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observer [3]. The main advantages are to guarantee a broad coverage both spatially and 
temporally, with a low environmental impact. 

The potentialities of applying satellite remote sensing for urban applications have 
been highlighted as long ago as in 1985 by Foster [4]. However, the employment of this 
remote sensing approach for civil SHM is recent and has been fostered by the increase in 
data quality and the development of new algorithms for data processing. 

The satellite sensors use radar waves, characterized by wavelengths in the range be-
tween 1 m and 1 mm. In addition, data can be acquired regardless of the presence of sun-
light and can be used even in sub-optimal weather conditions (e.g., in the presence of 
clouds). Satellites commonly roughly follow polar orbits, with a slight inclination angle to 
the meridians, and descending and ascending orbits are distinguished depending on the 
pole toward which the satellite moves. The direction along which there is the emission 
and reception of the signal is called Line of Sight (LOS) and is the direction along which 
the sensors gather the images and information about the displacements of points on the 
earth’s surface. 

The new SHM approaches exploit the radar images gathered from satellite constella-
tions, adopting Synthetic Aperture Radar (SAR). It is a satellite radar acquisition tech-
nique that uses the synthesis of a virtual antenna with a kilometric aperture to improve 
spatial resolution. This virtual antenna is simulated by acquisitions made on the same 
area, observed at different times and positions by the same satellite [5]. 

Among SAR acquisition techniques, the Interferometric SAR (InSAR) is employed to 
extract displacement information. It allows describing interferograms by comparing the 
SAR data over a baseline time and evaluating the differences between the measures [6]. A 
particular kind of InSAR is the Differential Interferometry SAR (DInSAR), in which only 
the pure displacement components of the differential satellite target phases are depicted 
from the images acquired by the satellite in the same area at different time instants. 

Satellite interferometric data have already been exploited in some early SHM appli-
cations for urban areas and to quantify large-scale phenomena, such as land subsidence 
[7–12]. Recently, the need for efficient real-time monitoring of damage led to the 
development of new techniques, such as the multi-temporal InSAR (MT-InSAR) [13]. By 
combining different differential interferograms, MT-InSAR approaches more accurately 
provide the trends of displacements in the area of interest and their temporal evolution. 
Therefore, they have been applied to detect anomalies in a single structure [14] and for 
the assessment of tunnel-induced subsidence and related damage [15]. Despite the ad-
vantages afforded by this new approach, there are still many limitations and challenges 
to overcome [16,17]. They are mainly due to the differences between satellite data and the 
information required by traditional SHM techniques and obtained from in situ sensors. 

Furthermore, new visualization/representation approaches are necessary to give a 
relevant interpretation of the measures provided by satellite datasets. This issue is of pri-
mary importance to realize automatic procedures for the assessment of structures’ behav-
ior and for the diagnosis of anomalies, which may be connected to structural damage. The 
main representation techniques refer to the distribution of direct quantities (i.e., displace-
ments along the LOS, velocities along the LOS). However, it is also possible to create maps 
or diagrams of indirect measures to enhance data interpretation. It is the case of spectral 
entropy–energy graphs, which can be used to estimate the average information of the sig-
nal and to characterize the behavior of a system. 

This study aims to explore and compare the possibilities given by the different meth-
odologies of satellite data representation and to highlight the advantages provided by the 
evaluation of spectral entropy for the description of whole structural systems. This is ac-
complished by analyzing the case study of the area of Rome (Italy) subject to excavations 
for the construction of the T3 section of the subway line C. This work is under construc-
tion, which began in 2013, and affects an area rich in architectural heritage. 
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This paper is organized as follows: Section 2 briefly describes the characteristics of 
the satellite data employed and the proposed representation approaches; Section 3 con-
cerns the results of the case studies; finally, conclusions are presented in Section 4. The 
case study initially focuses on representing data at a territorial scale to identify the sub-
sidence phenomena induced by the excavation of the two tunnels of the underground 
railways. Then, the entropy–energy diagram is adopted to describe single monumental 
buildings or building complexes, highlighting the presence of points with outlier signals. 
However, the data used for this representation refer to a period that is insufficient to de-
tect an actual anomaly in the structural behavior due to the poor frequency content. Con-
sequently, the two types of representation used are compared to verify the results and 
obtain cross-validation of the methodology. A further comparison is made between the 
representations in the first and second parts of the analyzed period for a small complex of 
structures, as well as for the monumental Colosseum structure. 

