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Abstract. We propose an unsupervised, model-agnostic, wrapper method
for feature selection. We assume that if a feature can be predicted us-
ing the others, it adds little information to the problem, and therefore
could be removed without impairing the performance of whatever model
will be eventually built. The proposed method iteratively identifies and
removes predictable, or nearly-predictable, redundant features, allowing
to trade-off complexity with expected quality. The approach do not rely
on target labels nor values, and the model used to identify predictable
features is not related to the final use of the feature set. Therefore, it
can be used for supervised, unsupervised, or semi-supervised problems,
or even as a safe, pre-processing step to improve the quality of the re-
sults of other feature selection techniques. Experimental results against
state-of-the-art feature-selection algorithms show satisfying performance
on several non-trivial benchmarks.

1 Introduction

The aim of most Machine Learning (ML) algorithms is to build a predictive
model starting from the feature values of a given training set. State-of-the-art
algorithms are usually quite effective at tacking problems with huge number
of samples, yet they might face issues if the number of features is huge. An
increase in the dimensionality of the problem, in fact, may correspond to a much
steeper increase of the search space, impairing the optimization of the models,
or creating other problems usually described with the vague expression “curse
of dimensionality” [2].

A reduction in the number of variables may be obtained either by means of
feature extraction or feature selection. Techniques in the former group, such as
principal component analysis (PCA) or autoencoders, built a new, more com-
pact set of features out of the original one. Feature selection techniques, on the
other hand, aim at finding a subset of the original features, that still allows ML
algorithms to build reliable predictive models. There might be practical reasons
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to opt for the second class of techniques, for instance, if each single feature has
a cost because it needs to be physically measured. Moreover, predictive models
that use tens or hundreds of features are de facto black boxes, quite hard if
not completely impossible to interpret. Identifying the key features involved in a
problem can make the final model more human-readable: problems involving ge-
nomic data [3] would greatly benefit from the possibility to find understandable
correlations; improvement could be noticeable in the field of visualization [23];
and the general need for explainable artificial intelligence (XAI) is only but
increasing in present days.

Starting from the observation that the value of a redundant feature, by def-
inition of redundancy, can be inferred using the information contained in the
other features, we propose Predictable Features Elimination (PFE). PFE is an
unsupervised, model-agnostic, wrapper approach for feature selection: In a first
step, each feature is scored and ranked using a statistical measure; then, starting
from the lowest-ranked feature, an auxiliary ML model is trained to predict that
feature using all the others; if the performance of the model exceeds a given
quality (for example, R2 > 0.95), the information it provides is assumed to be
redundant and the feature is removed. The procedure then iterates to the next
feature, and once all features have been analyzed in this way, those remaining
represent the final subset.

Experimental results on several non-trivial benchmarks from the OpenML
repository [26] show that the proposed approach is competitive with the state
of the art in the field, obtaining feature subsets that are either more informative
or smaller than competing feature selection algorithms. The main contributions
of this paper are:

– We describe Predictable Features Elimination, a new unsupervised, model-
agnostic, wrapper approach for feature selection.

– We compare the performance of PFE against state-of-the-art feature selec-
tion algorithms, showing the advantages of using our method especially on
large datasets.

– We compare PFE against other algorithms on an artificial dataset, specifi-
cally designed for assessing feature selection algorithms. Results show that
the features selected by PFE include almost all meaningful information.

2 Feature Selection in Machine Learning

Feature Selection (FS) is the process of identifying the features of a data set in
order to obtain a minimal, informative subset. Features may not be part of this
subset for two main reasons: they might be unrelated to the underlying nature
of the problem, just adding noise; they might be heavily correlated with others
features, adding no relevant information for the task.

Applications range from face recognition [28] to medicine [35], while ap-
proaches can be divided into two categories [11]: filters that score features accord-
ing to a criterion (often a statistical test); and recursive procedures (forward or
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backwards) that attempt to reduce the features to a small set of non-redundant
ones [16, 5].

