigid support. A gentle bandage at the wrist served to 
secure and stabilize the arm position. This arrangement produced a collapse of the basilic vein in most subjects, 
due to the decrease in venous blood pressure according to hydrostatic gradients.

Venous occlusion. Controlled pneumatic compressions were elicited by the inflation of a pneumatic pae-
diatric cuff (Gima, Gessate, Italy; width 5 cm), close to the armpit. The cuff inflation was operated by two sole-

Figure 1.  (a) Vein collapse during arm elevation results in little absorption of NIR light by the vein and 
consequently in high intensity of the light backscattered to the detector. (b) Vein dilation, during, e.g., arm 
lowering or venous occlusion, increases the absorption and reduces the amount of backscattered light, which 
produces an increase of NIRS blood volume indexes; (c) location of NIRS probes: one NIRS probe was 
positioned over the biceps muscle belly  (NIRSM) and one over the basilic vein  (NIRSV); an ultrasound probe 
was coupled with  NIRSV to monitor size changes in the cross-sectional area of the basilic vein; (d) custom 
3D-printed probe holder, designed to embed the linear US-probe (not drawn) in-between NIRS optodes (in 
red). The figure was created with Adobe Illustrator 2020, v. 24.1.1, www. adobe. com (a,c), MS PowerPoint 2019, 
v. 2111, www. micro soft. com (b), and Rhino 7 v.7.13, www. rhino 3d. com (d).

http://www.adobe.com
http://www.microsoft.com
http://www.rhino3d.com
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noid valves (VXE2330-02F-6D01, SMC, Tokyo, Japan), granting rapid in-flow and out-flow, and a proportional 
valve (ITV0010, SMC, Tokyo, Japan), granting precise pressure maintenance at the desired level. Compressed 
air (1 bar) was provided by an air compressor, and the Spike2 software (version 9, Cambridge Electronic Design, 
Cambridge, UK) coupled with an I/O board (CED Micro 1041, Cambridge Electronic Design, Cambridge, UK) 
was used to drive the above-mentioned valves to implement both rapid and slow inflation/deflation  patterns12–14.

NIRS measurements. NIRS measurements were performed using a continuous wave spectrometer 
(NIRO200NX, Hamamatsu Photonics, Hamamatsu City, Japan), implementing the modified Beer–Lambert 
(BL) and spatially resolved spectroscopy (SRS)  methods15. The former allows to detect changes in oxygenated 
 (O2Hb) and deoxygenated haemoglobin concentrations (HHb) expressed in μmol/L, assuming a differential 
path-length factor of 3.616. The sum of these two components, tHb =  O2Hb + HHb, indicate changes in total blood 
volumes, with respect to a basal reference level, set to 0. The SRS technique provides an additional blood volume 
indicator, the tissue haemoglobin index (THI), which yields the relative change in haemoglobin concentration 
(dimensionless) with respect to the beginning of the recording, arbitrarily set to 1. Notably, NIRS spectrometers 
are unable to discriminate between haemoglobin and cytoplasmic myoglobin, therefore all measurements are 
actually referred to the sum of the two components (haemoglobin + myoglobin) in the sample volume.

Two NIRS measurements were simultaneously performed. One probe was positioned at the distal third of the 
arm, on the medial side, just over the BV and more laterally on the biceps brachii muscle, over an area virtually 
free of large vessels (Fig. 1c). Echographic guidance allowed for precise identification of the BV, whose orientation 
was marked with a marker on the overlying skin. A custom 3D-printed holder was designed to accommodate 
both the NIRS optodes (inter-optode distance of 4 cm; Fig. 1d), and a linear US probe (see below) in between 
and transversally to the NIRS probe, so that the NIRS probe could be oriented parallel to the BV while the US 
probe could be used to display and record its cross-sectional area. The NIRS optodes position over the biceps 
muscle belly were housed in their native probe holder (same inter-optode distance of 4 cm). The NIRS probes 
were sufficiently separated from each other (6–8 cm) to avoid interference and were stuck to the skin by double-
sided medical adhesive tape and further secured by additional overlying tape. The 4-cm rather than the 3-cm 
inter-optode distance was chosen because it grants a better rejection of the interference from the cutaneous 
circulation (for the SRS parameter, THI) and increases the depth of the sample volume, considered to be about 
half of the inter-optode distance.

