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Abstract—Modern elastic optical networking requires ad-
ditional flexibility at each layer compared to the traditional
approach. The application of the Software-defined Networking
(SDN) paradigm can provide the required degrees of freedom.
The implementation of optical SDN down to the physical
layer requires the complete abstraction of network elements to
support full control by the centralized controller. In this work,
we propose a topological and technological agnostic model based
on Machine Learning (ML) to abstract the behavior of optical
switches for the computation of Quality-of-transmission (QoT)
penalties and the definition of control states. Training and testing
datasets are obtained synthetically by software simulation of
the photonic switching structure. Results show the capability
of the proposed method to predict QoT impairments with high
accuracy, and we envision its application in a real-time control
plane.

Index Terms—Machine Learning, Optical Switches, Photonic
Integrated Circuits, Software-defined Networking, Quality-of-
transmission.

I. INTRODUCTION

The rapid increase in internet traffic due to bandwidth-
intensive applications and the latest developing concepts
of the Internet of Things (IoT) require higher degrees of
flexibility at each network layer. The implementation of SDN
has the potential to provide them effectively. Adopting the
SDN paradigm enables the complete virtualization of network
elements and functions inside the network operating system.
Moreover, technologies like coherent optical techniques for
Wavelength-Division Multiplexed (WDM) optical transport
and re-configurable optical switches for transparent wave-
length routing pave a path to extend SDN applications down
to the physical layer [1]. To achieve SDN implementation
down to the physical layer, network key elements and trans-
mission functionalities must be abstracted for QoT penalties
and control states. This abstraction empowers the optical
network controller to fully manage network elements, and
transmission functionalities [2].

Network components are increasingly utilizing Photonic
Integrated Circuits (PICs) to execute different complex oper-
ations. Specifically, in the latest smart optical networks and

data centers, large-scale photonic switches and wavelength se-
lective switches play a prominent role due to their wide-band
capabilities, minimal latency, and low power consumption.
These distinctive properties increase the possibilities of using
PICs-based network elements, especially photonic switches,
and hence they generate a demand for a generic softwarized
model for control states and QoT degradation to enable full
control by a centralized controller, as shown in Fig. 1.

At present, the investigation related to the softwarized
control of the photonic switching system has been sparingly
registered. In contrast to electronic switches [3], where the
performance of all routes are identical, the optical switches
generally have a path-dependent performance [4]. The vari-
ations in the performance are mainly due to the photonic
circuit topology, or they can depend on mask-level fabri-
cation and design flaws. Usually, the deterministic routing
algorithms presented in the literature can efficiently determine
the control state of the internal switches for any given output
permutation. The effectiveness of these algorithms comes
from their topology dependent nature, which enables a faster
and efficient assessment of the multiple-stage networks. On
the contrary, generic routing algorithms do not offer scalable
solutions, as the computational complexity rises quickly,
mainly due to the exponential growth of the control states
Nst, which eventually depends on the number of switches M
as Nst = 2M in the given topology [5]–[7].

In contrast with conventional topology-dependent schemes,
we propose a generic model based on ML to obtain the
softwarized control of any N×N photonic switching system.
The proposed ML technique has already been well assessed
for managing PICs [8], in which a neural network is pro-
posed to calibrate 2×2 dual-ring switches. In [9], [10], ML
techniques are used to deliver an augmented knowledge of
the physical parameters of integrated circuits. In [11], a deep
reinforcement learning technique is proposed to reconfigure
silicon photonic switch according to the traffic profile in high-
performance computing systems.
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Fig. 1: Abstraction of the optical switch in a SDN-controlled
optical network.

In this work, we extend our previous demonstration of
the definition of the control states of a PIC N×N photonic
switching system with a completely topology-agnostic blind
solution exploiting an ML inverse design approach [12]. To
complete the switch model, for a full description of the
impact on the physical layer, we pair up an extra ML network
with a direct design method to predict the QoT degradation
due to the switching element. The two ML networks will
work synergically and provide a generic softwarized and QoT
aware control and management system for any N×N optical
switch. The proposed abstracted model can be easily extended
to measure the impact of N×N optical switch on the network
layer metrics. The presented data-driven scheme is trained by
a dataset obtained by considering any N×N photonic switch
under test as a black-box. The training dataset can either be
acquired experimentally or synthetically by using a software
simulator for components.

II. ELEMENTARY SWITCHING MODULE AND
TOPOLOGIES

The target devices for the proposed strategy are multistage
crossover switching architecture based on the 2×2 crossbar
switch. These devices allow input-output routing through a
cascade of multiple stages of elementary switching elements,
overall reducing the number of such devices and the overall
footprint with respect to general N×N crossbar switching
systems.