Several different metrics that have been proposed to assess the content of
information of a given feature subset: from mutual information [15] to analysis
of variance [9]. However, only some of the information content of a feature subset
can be assessed through such metrics, as taking into account the contribution
of non-linear combinations of features would be too computationally expensive.
Recursive procedures on the other hand frequently rely on more complex mea-
surements, usually a goodness-of-fit [11] for a model wrapped inside the feature
selection, sometimes combined with regularization terms [30]. In some cases, the
number of features and the quality of the fit are evaluated separately, and each
candidate subset is placed on a Pareto front [32].

Literature reports FS techniques as complex as exploiting evolutionary algo-
rithms (EAs) [6, 32], with single- or multi-objective approaches [13, 31, 1]. Any-
how, the most popular approach in literature is still probably the 20-year old
Recursive Feature Elimination (RFE) [12], a supervised, wrapper methodology
that iteratively removes the worst features based on the performance of the
target model.

3 Predictable feature elimination

The algorithm

Predictable Features Elimination, the approach we present in this work, stems
from the observation that if the distribution of a feature fr can be approxi-
mated by using the information of other features, then fr is likely to be almost
redundant and of little importance for whatever model will be eventually built.
Algorithm 1 summarizes the main steps of the training process.

PFE requires the user to provide two parameters: an auxiliary machine learn-
ing model g and a threshold σ. The first is the model used to discriminate
non-redundant features, the second, the acceptable loss of information. A sub-
optimal choice of g would cause some features to be erroneously marked as
non-redundant, increasing the size of the feature set, but probably not affecting
the quality of the final model. On the other hand, a low σ is likely to make PFE
select a very small set of features, but also to impair the quality of the final
model.

The algorithms is composed of two phases: an initialization and the main
loop. In the former, features are ranked according to their mutual average linear
correlation. First, the feature correlation matrix C is computed:

C =
(
diag(KXX)

)1/2
KXX

(
diag(KXX)

)1/2
(1)

where KXX is the auto-covariance matrix of the input matrix X:

KXX = E[(X − E[X])(X − E[X])T )] (2)
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The correlation matrix C is used to estimate the amount of mutual informa-
tion shared among features. By summing up the rows of C, we obtain for each
feature an approximation of the amount of information which can be obtained
using all the other features:

κ =
∑
i

C(i, ·) (3)

The more a feature is correlated with others, the lower the chances that the
feature may contain exclusively useful information. Hence, by ranking features
according to their mutual average linear correlation, we will obtain an ordered
list of their significance:

κs = sort(κ) (4)

Starting from the feature with the highest rank f , the ML model g is trained
on the remaining features using the f -th feature as a target variable y:

y = X(·, κs(f)) (5)

The performance of g is assessed on a validation set Xval using the coeffi-
cient of determination R2. If the validation score is greater than the user defined
threshold σ, then it means that the model g represents an accurate nonlinear
association between the f -th feature and the other features. Hence, the chances
that the f -th feature may contain exclusively useful information are low. There-
fore, the f -th feature should be safely removed from the feature set and the
process may continue using the following feature in the ranking. The algorithm
stops when more than half of the features have been analyzed.

Algorithm 1: Predictable feature elimination

Input: data X ∈ Rn,d, model g, threshold σ ∈ [0, 1]
Initialize C = corr(XT )
Initialize κ =

∑
i C(i, ·)

Initialize κs = sort(κ)
for f = 1 to bd/2c do

Initialize y = X(·, κs(f)).
Split data into train and validation sets
Train model g ← (Xtrain, ytrain)
Make validation predictions ŷ = g(Xval)
Evaluate predictions score = R2(ŷ, yval)
if score ≥ σ then

Remove current feature
end if

end for
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Theoretical foundation

The following theorems yield a theoretical justification for the proposed ap-
proach. Besides, they show how the performance loss can be formally estimated
by providing upper bounds in worst case scenarios.