Ultrasound imaging. The cross-section of the BV was continuously monitored by B-mode US imaging 
(MyLab 15, Esaote S.p.A., Genoa, Italy) using a linear array (LA 523, Esaote, Genoa, Italy) oriented transversally 
to the vessel lumen at an insonation angle of ~ 90° (US frequency of 12 MHz). The US probe was maintained 
firmly in place by a mechanical arm, anchored to the same support holding the subject’s  arm12. From the B-mode 
scan, the thickness of cutaneous and subcutaneous tissue layer could be measured in all subjects.

Experimental protocol. After stabilization of hemodynamic signals, a randomized sequence of venous 
occlusions was performed according to the following pressure profiles: (i) a slow inflation from 0 to 60 mmHg in 
135 s followed by a plateau, 60 mmHg for 30 s, followed by slow deflation 60–0 mmHg in 135 s; (ii) rapid infla-
tion to 40 mmHg, achieved in 2 s, maintained for 30 s and passively deflated in about 2 s. The different occlusions 
were separated by at least 30 s. Other occlusion patterns or pressure levels were occasionally tested but were not 
systematically analysed. Venous occlusion led to a gradual rise of blood pressure in distal veins and the ensuing 
increase in BV size could be recorded by US imaging.

Data acquisition and processing. The NIRS signals were digitally acquired at 50  Hz along with the 
cuff pneumatic pressure (CED Micro 1041, Cambridge Electronic Design, Cambridge, United Kingdom) and 
stored for later analysis on the computer using Spike2 software (version 9.04b, Cambridge Electronic Design, 
Cambridge, United Kingdom). The analysis was limited to the blood volume indicators tHb and THI, collected 
from the probe positioned over the basilic vein  (tHbV and  THIV) and over the biceps muscle belly  (tHbM and 
 THIM). Responses to venous occlusion were characterized in terms of (1) maximum change in blood volume, as 
expressed by the peak value of the recordings (considering that basal, i.e., pre-occlusion levels for tHb and THI 
are 0 and 1, respectively); (2) convexity of the rising volume curve, quantified as the area comprised between 
the normalized curve and the virtual linear trend, divided by the duration of the rising phase (nAUC) so that 
nAUC is dimensionless and equals 0.5 for maximum convexity, 0 for a rising linear trend and − 0.5 for maximum 
concavity. The area is calculated over the whole rising phase, defined as the time interval between the moment at 
which the pressure exceeded 10 mmHg and the moment at which the blood volume reaches its maximum value 
(i.e. at the end of the plateau), while the normalization of the curve was achieved by subtracting the minimum to 
the original curve and subsequently dividing the resulting curve by its current maximum value. In this way the 
normalized rising volume curve had its minimum value at 0 and its maximum value at 1.

Volume-pressure curves were constructed by quadratic fitting of the average tHb and THI response to slow 
cuff deflation (from 60 to 0 mmHg in 135 s, described above). Compliance curves were then obtained as first 
analytical derivatives of the volume-pressure  curves17.

Video clips of US imaging of the BV, lasting for the whole duration of the venous occlusions, were recorded 
and later analysed by a custom image processing software, originally developed for the inferior vena  cava18,19, 
capable of tracking the vein borders, and reporting the time course of the vessel cross-sectional area during cuff 
inflation. Proper detection of vein borders was validated by visual inspection of the video clips with superim-
posed vessel reconstruction. Automatic vessel detection could fail due to poor quality of the US imaging or due 
to the collapse of the vein. In these cases, data were either discarded or integrated with manual measurements.
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Statistical analysis. Comparisons between responses of NIRS signals from the two probes (vein vs. mus-
cle), in terms of magnitude, latency and convexity were done using a non-parametric paired Wilcoxon T test. 
Similarity of the response of NIRS variables with changes in BV size, for each subject, was quantified by the 
Pearson’s correlation coefficient, then Fisher transformation was applied to those ρ values, and finally each dis-
tribution was tested using a non-parametric Wilcoxon T test. The procedure was performed for both tHb and 
THI and for both slow and rapid venous occlusion profiles.

Results
In two subjects,  THIV saturated during venous occlusion. The measurements were then discarded and repeated 
after slightly displacing the NIRS probe by few millimetres. This problem was not encountered in signals col-
lected from the muscle belly.