2. Materials and Methods 
The analysis conducted employs the ascendant SAR images acquired by the COSMO 

SkyMed (CSK) satellite constellation in the period from March 2011 to March 2019, the 
same data employed in the DPC-ReLUIS 2019–2021 project [18]. CSK is an earth observa-
tion mission conceived for civil and military purposes, developed by the Italian Space 
Agency (ASI) [19] in cooperation with the Ministry of Defense. It is based on a constella-
tion of low earth orbit satellites equipped with SAR working in X-band. The differential 
interferometric SAR information is processed by adopting the Small Baseline Subset algo-
rithm (SBAS–DinSAR) [20,21]; thus, it is possible to obtain the displacements with the ac-
curacy of centimeters and millimeters. 

2.1. Satellite Data 
It is necessary to underline that the satellite data used are subjected to different levels 

of preliminary treatments to obtain SAR standard products and higher-level products, 
such as the interferometric ones [22,23]. Afterward, these are additionally processed ac-
cording to the SBAS–DinSAR algorithm [20,21]. The processing methods could cause new 
difficulties in the further treatment of data, e.g., the improper elimination of useful points, 
or the preservation of non-structural points, increasing the uncertainty of the results [16]. 
In addition, it has to be considered that the LOS data do not refer to the point on the 
ground, but to the point measured by the sensor (e.g., the roof of a building). Thus, to 
exploit them in the assessment of subsidence, the simplifying assumption of having struc-
tures undergoing a uniform subsidence phenomenon is introduced. Finally, a further lim-
itation in the use of satellite data is due to the presence of a large dataset, in which points 
with incorrect measurements due to preliminary processing or insignificant ones (i.e., 
those that do not fall within the built area) are also included. As mentioned in reference 
[16], this presence contributes to increasing the analysis’ uncertainty, so these measures 
should be removed. However, this study considers an average, approximate behavior of 
the urbanized area and not the individual building. Therefore, this issue is neglected. For 
the evaluation of the case study, SAR images were extrapolated only for the area related 
to the T3 section of the Line C subway in Rome (Figure 1). This route connects the station 
of San Giovanni to the Colosseum, with an intermediate station (Amba Aradam/Ipponio). 
The area has great importance because it includes many structures of architectural and 
monumental value, such as the Colosseum itself, the Basilica of Santo Stefano Rotondo, 
the Basilica of Maxentius, the Aurelian Walls, the Colonnades of the Forum of Nerva and 
the Church of Santa Maria in Domnica. Although construction operations started in 2013, 
the project required various preparatory works and was subjected to delays. Therefore, 
tunnel excavation only began in 2018, after the inter-tract shafts realization in 2017 [24] 
(see Figure 1 for reference). This information is relevant for the identification of the area 
affected by the subsidence phenomenon induced by the excavations. 
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Figure 1. Map showing the T3 section of the Line C subway and the numerosity of points obtained 
by satellite interferometry over the analyzed urban area of Rome (Italy). 

Regarding the soil characteristics, starting from the ground level, the stratigraphic 
succession shows the first layer of recent deposits, whose thickness reaches values of 13–
16 m. It follows a layer of recent alluvial deposits lying on Pleistocene deposits, character-
ized in the upper portion by clayey silts and silty clays, locally sandy, and in the lower 
portion by sands and gravels. The water table level is placed at about 8–10 m from ground 
level. The depth of the tunnels is approximately 30 m between the San Giovanni and 
Amba Aradam stations, then increasing up to 57 m at shaft 3.2 and subsequently decreas-
ing to 32 m at the Fori Imperiali station. 

For each of the measured points, the employed dataset contains the geographic coor-
dinates, the topographic elevation, the velocity and the LOS displacement at each time 
interval with respect to the initial one. The displacement and velocity values are given 
along the line of sight of the satellite sensor. Therefore, information on their overall defor-
mation process can only be derived by processing the data obtained from both orbits (as-
cending and descending). However, a single dataset can still be used to obtain some pre-
liminary information. In the case of subsidence phenomena, it can be assumed that the 
main direction of deformation is vertical. Thus, it is possible to derive the intensity of the 
displacement or the velocity along this direction, starting from the projection measured 
along the LOS of the satellite [18]. 