A. 2× 2 crossbar switch

A typical base element used for generating multistage
topologies for optical application is the 2×2 crossbar switch.
The device state is piloted by a control signal Vcontrol, with
two possible routing states: in the BAR state, the input signals
are routed straightforwardly to the output ports, while in the
CROSS state, the signal order at the output is inverted, as
shown in Fig. 2a.

These devices can be implemented through different PICs
depending on the required transmission parameters and for-
mat. The two most prominent solutions are the Micro Ring
Resonator (MRR) filter and the Mach-Zehnder Interferometer
(MZI). In this paper, simulations of the system performance

(a) 2×2 crossbar switch model

(b) Generic Beneš network

Fig. 2: Model for the components and topology

are based on a second-order MRR filter, designed to operate
in the center of the C-band and developed in the Optsim©

environment. In contrast, the routing evaluation and logical
channel transmission are based on the elementary black-box
model of the device, which acts as an ideal 2×2 switching
element.

B. Multistage switching architectures

Having defined the fundamental element for the switching
operation, the generic N×N switch can be constructed
according to the chosen topological structure, which dictates
the transmission behavior and performance of the overall
device. The main class of structures under analysis consists
of rearrangeable non-blocking networks. These devices can
route the N input signal into any ordered permutation at the
output, following a bijective relationship, as each signal is
routed to a different unoccupied port. In a strict-sense non-
blocking network, this property upholds even when traffic
already occupies parts of the switch. At the same time, in
rearrangeable topologies, the previously established connec-
tions may need to be routed through different input-output
paths.

This constrained class of devices is widely implemented
in optical networks due to the smaller footprint and overall
smaller number of fundamental elements, which allows a
reduction of both costs and power consumption. One of
the most common architectures belonging to this subset of
topologies is the Beneš switch, which can be constructed
under a recursive definition as shown in Fig. 2b. The Beneš
network has been chosen for the analysis due to its reduced
number of elements with respect to other rearrangeable non-
blocking structures, such as the Spanke-Beneš or Multi-



Fig. 3: Generic N ×N transmission model

Butterfly while maintaining the conflict-avoidance property.

C. Beneš switching networks

The Beneš multistage switch is characterized by a num-
ber of switching elements M = N · log2(N) − N

2 for
N = 2x x ∈ N, but can be generalized for any number
of input signals N ∈ N: the number of routable output
permutations, due to the non-blocking property, is equal to
Nout = N !, while the number of switches configurations are
equal to Nstates = 2M . The exponential nature of the number
of configuration limits severely the scalability of any brute-
force approach, such as complete look-up tables, to pilot and
control the routing requests in the device.

Topology-dependent path-finding algorithms can be em-
ployed to solve a given configuration request, as illustrated in
[13], although this solution cannot be generalized to arbitrary
switching structures due to the scalability issues of topology-
agnostic algorithms. Moreover, these devices typically allow
alternative routing for a given output request, which coupled
with the path-dependency of the performance leads to opti-
mality issues for the solutions obtained through deterministic
methods

III. SIMULATION MODEL AND DATASET ACQUISITION

The Beneš devices used for the data generation and training
of the ML engine have been modeled following two main
strategies. Concerning the routing evaluation, the black-box
model for the fundamental 2×2 element is sufficient for the
path evaluation, as the input-output link can be represented as
an edge in a suitable graph structure. For the evaluation of the
QoT, the logical model is insufficient; as such, the device has
been simulated, considering an MRR-based implementation
of the crossbar elements.

A. Routing model

For the evaluation of the routing states inside the device,
the Beneš network has been implemented through a matrix
representation composed by cascading the permutation vec-
tors of each switching stage.

The output permutation can be obtained as a function
of a given control state, providing the BAR and CROSS

(a) 6×6 Beneš switch

(b) 8×8 Beneš switch

Fig. 4: Circuit representation for the two device under test

TABLE I: Dataset Statistics

Network type
Size (N ×N )

Beneš
6x6

Beneš
8x8

Permutations (N !) 720 40,320
Switches (M ) 12 20

Combinations (2M ) 4096 1048576
Dataset 1000 1000

configuration for each of the M elements. The data-sets
obtained through this approach are composed by a binary
control vector V ∈ R1,M , with Vi = 0 representing the
BAR state and Vi = 1 the CROSS alternative configuration,
while the output configuration is represented by a permutation
vector of size N . This logical model is also fundamental in
the verification step: the predicted control states are evaluated
directly on the abstracted device, as to verify the correctness
of the ML solution, taking into account the alternative routing
states for the required configuration.