In the resting condition, the BV collapsed in most subjects. Average BV depth (centre of the vessel) was 
10.2 ± 4.2 mm, extending from 7.4 ± 4.2 to 13.1 ± 4.2 mm at its maximum dilatation at the plateau of slow ramp 
occlusions. The thickness of cutaneous and subcutaneous tissue layers was assessed from the ultrasound scans 
and found to be 2.1 ± 0.3 mm.

Slow vein occlusions. The slow venous occlusion effectively increased the BV cross-sectional area from 
8.9 ± 5.7 to 32.7 ± 12.1  mm2 and produced a slow increase, followed by a slow decrease in blood volume indexes 
as shown in Fig. 2a. Notably, the indexes exhibited systematically larger changes over the BV than over the mus-
cle belly, on average: ΔtHbV = 44.8 ± 21.3 μmol/L vs. ΔtHbM = 27.1 ± 17.6 μmol/L (p < 0.01) and  THIV = 54 ± 31% 
vs.  THIM = 22 ± 21% (p < 0.002) (Fig. 2b).

The time course of the responses was also slightly different between the two measurement areas: indeed,  tHbV 
exhibited a more rapid increase as compared to  tHbM as shown by the higher curvature nAUC (0.052 ± 0.076 
vs. − 0.005 ± 0.045, p = 0.03). For THI the differences did not reach statistical significance. However, it is worth 
to report that in 3 subjects  THIM did not increase or slightly decreased.

Both  tHbV and  THIV values were better correlated to BV size than the corresponding muscle indexes 
(p < 0.001):  tHbV ρ = 0.92,  THIV ρ = 0.91,  tHbM ρ = 0.83,  THIM ρ = 0.55 (Fig. 2b).

Figure 2.  (a) Average response to slow venous occlusion of the cross-sectional area of the basilic vein (green) 
and of tHb and THI as detected on the muscle (red) and on the vein (blue). Shaded areas represent the 95% 
confidence interval of the mean. The black trapezoid depicted in the top graph qualitatively reproduces the cuff 
pressure during inflation to 60 mmHg, plateau and subsequent deflation to 0 mmHg, while the vertical dashed 
lines indicate end of inflation (first one) and beginning of deflation (second one). (b) Peak response of blood 
volume indexes, collected from vein and muscle probes (top), Pearson’s coefficient of the correlation between 
changes in BV cross-sectional area and in blood volume indices (bottom). *p < 0.05; #p < 0.01.
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Volume-pressure and vascular compliance curves were constructed from the average tHb and THI curves of 
Fig. 2, collected from vein and muscle during cuff deflation (Fig. 3). Note that the compliance estimated from 
the probe on the vein is considerably higher than from the muscle.

Rapid vein occlusions. As described for slow-ramp occlusions, rapid occlusions also produced an 
increase in BV cross-sectional area from 8.8 ± 6.5 to 25.5 ± 13.4  mm2, and relevant increase in blood volume 
indexes (Fig. 4a) with significantly larger changes in the vein than in the muscle: ΔtHbV = 27.3 ± 12.6 μmol/L vs. 
ΔtHbM = 11 ± 7.1 μmol/L (p < 0.002) and  THIV = 32 ± 21% vs.  THIM = 8 ± 9% (p < 0.001) (Fig. 4b). A clear-cut dif-
ference in time course between vein and muscle is here significantly achieved for tHb and THI, both exhibiting 
a higher convexity during the rising phase of blood volume (tHb: 0.18 ± 0.08 vs. 0.07 ± 0.10, p < 0.05; for THI: 
0.16 ± 0.07 vs. 0.06 ± 0.12, p < 0.05), on the vein as compared to the muscle. Also in this case 4/11 subjects exhib-
ited no change or slight decrease in  THIM.

As shown in Fig. 4b, vein indexes were generally better correlated to BV cross-sectional area than muscle 
indexes: average Pearson’s ρ was 0.92 vs. 0.78 for tHb (p < 0.01) and 0.89 vs. 0.56 for THI (p < 0.05) in vein vs. 
muscle.

Single relevant cases. In addition to the afore-described differences in the NIRS signals averaged over all 
subjects, few relevant examples of individual recordings are presented below, further evidencing peculiar aspects 
of the influence that large vessels exert on NIRS signals.