Furthermore, from a qualitative point of view, it is possible to observe only the dis-
placements along the LOS, since, according to the assumption made earlier, a negative 
displacement or velocity (i.e., moving away from the satellite) is representative of a sub-
sidence effect. From these presumptions, an interest in the representations/visualizations 
of direct quantities along the LOS arises. Furthermore, it is possible to derive valuable 
information from indirect measures, such as the spectral entropy of the signal. 

2.2. Entropy Measures 
According to Shannon’s definition, which is based on the concepts of information 

theory (IT), spectral entropy is a measure of uncertainty (or variability) associated with 
random variables [25]. It describes the information carried by a signal and allows quanti-
fying its complexity. The introduction of this quantity for Structural Health Monitoring 
purposes arises from the assumption that the complexity of a structural system increases 
with the development of damage [26]. In the case of perturbations with specific, non-ran-
dom behavior, there are low values of spectral entropy. On the contrary, a more complex 
and stochastic behavior leads to higher values of spectral entropy. 
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Figure 2. Map showing the T3 section of the Line C subway, the stations, the inter-tract shafts and 
the interaction with the other subway lines, Rome (Italy), edited from 
(https://goo.gl/maps/zPUUjveLSWBzj7nC9, accessed on 28 January 2022), [27]. 

The dataset contains the displacements along the LOS, which are used to evaluate 
the average annual velocity along the LOS. Figure 3 reports the velocity (cm/yr) on the 
map in the period from 2017 to 2019, while Figure 4 refers to the period from 2014 to 2016 
and is used for comparison. It is worth observing that, in the period of the excavation 
(Figure 3), the velocity distribution presents a higher number of points with negative 
measures when compared to the previous years (Figure 4). These points are shown in 
yellow or red, and the negative value indicates that they are moving away from the satel-
lite orbit, so they are qualitatively correlated to the subsidence phenomenon. As shown 
by the presence of negative values in Figure 4, it is not possible to exclude the possibility 
that subsidence also occurred before the construction of the metro line, for reasons uncor-
related with the excavations. However, it can be noticed how the points with negative 
velocity values strongly cluster along the subway route in Figure 3. Moreover, the under-
ground work proceeded from the east of the reported area, moving westward; this may 
explain the larger concentration of these points on the rightmost portion of the figure. 

 
Figure 3. Map showing the dispersion of the average annual velocity along the LOS in the period 
from 2017 to 2019. The route in black refers to the part already under construction; the route in grey 
refers to parts not yet built. 
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Figure 5. Map showing the points with velocity outside the imposed lower threshold, with respect 
to the subway route and the proximity boundaries. 

3.2. Entropy–Energy Representation 
The representations of mean velocity and entropy–energy data are basically comple-

mentary, that is, they provide different information, which are correlated. The entropy of 
a signal coming from a structural system defines its propensity to follow a deterministic 
behavior. That is to say, a lower entropy corresponds to a higher deterministic behavior. 
An output signal can change its characteristics due to: (i) system properties changes, and 
(ii) variation of input source. The interest here is only to input independent features; thus, 
what matters is how the entropy changes in relation to its energy value. This allows for 
discarding input-related variations, which are not of interest for SHM. When the entropy 
changes its value (in relation to its energy level) this means that the system changes its 
internal correlation (since entropy is used to estimate system complexity). Importantly, 
this can also happen if the mean velocities of the points remain constant; however, the 
opposite is not true, since an increase in the mean velocity would lead to higher energy 
and thus lower entropy. Thus, the mean velocity cannot change if the entropy–energy 
level remains constant. 

Therefore, the energy–entropy representation implicitly carries more information 
than the mean velocity. The mean velocity is only representative of the displacement trend 
over time. Instead, any variation in the trend, frequency content, amplitude and phase is 
reflected in the entropy–energy representation. 