Theorem 1 (Elimination for linear combinations). Let F be a set of fea-
tures F = {f1, . . . , fd} and F ′ be a subset of F such that fi /∈ F ′. If the feature
fi is a linear combination of the feature set F ′, then fitting a linear model using
F ′ is equivalent to fitting the same model using F ′ ∪ {fi}.

Proof. By definition fi is a linear combination of F ′, hence:

fi =
∑
j 6=i

wjfj (6)

which can be written as:
fi = F ′w (7)

where F ′ ∈ Rn×d′
is a matrix whose columns are features in F ′ and w ∈ Rd′

is
a row vector containing the weights of the linear combination.

A linear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) = F ′wg =
∑
j∈d′

fjw
g
j (8)

Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪ {fi},
then the model g trained on F ′′ can be written as:

ŷ = g(F ′′) = F ′′wg =
∑
k∈d′′

fkw
g
k

=
∑
j∈d′

fjw
g
j + wg

i fi

=
∑
j∈d′

fjw
g
j + wg

i

∑
j∈d′

fjwj

=
∑
j∈d′

fjw
g
j +

∑
j∈d′

fjwjw
g
i

=
∑
j∈d′

fjw
g
jwjw

g
i

=
∑
j∈d′

fjω
g
j (9)

Theorem 2 (Approximate elimination for linear combinations). Let F
be a set of features F = {f1, . . . , fd} and F ′ be a subset of F such that fi /∈ F ′. If
the feature fi can be written as a linear combination of the feature set F ′ with an
additional term ε, then the upper bound of the training error obtained by fitting
a linear model on F ′ instead of F ′ ∪ {fi} is at most ε.
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Proof. By definition fi can be written as a linear combination of the feature set
F ′ with an additional term ε, hence:

fi =
∑
j 6=i

wjfj + ε (10)

which can be written as:
fi = F ′w + ε (11)

where F ′ ∈ Rn×d′
is a matrix whose columns are features in F ′ and w ∈ Rd′

is
a row vector containing the weights of the linear combination.

A linear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) = F ′wg =
∑
j∈d′

fjw
g
j (12)

Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪ {fi},
then the model g trained on F ′′ can be written as:

ŷ = g(F ′′) = F ′′wg =
∑
k∈d′′

fkw
g
k

=
∑
j∈d′

fjw
g
j + wg

i fi

=
∑
j∈d′

fjw
g
j + wg

i

∑
j∈d′

fjwj + ε

=
∑
j∈d′

fjw
g
j +

∑
j∈d′

fjwjw
g
i + ε

=
∑
j∈d′

fjw
g
jwjw

g
i + ε

=
∑
j∈d′

fjω
g
j + ε (13)

Theorem 3 (Approximate elimination). Let F be a set of features F =
{f1, . . . , fd} and F ′ be a subset of F such that fi /∈ F ′. Let g and h be two
nonlinear models with equivalent capacity. If the feature fi can be written as
a function of F ′ through h with an error term ε, then the upper bound of the
training error obtained by fitting g on F ′ instead of F ′ ∪ {fi} is at most η(g, ε).

Proof. By definition fi can be written as a nonlinear function h of the feature
set F ′ with an additional term ε, hence:

fi = h(F ′) + ε (14)

where F ′ ∈ Rn×d′
is a matrix whose columns are features in F ′.

A nonlinear model g trained using the matrix F ′ can be written as:

ŷ = g(F ′) (15)
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Let F ′′ be the matrix whose columns correspond to the features in F ′ ∪ {fi},
then the model g trained on F ′′ can be written as:

ŷ = g(F ′′) = g(F ′, fi) = g(F ′, h(F ′) + ε) (16)

Since the information in h(F ′) can be obtained from F ′ by applying the function
h, then g can be fitted on F ′ without information loss by discarding h(F ′):

ŷ = g(F ′′) = g(F ′, ε) = g(F ′) + η(g, ε) (17)

where η is a function of g and ε.

The following definition can be used to monitor in an unsupervised way
the performance loss when multiple features are recursively eliminated. In some
applications, this lemma may be used to derive alternative stopping conditions.