(1) In Fig. 5 the execution of two occlusive stimuli in sequence produced markedly different responses in the 
 tHbV signal: while on the first occlusion (left)  tHbV reveals a normal progressive increase in blood volume, 
on the second occlusion the increase surprisingly takes place in two steps. Analysis of the US recording 
clarifies the phenomenon, showing that beside the basilic vein, one brachial vein also appears into the 
sample volume of the probe as exhibited in Supplementary Video S1 (https:// doi. org/ 10. 6084/ m9. figsh 
are. 14694 270). These veins are located at 2.4 and 5.1 mm of depth and, thus, within the sampling depth of 
the NIRS (about 2 cm, given the inter-optode distance of 4 cm). They have been separately tracked and the 
time course of their change in size is also reported; it can be observed that they simultaneously dilate in 
response to the first but not to the second venous occlusion. The delayed dilation of the basilic vein (green 

Figure 3.  Volume-pressure curves, obtained by 2° order polynomial fitting of average responses to slow cuff-
deflation of Fig. 2a (top), and compliance curves, obtained as the slopes of the corresponding volume-pressure 
curves (bottom), for tHb (left) and THI (right) collected from vein (blue) and muscle (red). Note the large 
difference in the compliance estimated from vein and muscle.

https://doi.org/10.6084/m9.figshare.14694270
https://doi.org/10.6084/m9.figshare.14694270
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trace) explain the discontinuous increase of  tHbV. Also note the relatively small increase exhibited by  tHbM 
compared to  tHbV.

(2) In Fig. 6, the response to two subsequent rapid occlusions is shown, in a different subject. It can be observed 
that (1) both  tHbV and  THIV, but not  tHbM and  THIM exhibit a regular oscillatory pattern (of respiratory 
origin) before and after the occlusion, the same oscillation being clearly visible on the BV cross-sectional 
area and (2) upon release of the first occlusion (but not the second)  tHbV and  THIV, but not  tHbM and 
 THIM, remain elevated with respect to the pre-occlusion levels, which again mirrors the pattern exhibited 
by the BV cross-sectional area. Notably, a respiratory pattern was never observed on NIRS signals collected 
from muscle.

(3) We mentioned above that, surprisingly, in 4 subjects no THI increase was observed in the muscle, during 
the rapid venous occlusion. Aiming to discern whether the effect was related to individual characteristics 
or to the specific position of the probe on the muscle belly, we have reinvestigated the issue. We observed 
that small displacements (in the order of 1 cm) of the NIRS probe could revert the  THIM response into 
a prominent increase (Fig. 7). In one case this was attributed to the presence of a small vein at a depth of 
23 mm, hardly detectable by B-mode US imaging but visible through Color-Doppler imaging at the time 
of cuff deflation.

(4) Although it is well known that large changes in venous size may take place during postural changes, a 
representative recording is here reported to show that similar effects are produced by venous occlusion 
and displacement from an independent to a dependent position (Fig. 8a). A single NIRS probe is here 
located over the BV. It can be observed that, both tHb and THI reveal a blood volume fall when the arm 
is raised up and an equivalent increase when it is returned to the dependent position. Venous occlusion 
performed in the independent position produces comparable effects, while a smaller response is observed 
in the dependent position.

(5) In order to show that the influence on NIRS blood volume indexes by large veins also concerns muscle 
contractions, a specific experimental set-up was designed. Given that it is difficult to identify large veins in 
the biceps muscle, this recording was performed in calf muscles, during a light isometric plantar flexion of 

Figure 4.  Average response to rapid venous occlusion of the cross-sectional area of the basilic vein (green) 
and of tHb and THI as detected on the muscle (red) and on the vein (blue). Shaded areas represent the 95% 
confidence interval of the mean. The black trapezoid depicted in the top graph qualitatively reproduces the cuff 
pressure during inflation to 40 mmHg, plateau and subsequent deflation to 0 mmHg, while the vertical dashed 
line indicates the beginning of deflation. (b) Peak response of blood volume indexes, collected from vein and 
muscle probes (top), Pearson’s coefficient of the correlation between changes in BV cross-sectional area and in 
blood volume indices (bottom). *p < 0.05; #p < 0.01.
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the ankle. One NIRS probe was located over a large vein detected by US in the soleus muscle, while the other 
probe was located in an adjacent area of the same muscle, free of visible veins. The results are presented in 
Fig. 8b, whereby EMG and Force tracings document the duration and extent of the contraction. Note that 
the probe located over the vein detected a large decrease in blood volume during the contraction, compared 