An example is when a signal with zero mean increases its amplitude (e.g., due to a 
loss of stiffness). In this case, the mean velocity, being unchanged, would not allow for 
any novelty (thus, damage) detection. On the contrary, an increase in amplitude with con-
stant mean velocity would lead to a change in entropy–energy values, and thus to a po-
tential change of the complexity of the system. The mean velocity, however, is still an 
important datum to monitor because its straightforward physical meaning is connected 
to the rate of displacement in time (e.g., subsidence or swelling of the soil). 

While it is true that entropy–energy representations cannot be adopted for the de-
scription of a whole urban area if the systems falling in the area are too different from a 
structural point of view, in the paper, the entropy–energy representation is used to study 
individual buildings. From the point scatter regression and probability distribution, it was 
possible to derive the limit curves (threshold 0.3% and 99.7%, according to the 3-sigma 
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rule) and use them for the identification of outliers, i.e., points at which the signal deviates 
from the global analytical model and therefore requires further investigation. In order to 
quantify this deviation, the use of the Mahalanobis distance has been adopted. The points 
at which the entropy displays a low distance from the mean model can be interpreted as 
less stochastic (more deterministic). Conversely, if the entropy has a higher distance from 
the model, it indicates a less deterministic point. 

The following results refer to the building complex at the intersection of Via Emanu-
ele Filiberto and Via Castrense (Figure 6), adjacent to San Giovanni’s station, in the period 
from 2017 to 2019. It has been analyzed as, according to the velocity, this area presents a 
concentration of points that are outside the subsidence threshold shown in Figure 5. 

 
Figure 6. View of the analyzed building on the map, at the intersection of Via Emanuele Filiberto 
and Via Castrense (https://www.google.it/maps/place/41%C2%B053’09.2%22N+12%C2%B030’36.6 
%22E/@41.8835837,12.5093078,320a,35y,39.39t/data=!3m1!1e3!4m5!3m4!1s0x0:0xfe6a6f12a7bebc20!8
m2!3d41.885885!4d12.510169, accessed on 25 January 2022). 

Figure 7 shows the dispersion of points and the mean model, which has a quadratic 
trend on a logarithmic scale. It also shows the analytical model’s probability distribution 
function (PDF) and allows the evaluation of the outliers. 



Appl. Sci. 2022, 12, 1658 10 of 22 
 

 
Figure 7. Entropy–energy dispersion and probability distribution function of the analytical model 
for a building complex near San Giovanni station. 

3.3. Comparison of the Two Representations 
The two approaches for representing the data shown above allow the localization of 

points of significant interest for monitoring structures and the subsidence phenomenon. 
These outcomes cannot be directly interpreted to perform novelty detection due to the 
limitations of the input data. However, it is possible to compare the results obtained 
through the two approaches to verify them. In detail, it is investigated how the points 
with a high-intensity negative velocity are distributed with respect to the values of en-
tropy and energy of the signal. Figure 8a shows that points with higher absolute velocity 
have lower entropy values, concentrated in the range 0.8–0.82. 

  

(a) (b) 

Figure 8. Correlation between LOS velocity and entropy–energy dispersion in the period from 2017 
to 2019 for a building complex near San Giovanni station: (a) Entropy–velocity dispersion; (b) En-
ergy–velocity dispersion. 

In contrast, points with velocities close to zero exhibit greater entropy. As the velocity 
increases beyond 0.5 cm/y, a further decrease in entropy is shown. Figure 8b shows how 
the energy remains low for velocity values close to zero and increases significantly for 
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features, such as the number of stories, should be investigated to reveal any variations 
due to dissimilarities between the adjacent structures. However, this can be left out as a 
consequence of the simplifying assumptions adopted in Section 2. 

The entropy–energy dispersion can be further discussed by comparing two different 
periods to study the results before and after tunnel excavation. Given the complete dataset 
from 2011 to 2019, the following section distinguishes two periods of the same duration: 
2011–2015 and 2015–2019. Figure 11 shows the correlation between the entropy–energy 
dispersion and the LOS velocity in the period from 2011 to 2015. Meanwhile, Figure 12 
refers to the period from 2015 to 2019. 

  

(a) (b) 

Figure 11. Correlation between LOS velocity and entropy–energy dispersion in the period from 2011 
to 2015 for a building complex near San Giovanni station: (a) Entropy–velocity dispersion; (b) En-
ergy–velocity dispersion. 