B. Transmission model

In order to gather data concerning the QoT, the device
must be simulated with an higher degree of realism, taking
into account both physical design of the components and
transmission format.

The crossbar has been modeled as a second order MRR
switch, and following the recursive definition, the simulation-
ready model was created in the Optsim© environment [14].
The ingress and egress stages of the device have been
connected to a transceiver and receiver module, respectively,
as shown in Fig. 3, allowing QoT simulations under a realistic
modulation format and transmission characteristics. The sys-
tem has been tested under a PM-64-QAM modulation format,
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Fig. 5: Statistical Analysis of OSNR Penalty

with central frequencies f = (193.1 + 0.1× x) THz for x ∈
[1, N ] and symbol rate RS = 50× 109.

The training and validation sets have been generated by
evaluating the OSNR penalty for random unique state con-
figurations, considering a target Bit-Error Rate (BER) of
BERth = 5 × 10−3. OSNR penalties have been obtained by
simulating the propagation trough the component under test
of the considered signal [15]. The generated datasets contain
the penalty at each port of the device for a random set of 1000
realization of control states (see Table I): this simulation has
been performed on two different Beneš structures, namely the
6×6 and 8×8 configurations as depicted in Fig. 4.

The detailed statistical analysis of the acquired OSNR
penalty of both the considered architectures is reported in
Fig. 5. Observing the OSNR penalty statistics in Fig. 5, we
can see that the worst-case scenario reaches about 4 dB, as
reported with a red dotted line. We can conclude that an
OSNR penalty equal to this maximum penalty should be con-
sidered for all states to prevent any switching configuration
from being out-of-service without any prior knowledge. This
value is the same for both the considered topologies. From
Fig. 5, we can also observe that the average OSNR penalty
that can satisfy most of the cases is much lower, 1.93 dB for
Beneš 6x6 and 2.12 dB for Beneš 8x8, respectively.

IV. INVERSE AND DIRECT MACHINE LEARNING
MODELING

The proposed photonic switch abstraction considers two
ML networks. The first network, the ML Routing Agent, is
intended to define the control state of the switch through an
inverse design approach. In contrast, the second network, the
ML QoT Agent, takes the first network’s output and predicts,
through a direct design approach, the estimation of QoT
Penalty. This allows the network controller to evaluate the
optimal solution of any N×N photonic switch considered as
a black-box shown in Fig. 6

A Deep Neural Network (DNN) [16] is considered as a
cognition engine for both the proposed ML networks since
it is a powerful tool that has shown significant results in

Fig. 6: Control Unit block model

Fig. 7: Parallel architecture of a deep neural network

numerous frameworks. The proposed DNN is developed by
using a higher-level Application Programming Interface (API)
of the TensorFlow© platform [17]. To improve the prediction
efficiency, we propose for both networks to use a parallel
architecture for the DNN as shown in Fig. 7. The parallel
DNN engines of both networks are trained and tested on a
separate subset of the dataset: the conventional rule of 70%
and 30% has been chosen to partition the available dataset. In
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Fig. 8: Probability density functions of ∆OSNR for each port of the 6x6 Beneš switch.
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Fig. 9: Probability density functions of ∆OSNR for each port of the 8x8 Beneš switch.

order to avoid over-fitting of the models, the training steps are
set as the stopping factor and the Mean Square Error (MSE)
as the loss function as defined in Eq.1 and Eq.2, respectively
for the first and second network.

Routing MSE =
1

n

n∑
i=0

 1

M

M∑
m=1

(
Ctrl State

p
i,m − Ctrl State

a
i,m

)2


(1)

QoT MSE =
1

n

n∑
i=0

 1

N

N∑
k=1

(
OSNR Penalty

p
i,k − OSNR Penalty

a
i,k

)2


(2)

where n is the number of test realizations, M is the total
number of switching elements in the specific N×N switching
system, while for each tested case i, Control Statepi,m and
Control Stateai,m are the predicted and actual control states of
the m-th switching element of the considered configuration.
Similarly, N is the total number of input/output ports of the
specific N×N switching system and OSNR Penaltyp

i,k −
OSNR Penaltya

i,k are the predicted and actual OSNR penalty
of the k-th output port of the considered topology.

Furthermore, the DNN engines of both networks are con-
figured by several common parametric values that have been
optimized (such as the training steps, set to 1000), loaded
with the Adaptive Gradient Algorithm (ADAGRAD) Keras
optimizer, with learning rate set to 10-2 and L1 regularization
set to 10-3. Moreover, several non-linear activation functions

such as Relu, tanh, sigmoid have been tested during the model
building. After testing, Relu has been selected to implement
DNN as it outperforms the others in terms of prediction and
computational load [18].