Definition 1 (Validity of feature elimination). Let λ be an upper bound of
the performance loss required for a specific application and let {η1, . . . , ηk} be a
sequence of training errors obtained by performing k steps of feature elimination.
The sequence of k feature elimination steps is valid if and only if λ ≤

∑k
i=1 ηi.

4 Experimental Evaluation

The proposed approach has been implemented from scratch in Python 3, using
only open-source libraries [19, 17]; the source code, including all the parameter
values used in the experiments, is available under the European Union Public
Licence (EUPL) from GitHub4.

All experiments have been run on the same machine equipped with an AMD
EPYC 7301 16-core processor running at 2 GHz, and with 64 GiB memory.

Experimental setup

The performance of predictable feature elimination is compared over a 10-fold
cross-validation against both supervised and unsupervised feature selection al-
gorithms [19, 17]: Laplacian score for feature selection (lap score [14]), spectral
feature selection for unsupervised clustering (SPEC [34]), multi-cluster feature se-
lection (MCFS [4]), non-negative spectral feature selection (NDFS [18]), regularised
discriminative feature selection (UDFS [33]), and recursive feature elimination
(RFE [12]).

A Ridge classifier has been used both as the internal estimator for RFE, and
to discard redundant features in PFE. It must be noted that PFE is agnostic
to the choice of the estimator g, as far it is not significantly superior to the one
eventually used in the final model — the underlying assumption being that if
a feature can be predicted by g, it may as well be inferred by the final model.

4 https://github.com/glubbdubdrib/predictable-feature-elimination
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Ridge has been chosen both for its high train speed and its generalization ability
in a variety of experimental settings.

For all the experiments the σ parameter has been set to the default 0.9, a
reasonable value that leads to the removal of at most half of the original features.
For the sake of comparison, all the other feature selection algorithms are set in
order to provide for each fold the same number of features chosen by PFE. For
each fold, each algorithm is used to select a subset of the original features.

In order to generate reproducible results, all algorithms that exploit pseudo-
random elements in their training process have been set with a fixed seed. Unless
differently specified, each algorithm uses its default parameters as defined in [19,
17]. Each dataset has been standardized removing the mean and scaling to unit
variance (StandardScaler [36]).

Redundancy detection

The MADELON dataset proposed in [10] was specifically designed to challenge
feature selection algorithms in detecting redundant features. Features generated
by MADELON can be informative (di), repeated (dr), or redundant (dc). The
algorithm generates clusters of points normally distributed about vertices of an
hypercube in a subspace of dimension di and assigns an equal number of clusters
to each class. Then it stacks dc linear combinations of the informative features
followed by dr duplicates, drawn randomly with replacement from the informa-
tive and redundant features. All the remaining features (dn) are random noise
(dn = d− di − dc − dr). This benchmark dataset is used to assess the ability of
PFE in detecting redundant features. For this experiment the number of infor-
mative features is set to 150 as well as the number of redundant and repeated
features (di = dc = ds = 150). The total number of features is set to d = 500,
thus dn = 50 features are just random noise. The task is to detect informative,
redundant, duplicate, and noisy features in order to correctly classify clusters
of samples on hypercube vertices. Experimental results are shown in Figure 1.
Once feature selection algorithms are fitted on a training fold, an instance of
RidgeClassifier and of DecisionTreeClassifier are used to assess the qual-
ity of the selection on the test set. The resulting F1 score [25] is then compared to
the one obtained by training on the same fold but using all the original features.
In this way, the performance of all techniques can be evaluated with respect to
a fair baseline (see Figure 1, top). Except for lap score, PFE resulted as the
fastest approach. The most interesting result of the simulation is represented by
boxplots in Figure 1, bottom. They show for each kind of feature (informative,
redundant, duplicate, and noisy) the percentage of features retained by each
algorithm. Notably, PFE and MCFS preserve most of the informative features
while discarding most of the redundancy. However, MCFS is the worst technique
in terms of duplicate detection, whereas PFE is the best one together with NDFS

and lap score. It should be remarked, anyway, that PFE retains all noisy fea-
tures. Yet, it is not surprising at all as the approach is not designed to get rid of
random noise. In authors view, PFE is not meant to be used alone but combined
with other complementary feature selection approaches.
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Fig. 1. Classification performances on the MADELON dataset (top two); feature se-
lected for the MADELON dataset (bottom four).