  

(a) (b) 

Figure 12. Correlation between LOS velocity and entropy–energy dispersion in the period from 2015 
to 2019 for a building complex near San Giovanni station: (a) Entropy–velocity dispersion; (b) En-
ergy–velocity dispersion. 

Figure 11a displays a higher level of scattering than Figure 12a. In addition, velocity 
values in the period 2011–2015 are more evenly dispersed when compared to the follow-
ing period, and their intensity in the negative portion is lower, therefore significant sub-
sidence is not observed. Consequently, the entropy–energy dispersion in the first period 
(Figure 13a) has fewer points on the low entropy–high energy branch with respect to Fig-
ure 13b, none of which reaches the limit of subsidence previously evaluated. 
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Figure 14. Fitting parameters of the entropy–velocity dispersions in the two periods for a building 
complex near San Giovanni station: (a) parameters of the mean model; (b) parameters of the stand-
ard deviation model. 

 
Figure 15. Fitting parameters of the energy–velocity dispersions in the two periods for a building 
complex near San Giovanni station: (a) parameters of the mean model; (b) parameters of the stand-
ard deviation model. 

The two average curves are similar, but higher energy values are reached in the sec-
ond period at the same velocities. This effect is represented by the increase in the second 
parameter of the mean curve in Figure 15a. 
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Hence, in the second period (the one affected by excavations) there is an evident var-
iation of the dispersions, underlined through the analysis of the fitting parameters. More-
over, the three dispersions analyzed display a reduction of the signal deviation from the 
mean model, which can be interpreted as lower uncertainty in the measures. 

3.4. The Colosseum Case Study 
The velocity-entropy–energy approach is also adopted to analyze another case study, 

i.e., the Colosseum, chosen for its importance in the area, considering its artistic, historical 
and cultural significance. 

The period for which the data are available (2011–2019) does not include the excava-
tion operations on the tunnel in the proximity of this structure, which are more recent. 
Nevertheless, it is possible to evaluate the application of the entropy–energy approach to 
a monumental structure with distinctive features to identify the outliers. In addition, since 
the area has not yet been subjected to excavation, it is possible to compare the dispersions 
in the two periods identified above to verify that no significant variations have occurred. 
It allows validating the correlation between the parameters’ variation and the effects of 
excavation on the building studied in previous sections. 

The first analysis concerns the entropy–energy distribution for the available period, 
shown in Figure 17. Defining the average model and the thresholds related to the standard 
deviation makes it possible to identify the outliers. It is observed that these points fall 
mainly on the high values of entropy and low energy. The localization of these points on 
the Colosseum, reported in Figure 18, highlights that they are distributed mainly on the 
base and in a cluster on the west end of the structure. Therefore, although further investi-
gation is required, the presence of these outliers could be due to a differential behavior of 
the west end with respect to the whole system. 

 
Figure 17. Entropy–energy dispersion and mean model for the Colosseum, from 2011 to 2019. 
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Figure 18. Map showing the outliers evaluated from the entropy–energy PDF for the Colosseum. 

Analogously to the previous case study, the velocity, entropy and energy dispersions 
in the first and second half of the reference period are studied to highlight possible 
changes (Figures 19–21). In addition, the parameters for the mean trends and standard 
deviation curves, respectively, are reported (Figures 22–24). 

  

(a) (b) 

Figure 19. Correlation between LOS velocity and entropy–energy dispersion for the Colosseum in 
the period from 2011 to 2015: (a) Entropy–velocity dispersion; (b) Energy–velocity dispersion. 
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(a) (b) 

Figure 20. Correlation between LOS velocity and entropy–energy dispersion for the Colosseum in 
the period from 2015 to 2019: (a) Entropy–velocity dispersion; (b) Energy–velocity dispersion. 

  

(a) (b) 

Figure 21. Entropy–energy dispersion, mean model and thresholds for the Colosseum: (a) period 
from 2011 to 2015; (b) period from 2015 to 2019. 

 
Figure 22. Fitting parameters of the entropy–velocity dispersions in the two periods for the Colos-
seum: (a) parameters of the mean model; (b) parameters of the standard deviation model. 