Figure 5.  Original traces from a single subject showing the responses to two subsequent short lasting venous 
occlusions (30 and 60 mmHg, respectively). From top to bottom: cuff pressure; Cross-sectional area of brachial 
vein and basilic vein; tHb signals from the vein (blue) and muscle (red) probes. At the bottom, single frames 
of US imaging of blood vessels underneath the  NIRSV probe (as indicated in Fig. 1b) are displayed, with 
superimposed coloured shadings indicating the extent of collapse/dilatation of the brachial (BrV) and basilic 
(BV) veins. The brachial artery (BrA) is also indicated. Note the unusual 2-steps increase in  tHbV in response to 
the second occlusion, which is explained by the delayed dilatation of the basilic vein. The fact that the increase 
in venous size is delayed, compared to  tHbV is due to the NIRS sample volume extending proximally to the US 
insonation site (during venous occlusion, venous pressure increases earlier at proximal than at distal sites, in the 
raised arm). Vertical dashed lines indicate start of cuff inflation and deflation.
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to the other probe. Simultaneous US monitoring of the vein confirmed the complete vein collapse during 
the contraction.

Figure 6.  Original traces from a single subject showing the responses to two subsequent short lasting occluding 
stimuli (both at 40 mmHg). From top to bottom: cross-sectional area of the basilic vein (green), THI, and tHb 
signals collected from the vein (blue) and from the muscle (red). Note the presence of an oscillatory component 
of respiratory origin, synchronously appearing on the vessel cross-sectional area and on the venous NIRS signals 
only. Vertical dashed lines indicate start of cuff inflation and deflation.

Figure 7.  Original traces from the same subject showing tHb and THI responses to 40-mmHg venous 
occlusions subsequently recorded on the biceps brachii muscle belly at the original site (a) and after lateral 
displacement of 1 cm (b). Note the different response of THI, attributed to a small vein in the sample volume in 
(b). Vertical dashed lines indicate start of cuff inflation and deflation.
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Discussion
In the present study, several points of evidence were gathered against the commonly held concept that large blood 
vessels do not affect the NIRS measurement. By comparing the blood volume measurements collected from the 
biceps muscle belly and from over the large basilic vein during venous occlusion, we showed that the increase in 
NIRS signal in the latter case (1) is 1.7 to 4 times larger, (2) exhibits a larger convexity and (3) is better correlated 
with the increase in size of the basilic vein. In addition, a number of representative recordings was shown to 
further describe the clear dependence of the NIRS variables from the underlying large vein(s).

In 1994, Mancini et al.7 stated in the Introduction of their pioneering study that, due to the high Hb concen-
tration in the blood, emitted NIR photons were unlikely to emerge from arteries and veins larger than 1 mm in 
diameter, and thus NIR light absorption changes would primarily depend on smaller vessels. Although this issue 
was not specifically investigated in the study, this paper is highly cited to support the assumption that the pres-
ence of large vessels in the NIRS sample volume can be tout-court neglected. However, based on the reasoning 
presented in Fig. 1a and the present experimental data, this assumption appears to be incorrect in all conditions 
in which the size of these large vessels changes. While in arteries relevant size changes are not common, in veins 
they are very frequent and may easily occur due to alteration of the intravascular as well as of the extravascular 
pressure. However, since these factors affect large as well as small veins, the contribution of large veins is dif-
ficult to discriminate and, to our knowledge, has not been previously investigated, although some hints can be 
found in the literature.

Several studies pointed out that the NIRS measurement yields different results depending on probe location. 
For example, the impact of probe location was specifically addressed in healthy subjects by comparing the changes 
in tissue oxygenation in thenar and forearm muscles in response to a vascular occlusion  test20. A significantly 
faster  O2 desaturation in thenar than in forearm muscles was attributed to different anatomical structures (muscle 
and subdermal tissues) at the two sites. Among these, the large veins in the forearm could have played a role, 
considering that during arterial occlusion redistribution of the blood from arteries to veins takes place. In fact, it 
was also reported that the forearm exhibits a larger volume decrease than the thenar in response to lower-body 
negative  pressure21. While a different sensitivity of the two regions to hypovolemic stress is possible, the higher 
blood volume decrease in the forearm could also be explained by a higher density of large veins undergoing 
emptying in the forearm than in thenar.