Cross-task benchmarks

The ability of feature selection algorithms in tackling different kind of machine
learning problems is assessed using four benchmark datasets taken from the
OpenML[26]. Table 1 highlights the main characteristics of the four datasets.
The first two (gas-drift and isolet) are used to test classification and clustering
performances while the latters are employed for regression. The quality of the
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Table 1. Benchmark datasets.

dataset samples features classes reference

gas-drift 13,910 128 6 [27]
isolet 7,797 617 26 [8]
Mercedes 4,209 377 - [7]
crime 1,994 127 - [24]

selections is assessed over a 10-fold cross-validation. Once fitted on a training
fold, each algorithm provides a selection of the original features to an instance
of a machine learning model on the filtered training set only. RidgeClassifier
and DecisionTreeClassifier are used to evaluate classification performance in
terms of F1 score. AgglomerativeClustering [29] and KMeans [22] are employed
to assess clustering performances through the Silhouette coefficient [20]. The
number of centroids for k-means is chosen as twice as much as the number of
classes. For regression Ridge and DecisionTreeRegressor are used to measure
the coefficient of determination (R2 score, [21]). Once collected, performance
scores are compared to the ones obtained by training on the same folds but
using all the original features. In this way, the performance of all techniques can
be evaluated with respect to a fair baseline. Figures 2, 3, and 4 show the results
in terms of performance metrics and training time. As mentioned before, all the
other feature selection algorithms are set in order to provide for each fold the
same number of features chosen by PFE, thus yielding a fair comparison.

Compared to state-of-the-art techniques, PFE is among the fastest solu-
tions together with RFE and lap score. Notably, RFE is not used for cluster-
ing as it is a supervised algorithm, thus it cannot be employed for unsuper-
vised tasks. Despite its unsupervised nature, PFE often matches RFE perfor-
mances and sometimes provides even better solutions (i.e., Mercedes dataset
using DecisionTreeRegressor). The efficiency of PFE with respect to other
unsupervised approaches is revealed on the largest dataset (gas-drift) where it
is faster by a few order of magnitudes. Moreover, even when PFE performances
appear to be slightly worse than others (i.e., Mercedes using Ridge), it may be
sufficient to change the downstream predictor (i.e., the performance looks much
better when DecisionTreeRegressor is used). Indeed, by construction, PFE
performs feature selection such that the information loss is almost negligible.

5 Conclusions

In this paper, a novel feature selection approach named Predictable Features
Elimination has been introduced. At the heart of the methodology lies the idea
that features whose value can be easily predicted based on the values of other
features of the same sample, probably contain mostly redundant information.
The algorithm iteratively trains a machine learning model using one of the fea-
tures as a target, and if the quality of the model is above a user-defined threshold
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Fig. 2. Classification results on benchmark datasets.

(e.g., V > 0.9), the feature is removed. After all features have been treated in
this way, the remaining ones will constitute the final feature set. Not relying
on target labels or values, PFE can be used for supervised, unsupervised, or
semi-supervised machine learning problems.

Experimental results prove PFE to be competitive with state-of-the-art fea-
ture selection algorithms, on a set of non-trivial classification, regression, and
clustering benchmarks. The main drawback of the approach is the impossibil-
ity of removing uninformative, but hard-to-predict features, for example those
including completely random values: In most cases, however, such features are
filtered out by subsequent machine learning algorithms applied to the data, as
they have no correlation with the objectives.

Future works will investigate the performance on PFE on a wider range of
benchmarks, and explore the possibility of using a similar idea on samples, to
uncover coresets and potentially perform dataset compression. Finally, particular
focus
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Fig. 3. Regression results on benchmark datasets.
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