The ML Routing Agent considers various permutations of
the input signals (λ1, λ2, λ3....λn) at the output ports of
the switch as features while it exploits its M control states
as labels. The inverse model has been configured on con-
siderable numbers of hidden-layers and neurons to achieve
the best trade-off between precision and computational time.
Although an increase in the number of layers and neurons
improves the accuracy of the DNN up to a certain extent, a
further increase in these values introduces over-fitting and
increases the computational time. Following this trade-off
assessment, we opted upon a DNN with three hidden-layers
with 10 and 15 cognitive neurons for each hidden layer
optimized for Beneš 6x6, and Beneš 8x8, respectively.

The ML QoT Agent considers the output of the first ML
network (ML Routing Agent), i.e., the M controls states. At
the same time, the utilized response variable is the OSNR
penalty of the specific output port of the N×N switching
system. The direct model has also been configured on con-
siderable numbers of hidden-layers and neurons to achieve
the best trade-off between precision and computational time.
Following this trade-off assessment, we opted upon a DNN



with one hidden-layers with 11 and 18 cognitive neurons for
Beneš 6x6, and Beneš 8x8, respectively.

V. RESULTS AND DISCUSSION

We analyzed the performance of the proposed ML modules
using a two-steps approach: first, we predicted the switch
control states, and then we exploited this result to obtain the
QoT impairments in terms of OSNR Penaltyi,k for each port
k of the considered Beneš network.

The ML Routing Agent gives an excellent level of accuracy
in terms of predicting the control states. The agent gives
100% accuracy for both of the considered Beneš topologies
N equal to 6 and 8. The scalability and detailed analysis of
ML Routing Agent is reported in detail in [12].

For the ML QoT Agent, the predicted control states are
given as an input to get the QoT penalty. The metric used to
evaluate the accuracy of the QoT module is defined as:

∆OSNRi,k = OSNR Penalty
a
i,k − OSNR Penalty

p
i,k (3)

where all parameters have same meaning as described for
Eq.2.

The module’s scalability and reliability are cross-verified
by analyzing it on two different Beneš sizes, namely the 6×6
and the 8×8 configurations. The distribution of ∆OSNRs at
the ports of the 6×6 Beneš are shown in Fig. 8, along with
their mean (µ) and standard deviation (σ) statistics. Similarly,
the distribution of all the eight ∆OSNRs of the 8×8 Beneš
are reported in Fig. 9.

In Fig. 8 and Fig. 9, all the distribution of ∆OSNRs in both
the cases are split by the dotted red line (∆OSNR = 0) into
two slices. The slice where ∆OSNRs ≤ 0 is not critical as the
OSNR Penaltya

i,k ≤ OSNR Penaltyp
i,k so, in this case we

only waste some capacity but the system will never turns into
out-of-service. In contrast the section where ∆OSNRs > 0
is the critical one as OSNR Penaltya

i,k > OSNR Penaltyp
i,k.

In this case, it is necessary to deploy some margin on top
of the ML prediction to keep the system working all the
time. The maximum required margins (δk) for this case where
∆OSNRs > 0 are shown as a green dotted line for each port
k of Beneš 6x6 and Beneš 8x8, respectively.

Examining the required margin, we can observe the high
level of accuracy achieved by the ML QoT Agent. In the 6×6
Beneš, the worst-case prediction performance is observed
on port 1; the δ1 is less than 0.6 dB. For the larger 8×8
Beneš, the worst-case prediction is observed on port 8; the
δ8 is less than 0.65 dB. With the availability of such accurate
prediction, we can envision that in practical applications the
OSNR penalty margin on top of the ML prediction can be
reduced to 0.6 dB and 0.65 dB for Beneš 6x6 and Beneš 8x8,
respectively.

VI. CONCLUSIONS

In this work, the concept of a softwarized and autonomous
configuration of PIC-based optical switches is introduced for
optical SDN. We analyzed a data-driven ML technique to
give the abstraction of any N×N photonics switch for QoT
penalty evaluation and control states definition. The proposed

scheme demonstrates two separate DNN based ML agents
that are both topological and technological agnostic and can
be engaged in real-time. The implemented ML approach
first efficiently determines the control states for a generic
N×N photonic switch using inverse ML design and then
exploits these control states in direct ML design to predict
QoT impairments without considering the device’s internal
architecture.

The technique we propose is scalable to larger input sizes
N since a high level of accuracy can be reached with limited-
size datasets. Also, the given abstracted model can be ex-
panded to assess the performance of N×N optical switch on
the network layer metrics. Furthermore, the model achieved
promising results: for control states, prediction accuracy is
100% while for QoT penalty, we got a prediction error always
less than 0.65 dB.
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