Interestingly, in two studies a NIRS probe was intentionally placed over visible (superficial) veins, for com-
paring the signals with a probe located on a virtually vein-free  area11,15. In the first study, aimed to infer venous 
saturation from respiratory oscillations in venous blood volume, the authors noticed that blood volume signals 

Figure 8.  (a) Effect of postural changes on blood volume indices in a representative recording. From top to 
bottom, cuff pressure,  tHbV and  THIV collected from a single NIRS probe placed over the basilic vein (same 
set-up of Fig. 1b). The arm was moved from below to above (yellow-shaded area) and again returned to below 
heart level. Proximal venous occlusion (40 mmHg) was also performed for comparison, as indicated by the cuff 
pressure signal. Note that similar increases in blood volume are produced by venous occlusion (blue double-
arrows) and arm lowering (green double-arrows). Much smaller effects are produced by venous occlusion when 
performed in the dependent arm (orange double-arrows). Vertical dashed lines indicate the beginning of cuff 
inflation and deflation. (b) Effect of muscle contraction on blood volume indices in a representative recording. 
Recordings are collected from the calf muscles during isometric plantar flexion of the ankle, the subject laying 
prone. From top to bottom, the electromyographic signal (EMG, measured over the distal portion of the 
soleus muscle), the force (measured at the forefoot) and THI signals form two probes, one located over an 
intramuscular soleus vein (blue) and one over a more distal portion of the same muscle (red). Note the different 
magnitude of contraction-related changes of THI at the two sites.
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collected from the vastus medialis over a visible vein had larger respiratory oscillations and provided more reli-
able estimation of venous oxygen saturation than signals from a vein free area of the vastus lateralis  muscle11. 
This suggests that the veins may have exerted a direct influence on NIRS measurements. This interpretation is 
supported by the present data: respiratory oscillations were only observed on signals collected from the vein 
and were mirrored by respiratory changes in BV cross-sectional area (Fig. 6). The influence of superficial veins 
on NIRS blood volume indicators was also recently pointed out with a different approach: it was observed that 
the peripheral (remote) cutaneous hyperaemia, obtained by selective hand warming, produced a significant tHb 
increase at the forearm, with a tendency to larger effects if the probe was placed over a superficial visible vein than 
over a vein-free  area15. Since no heat-induced hyperaemia was observed at the forearm, those results indicated 
that increased venous outflow from the hand could be detected by NIRS at the forearm.

Subjects exhibiting a different pattern of response. In a relevant fraction of subjects (4 out of 11) 
the expected blood volume increase in response to venous occlusion was regularly recorded at the site over the 
basilic vein  (tHbV and  THIV), and in the superficial (cutaneous) layers over the muscle belly  (tHbM increased) 
but not in the deeper muscle tissue  (THIM exhibited a negligible increase or even a decrease during cuff infla-
tion). However, by reinvestigating the relevant subjects we showed that a prominent  THIM increase could be 
detected after slight displacement of the probe over the muscle belly (Fig. 7).

This means that the possible lack of response of  THIM to venous occlusion does not necessarily reflect a 
characteristic of that subject or of that muscle but may simply depend of the specific probe position with respect 
to deep veins.

Along the same line, NIRS signals may exhibit different patterns of response to muscle contraction, i.e., 
marked reduction if a large vein is included in the sample volume or negligible changes otherwise as shown in 
the example recordings of Fig. 8b.

Whether the likelihood of including a large vein in the sample volume depends on muscle mass, training, sex 
or other factors remains to be investigated.

Beer–Lambert vs. spatially-resolved spectroscopy. Spatially resolved spectroscopy is known to focus 
the measurement in depth, thereby being less affected than the standard Beer–Lambert spectroscopy by hemo-
dynamic changes taking place in superficial tissue layers, as has been reported for both the cerebral and muscle 
investigations by our and other  groups10,15,22–24. We here observed remarkably similar responses of tHb (BL) 
and THI (SRS) blood volume indicators from the probe placed on the BV, in all subjects, and from the muscle 
probe from most subjects, which is only apparently in contrast with our previous study on the forearm, in which 
only tHb and not THI was affected by increased venous return from the  hand15. In fact, in that case only the 
superficial venous circulation was affected, while in the present case the BV was located at a depth of about 1 cm, 
i.e., in a range relevant to both BL and SRS methodologies. Along the same line, the saturation of  THIV, initially 
observed in two subjects and later prevented by slight probe displacement, is reasonably attributable to excessive 
light absorption by the vein during venous occlusion.

Implications. NIR spectroscopy is employed to investigate several issues of physiological and clinical 
 interest4,25–27. We here consider two applications that are concerned by the present results.

Assessment of vascular compliance by NIRS is a possible alternative to the classical strain-gauge plethys-
mography. Initially proposed by Binzoni et al.28, this measurement is based on relating the increase in blood 
volume (ΔtHb) to the increase in venous pressure as may be obtained by performing a Head-Up Tilt  Test28,29, 
or by proximal venous  occlusions30,31. With the present study we show that the presence of a large vein in the 
NIRS sample volume may magnify the blood volume change by a factor of 1.7 to 4 times (Figs. 2, 4) and alter 
the estimated compliance by a similar amount (Fig. 3). Although the present study was not designed to assess 
vascular compliance, qualitative volume-pressure and compliance curves could be obtained from the signals 
recorded during slow cuff deflation, highlighting the different responses at the two measuring sites (Fig. 3). The 
present findings are in agreement with the concept that small intramuscular vessels may have a limited dilatory 
capacity as compared to large extra muscular vessels. By monitoring the size of deep vessels by magnetic reso-
nance imaging during venous occlusion, it was observed that dilatation of deep veins accounted for most of the 
limb volume increase, particularly at low pressures (up to 40 mmHg)32,33. Similar observations were reported by 
de Groot  200534: the authors observed that, during venous occlusion, deep veins exhibited early dilatation and 
could reach a plateau in just 30 s, while standard plethysmography could require up to 2–3 min. These data fit 
with the present observation of larger and earlier changes and larger convexity of the NIRS tracings collected 
on the vein as compared to the muscle.

NIRS has also been used to provide indirect measurement of muscle blood flow. The procedure consists of 
assessing the blood volume increase (e.g., by means of tHb) in response to a rapid venous occlusion at sub-
diastolic pressure (60–80 mmHg)3,35,36. Blood flow is then estimated as the initial slope of the volume curve, e.g., 
considered in the first 1–4 cardiac  cycles37,38. Although in some study a good reliability of blood flow measure-
ment has been  reported3, other studies evidenced some variability, possibly dependent on the location of the 
NIRS  probes38. By examining the initial slope of the volume responses to the rapid 40-mmHg venous occlusion 
of Fig. 4a, it is clear that the presence of a large vein in the sampling volume may lead to a dramatic overestima-
tion of muscle blood flow. Conversely, low vascular compliance of muscles deprived of large veins may lead to 
its underestimation.

Limitations. Our NIRS device did not account for possible changes in the differential path-length factor. 
In addition, even the slow venous occlusion protocol might have been too short lasting to ensure matching 
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between venous and cuff pressures from the very beginning of cuff deflation, as required to correctly estimate 
volume-pressure curves (Fig. 3). However, these approximations are unlikely to explain the consistent differ-
ences between BV and muscle NIRS monitoring observed in the different conditions. The presence of subcuta-
neous tissue layer is also considered to affect the tissue  measurement3, however, given small and similar thick-
ness of cutaneous and subcutaneous tissue layers at the two measurement sites they are unlikely responsible for 
the observed results.

Conclusions
For the first time NIRS blood volume indexes were collected over a large deep vein while simultaneously moni-
toring its size and were compared to indexes collected from the muscle belly. The results contradict the dogma 
that the NIRS measurement is unaffected by large vessels and confirm the hypothesis that the increase in size 
of large vessels determines considerable increases in NIRS blood volume indexes. Unlike superficial veins, size 
changes in deep veins affect Beer-Lambert as well as spatially resolved indexes. These results bear implication 
in all conditions affecting the vein transmural pressure, including exercise and postural changes, as well as the 
response to manoeuvres such as external compressions and venous occlusion.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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